Химия нефти. Перегонка нефти

Перегонка нефти

разделение нефти на составные части (фракции) по их температурам кипения в целях получения товарных нефтепродуктов (См. Нефтепродукты) или их компонентов. П. н.- начальный процесс переработки нефти на нефтеперерабатывающих заводах, основанный на том, что при нагреве нефти образуется паровая фаза, отличающаяся по составу от жидкости (см. Дистилляция). Фракции, получаемые в результате П. н., обычно представляют собой смеси углеводородов. С помощью методов многократной перегонки нефтяных фракций удаётся выделить некоторые индивидуальные углеводороды. П. н. осуществляется методами однократного испарения (равновесная дистилляция) или постепенного испарения (простая перегонка, или фракционная дистилляция); с ректификацией (См. Ректификация) и без неё; в присутствии перегретого водяного пара -испаряющего агента; при атмосферном давлении и под вакуумом. При равновесной дистилляции разделение нефти на фракции происходит менее четко по сравнению с простой перегонкой. Однако в первом случае при одной и той же температуре нагрева в парообразное состояние переходит большая часть нефти. В лабораторной практике в основном применяется простая П. н. с ректификацией паровой фазы на установках периодического действия. В промышленности используется П. н. с однократным испарением в сочетании с ректификацией паровой и жидкой фаз. Такое сочетание позволяет проводить П. н. на установках непрерывного действия и добиваться высокой чёткости разделения нефти на фракции, экономного расходования топлива на её нагрев. Применение водяного пара приводит к снижению температурного режима, увеличению отбора нефтяных фракций и повышению концентрации высококипящих компонентов в остатке. На промышленных установках П. н. вначале проводится при атмосферном давлении, а затем под вакуумом. При атмосферной перегонке нефть нагревается не выше 370 °С, так как при более высокой температуре начинается расщепление углеводородов - Крекинг , а это нежелательно из-за того, что образующиеся непредельные углеводороды резко снижают качество и выход целевых продуктов. В результате атмосферной П. н. отгоняются фракции, выкипающие примерно от 30 до 350-360 °С, и в остатке остаётся Мазут . Из нефтяных фракций, выкипающих до 360 °С, получаются различные виды топлив (бензины, топлива для реактивных и дизельных двигателей), сырьё для нефтехимического синтеза (См. Нефтехимический синтез) (бензол, этилбензол, ксилолы, этилен, пропилен, бутадиен), растворители и др. Дальнейшая перегонка мазута проводится под вакуумом (остаточное давление 5,3-8 кн/м 2 , или 40-60 мм рт. ст. ), чтобы свести к минимуму крекинг углеводородов. В СССР на ряде нефтеперерабатывающих заводов производительность установок атмосферно-вакуумной П. н. доведена до 8 млн. т нефти в год. История, сведения о П. н. см. в ст. Нефть .

Лит.: Обрядчиков С. Н., Принципы перегонки нефти, М.- Л., 1940; Трегубов А. М., Теория перегонки и ректификации, 3 изд., Баку, 1946; Технология переработки нефти и газа, ч. 1, М., 1972.

А. Г. Сарданашвили.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Перегонка нефти" в других словарях:

    Разделение нефти на основные части, или фракции. П. н. нач. процесс переработки нефти, осн. на том, что при нагреве нефти образуется паровая фаза, отличающаяся по составу от жидкости. При П. н. получают бензин, лигроин, керосин, дизельное топливо … Большой энциклопедический политехнический словарь

    перегонка нефти под вакуумом - отбензинивание нефти под вакуумом — Тематики нефтегазовая промышленность Синонимы отбензинивание нефти под вакуумом EN vacuum topping …

    первичная перегонка (нефти) - — Тематики нефтегазовая промышленность EN preliminary distillation … Справочник технического переводчика

    периодическая перегонка (нефти) - — Тематики нефтегазовая промышленность EN batch distillation … Справочник технического переводчика

    - … Википедия

    ПЕРЕГОНКА, перегонки, жен. 1. Разложение веществ (жидких или твердых) на составные части с помощью кипячения, нагревания (тех.). Перегонка основана на неодинаковой летучести составляющих смесь веществ. При перегонке жидкостей образующиеся пары… … Толковый словарь Ушакова

    Перегонка - (нефти) - процесс разделения нефти на составные части (фракции) в зависимости от их температур кипения в целях получения нефтепродуктов или их компонентов. Из нефтяных фракций, выкипающих до 360oС, получаются различные виды топлив (бензины …

    Перегонка, разгонка нефти - rectification, rundown Фракционированная перегонка нефти, при которой получаются дистилляты, отвечающие различным пределам температур кипения и перерабатываемые затем на соответствующие нефтепродукты – бензин, керосин, масла. Схема переработки… … Нефтегазовая микроэнциклопедия

    перегонка - рафинирование очистка переработка (нефти) облагораживание — Тематики нефтегазовая промышленность Синонимы рафинированиеочисткапереработка (нефти)облагораживание… … Справочник технического переводчика

    Перегонка вакуумная - - обработка нефти с целью отбора масляных фракций. Конечный продукт вакуумной обработки - гудрон. Вакуумная перегонка проводится на промышленных установках с целью свести к минимуму крекинг углеводородов … Нефтегазовая микроэнциклопедия

Книги

  • Примеры и задачи по технологии переработки нефти и газа , Сарданашвили Александр Георгиевич, Львова Антонина Ильинична. В книге приведены примеры и задачи по курсу "Технология переработки нефти и газа", относящиеся к процессам первичной переработки нефти (физические свойства нефтей и нефтепродуктов, перегонка…

Определение состава нефти и ее продуктов происходит путем разделения по температурам кипения методом перегонки и ректификации.

Выход фракций нефти

Нефть, газовые конденсаты и их фракции представляют собой многокомпонентную смесь из соединений углеводородов. В . Поэтому определение состава этой смеси как совокупности всех входящих в их состав соединений - сложнейшая и не всегда разрешимая задача.

Расходы на покупку сырой нефти, составляющие около 80% расходов НПЗ, наиболее важный фактор, определяющий рентабельность нефтяной компании. Качество и ценность сырой нефти зависят от ее кривой ИТК, определяющей содержание фракции светлых нефтепродуктов, выкипающих до 360°C, фракции 360-540°C и кубового продукта (>540°C), и содержания примесей, таких как сера, азот, металлы и т.д.

Однако кривая ИТК не отражает химического состава нефтяных фракций, который, в свою очередь, влияет на выход и свойства продукции установок для преобразования и повышения сортности нефтепродуктов на НПЗ. Таким образом, знание кривой ИТК и химической природы фракций сырой нефти имеет чрезвычайно важное значение для улучшения экономических показателей НПЗ. К сожалению, для получение этой информации необходимы лабораторные анализы, требующие больших финансовых и временных затрат.

Основные фракции

Углеводородный газ

Газ, входящий в состав данной нефти состоит в основном из бутанов (73,9 % мас.) выход газов на нефть составляет 1,5 % мас. Пропан — бутановая фракция будет использована в качестве сырья газофракционирующих установок с целью производства индивидуальных углеводородов, топлива и компонента автомобильного бензина.

Фракция НК-62°С

Фракция НК-62°С будет использована как сырьё для процесса каталитической изомеризации с целью повышения октанового числа.

Фракция 62-85°С

Фракцию 62-85°С называют “бензольной”, она будет использоваться как компонент товарного бензина и для получения бензола.

Фракция 85-120°С

Фракция 85-120°С в смеси с фракцией 120-180°С будет использована как сырье для установки каталитического риформинга с целью повышения октанового числа. Предварительно отправляется на гидроочистку.

Фракция 120-180°С и 180-230°С

Фракция 120-180°С будет использована в смеси с фракцией 180-230°С как компонент реактивного топлива. Реактивное топливо не подходит по температуре вспышки, поэтому нужно удалить часть лёгких компонентов.

Способы добычи нефти

Индивидуальный состав нефтепродуктов

В настоящее время индивидуальный состав продуктов нефти может быть достаточно надежно определен методами газожидкостной хроматографии только для единичных бензиновых фракций. Поэтому индивидуальный углеводородный состав не может быть положен в основу прогнозных методов расчета теплофизических свойств (ТФС) ввиду его недоступности для потребителей.

В то же время фракционный состав и структурно-групповой углеводородный состав могут иметь более плодотворное применение на пути построения методов расчета теплофизических свойств нефти.

Поэтому ниже рассмотрены методики пересчета и экстраполяции кривых разгонок и способы расчета структурно-группового углеводородного состава фракций.

Фракционный состав нефти и нефтепродуктов

Определение данного вида состава нефти и ее продуктов происходит путем разделения по температурам кипения методом перегонки и ректификации.

Совокупность выхода (в процентах по массе или объему) отдельных фракций, которые выкипают в определенных температурных диапазонах, называется фракционным составом нефти, нефтепродукта или смеси. Для более полной характеристики определяется относительная плотность и средняя молярная масса каждого погона и смеси в целом. По результатам испарения строят кривую ИТК, которая содержит достаточно полную информацию о составе смеси.

Ректификация по ГОСТ 11011-85 в аппарате АРН-2 ограничивается температурой 450-460 °С из-за возможного термического разложения остатка. Проведение данного вида исследования нефтей рекомендуется в устройстве для перегонки АРН-2 по методу ГрозНИИ в колбе Мановяна до температуры выкипания 560-580 °С. При этом не происходит искажения кривой ИТК.

Фракционный состав, особенно светлых товарных нефтепродуктов и широких фракций, часто определяют перегонкой в аппарате Энглера по ГОСТ 2177-82, что значительно проще ректификации. Кривая разгонки по Энглеру позволяет достаточно надежно определить характеристические температуры кипения фракций. Однако при расчете фазовых равновесий предпочтительнее иметь кривую ИТК. Для получения такой кривой предложен ряд эмпирических процедур.

Например, для светлых нефтепродуктов известна методика БашНИИНП. Основываясь на том, что разность температур, полученных при разгонке товарного нефтепродукта по ИТК и по Энглеру, в определенной точке выкипания нефтепродукта является почти постоянной, можно записать

Характеризация физико-химических свойств (ФХС) узких нефтяных фракций (псевдокомпонентов)

При расчете процессов ректификации многокомпонентных смесей (МКС) необходимо использовать физико-химические и термодинамические свойства всех компонентов, составляющих разделяемую МКС. Поскольку в рассматриваемом случае декомпозиция исходной непрерывной смеси на псевдокомпоненты носит достаточно условный характер, процедура расчета физико-химических свойств отдельных псевдокомпонентов приобретает особое значение.

Известно , что любое химическое вещество обладает совокупностью характеристических констант, причем значения характеристических констант зависят от химического строения молекул вещества. Это положение может быть распространено и на псевдокомпоненты, особенно если значения характеристических констант определены экспериментально.

Кстати, прочтите эту статью тоже: Особенности переработки тяжелой нефти

В качестве основной и минимально необходимой характеристики псевдокомпонента принята его среднеарифметическая (между началом и концом выкипания фракции) температура кипения.

Однако, эта температура не в полной мере характеризует псевдокомпонент, поскольку она не учитывает особенности состава нефтей различного типа (различных месторождений). Для более точной оценки ФХС псевдокомпонентов необходима информация об углеводородном составе фракций.

Эта информация в косвенной форме в кривых ОИ и ИТК содержится. Более того, по закону сохранения масс усредненные (среднеинтегральные) значения псевдохарактеристических констант и вероятного углеводородного состава для фракций, выделенных по сравниваемым кривым при одинаковых расходных пределах выкипания, должны совпадать (за исключением их температурных пределов выкипания) .

Поэтому для оценки углеводородного состава моторных топлив вполне допустимо использование кривой ОИ – как более простой и удобной при экспериментальном определении. Однако при расчете процессов разделения (прежде всего ректификации) необходимо использовать только кривую ИТК.

Для расчетов в качестве псевдохарактеристических констант всех компонентов (псевдокомпонентов) МКС используются стандартные свойства (температуры кипения, температуры фазовых переходов, давления насыщенных паров, плотности газовой и жидкой фаз при стандартных условиях, показатели преломления, вязкости, энтальпий и др.), а также критические свойства. Эти константы характеризуют химическую индивидуальность компонента, т.е. представляют «химический паспорт» вещества. Характеристические свойства являются функциями специфических химических параметров вещества: молярной массы и структуры молекулы вещества :

Из (1.1) следует, что все стандартные свойства оказываются взаимосвязанными и могут быть выражены друг через друга. Так молярная масса какого либо углеводорода (псевдокомпонента) может быть выражена в виде функции от его стандартных свойств: температуры кипения, плотности, показателя преломления и прочих свойств, а также от комбинации этих свойств. В качестве примера можно привести формулы Б. П. Войнова , Крега и Мамедова для расчета молекулярной массы углеводородов:

Поэтому количество вариантов расчета ТФС псевдокомпонентов оказывается достаточно большим, что в определенной мере затрудняет их практическое использование.

Для расчета ФХС широких нефтяных фракций, состоящих из нескольких псевдокомпонентов, используется правило аддитивности, т.е. вклад каждой узкой фракции в свойства более широкой фракции определяется относительной концентрацией узкой фракции в более широкой.

Кстати, прочтите эту статью тоже: Перевод кинематической вязкости в динамическую

В УМП процедуры расчета ФХС для непрерывных смесей автоматизированы: пользователь в соответствии с принятой температурной разбивкой кривой ИТК на псевдокомпоненты задает пределы выкипания отдельных псевдокомпонентов (отдельных узких фракций), после чего заполняет спецификацию для каждого выбранного псевдокомпонента, задавая его характеристические свойства, известные пользователю.

В качестве минимально необходимой информации, как уже указывалось, должна быть задана средняя температура кипения псевдокомпонента, а в качестве дополнительной задаются свойства (плотность, показатель преломления и т.д.), известные пользователю. Чем более полно определена эта информация, тем точнее будет охарактеризован каждый псевдокомпонент, а значит, и точнее будут результаты последующего моделирования. Для примера на рис. 1.7 приведены кривые распределения характеристических свойств (t ср , p, n ) для прямогонного гидроочищенного бензина .

Рис. 1.7. Кривые распределения температуры кипения (t ср ), плотности (p ) и показателя преломления (n ) фракции прямогонного гидроочищенного бензина

В соответствии с принятым условием достаточно плавного изменения характеристических свойств при изменении температуры кипения отдельных компонентов (число индивидуальных компонентов очень велико) зависимости всех свойств от доли отгона вещества (или от температуры отгона) должны быть также непрерывными.

На основе данной информации могут быть рассчитаны все основные свойства (T кр , P кр , Z кр , энтальпийные характеристики) как отдельных псевдокомпонентов, так и среднеинтегральные значения этих свойств для фракции в целом, а также определены вероятные брутто-формулы гипотетических псевдокомпонентов .По сути такой же подход используется и при взаимном пересчете кривых ОИ и ИТК.

При этом наличие даже неполной информации (только отдельных свойств для отдельных фракций даже в ограниченном диапазоне изменения доли отгона) позволяет заметно повысить адекватность обобщающей информации. Так, для примера, приведенного на рис. 1.4, учет только одного свойства по фракции в целом (плотность мазута) заметно уточняет вид конечной характеристики (кривая ИТК).

ВАМ БУДЕТ ИНТЕРЕСНО:

Нефтеперерабатывающие заводы России На НПЗ «Газпром нефти» в Москве установлена колонна вакуумной перегонки нефти установки «Евро+» Способы добычи нефти Себестоимость добычи нефти

Сырая нефть представляет собой сложную смесь углеводородов и других соединений. В таком виде она мало используется. Сначала ее перерабатывают в другие продукты, которые имеют практическое применение. Поэтому сырую нефть транспортируют танкерами или с помощью трубопроводов к нефтеперерабатывающим заводам.

Переработка нефти включает целый ряд физических и химических процессов: фракционную перегонку, крекинг, риформинг и очистку от серы.

Фракционная перегонка

Сырую нефть разделяют на множество составных частей, подвергая ее простой, фракционной и вакуумной перегонке. Характер этих процессов, а также число и состав получаемых фракций нефти зависят от состава сырой нефти и от требований, предъявляемых к различным ее фракциям.

Из сырой нефти прежде всего удаляют растворенные в ней примеси газов, подвергая ее простой перегонке. Затем нефть подвергают первичной перегонке, в результате чего ее разделяют на газовую, легкую и среднюю фракции и мазут. Дальнейшая фракционная перегонка легкой и средней фракций, а также вакуумная перегонка мазута приводит к образованию большого числа фракций. В табл. 18.6 указаны диапазоны температур кипения и состав различных фракций нефти, а на рис. 18.11 изображена схема устройства первичной дистилляционной (ректификационной) колонны для перегонки нефти. Перейдем теперь к описанию свойств отдельных фракций нефти.

Таблица 18.6. Типичные фракции перегонки нефти

Рис. 18.11. Первичная перегонка сырой нефти.

Лаборатория экстракции и перегонки в Индийском нефтехимическом институте.

Газовая фракция. Газы, получаемые при переработке нефти, представляют собой простейшие неразветвленные алканы: этан, пропан и бутаны. Эта фракция имеет промышленное название нефтезаводской (нефтяной) газ. Ее удаляют из сырой нефти до того, как подвергнуть ее первичной перегонке, или же выделяют из бензиновой фракции после первичной перегонки. Нефтезаводской газ используют в качестве газообразного горючего или же подвергают его сжижению под давлением, чтобы получить сжиженный нефтяной газ. Последний поступает в продажу в качестве жидкого топлива или используется как сырье для получения этилена на крекинг-установках.

Бензиновая фракция. Эта фракция используется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Особенности горения неразветвленных алканов не идеально соответствуют двигателям внутреннего сгорания. Поэтому бензиновую фракцию нередко подвергают термическому риформингу (см. ниже), чтобы превратить неразветвленные молекулы в разветвленные. Перед употреблением эту фракцию обычно смешивают с разветвленными алканами, циклоалканами и ароматическими соединениями, получаемыми из других фракций путем каталитического крекинга либо риформинга.

Качество бензина как моторного топлива определяется его октановым числом. Оно указывает процентное объемное содержание 2,2,4-триметилпентана (изооктана) в смеси 2,2,4-триметилпентана и гептана (алкан с неразветвленной цепью), которая обладает такими же детонационными характеристиками горения, как и испытуемый бензин.

Плохое моторное топливо имеет нулевое октановое число, а хорошее топливо-октановое число 100. Октановое число бензиновой фракции, получаемой из сырой нефти, обычно не превышает 60. Характеристики горения бензина улучшаются при добавлении в него антидетонаторной присадки, в качестве которой используется разд. 15.2). Тетраэтилсвинец представляет собой бесцветную жидкость, которую получают при нагревании хлороэтана со сплавом натрия и свинца:

При горении бензина, содержащего эту присадку, образуются частицы свинца и оксида свинца(II). Они замедляют определенные стадии горения бензинового топлива и тем самым препятствуют его детонации. Вместе с тетраэтилсвинцом в бензин добавляют еще 1,2-дибромоэтан. Он реагирует со свинцом и образуя бромид Поскольку бромид представляет собой летучее соединение, он удаляется из автомобильного двигателя с выхлопными газами (см. разд. 15.2).

Лигроин (нафта). Эту фракцию перегонки нефти получают в промежутке между бензиновой и керосиновой фракциями. Она состоит преимущественно из алканов (табл. 18.7).

Лигроин получают также при фракционной перегонке легкой масляной фракции, получаемой из каменноугольной смолы (см. табл. 18.5). Лигроин из каменноугольной смолы имеет высокое содержание ароматических углеводородов.

Большую часть лигроина, получаемого при перегонке нефти, подвергают риформингу для превращения в бензин. Однако значительная его часть используется как сырье для получения других химических веществ (см. ниже).

Керосин. Керосиновая фракция перегонки нефти состоит из алифатических алканов, нафталинов (см. выше) и ароматических углеводородов. Часть ее подвергается

Таблица 18.7. Углеводородный состав лигроиновой фракции типичной ближневосточной нефти

очистке для использования в качестве источника насыщенных углеводородов-парафинов, а другая часть подвергается крекингу с целью превращения в бензин. Однако основная часть керосина используется в качестве горючего для реактивных самолетов.

Газойль. Эта фракция переработки нефти известна под названием дизельного топлива. Часть ее подвергают крекингу для получения нефтезаводского газа и бензина. Однако главным образом газойль используют в качестве горючего для дизельных двигателей. В дизельном двигателе зажигание топлива производится в результате повышения давления. Поэтому они обходятся без свечей зажигания. Газойль используется также как топливо для промышленных печей.

Мазут. Эта фракция остается после удаления из нефти всех остальных фракций. Большая его часть используется в качестве жидкого топлива для нагревания котлов и получения пара на промышленных предприятиях, электростанциях и в корабельных двигателях. Однако некоторую часть мазута подвергают вакуумной перегонке для получения смазочных масел и парафинового воска. Смазочные масла подвергают дальнейшей очистке путем экстракции растворителя. Темный вязкий материал, остающийся после вакуумной перегонки мазута, называется «битум», или «асфальт». Он используется для изготовления дорожных покрытий.

Мы рассказали о том, как фракционная и вакуумная перегонка наряду с экстракцией растворителями позволяет разделить сырую нефть на различные практически важные фракции. Все эти процессы являются физическими. Но для переработки нефти используются еще и химические процессы. Эти процессы можно подразделить на два типа: крекинг и риформинг.

Крекинг

В этом процессе крупные молекулы высококипящих фракций сырой нефти расщепляются на меньшие молекулы, из которых состоят низкокипящие фракции. Крекинг необходим потому, что потребности в низкокипяших фракциях нефти - особенно в бензине - часто опережают возможности их получения путем фракционной перегонки сырой нефти.

В результате крекинга кроме бензина получают также алкены, необходимые как сырье для химической промышленности. Крекинг в свою очередь подразделяется на три важнейших типа: гидрокрекинг, каталитический крекинг и термический крекинг.

Гидрокрекинг. Эта разновидность крекинга позволяет превращать высококипящие фракции нефти (воски и тяжелые масла) в низкокипящие фракции. Процесс гидрокрекинга заключается в том, что подвергаемую крекингу фракцию нагревают под очень высоким давлением в атмосфере водорода. Это приводит к разрыву крупных молекул и присоединению водорода к их фрагментам. В результате образуются насыщенные молекулы небольших размеров. Гидрокрекинг используется для получения газойля и бензинов из более тяжелых фракций.

Каталитический крекинг. Этот метод приводит к образованию смеси насыщенных и ненасыщенных продуктов. Каталитический крекинг проводится при сравнительно

невысоких температурах, а в качестве катализатора используется смесь кремнезема и глинозема. Таким путем получают высококачественный бензин и ненасыщенные углеводороды из тяжелых фракций нефти.

Термический крекинг. Крупные молекулы углеводородов, содержащихся в тяжелых фракциях нефти, могут быть расщеплены на меньшие молекулы путем нагревания этих фракций до температур, превышающих их температуру кипения. Как и при каталитическом крекинге, в этом случае получают смесь насыщенных и ненасыщенных продуктов. Например,

Термический крекинг имеет особенно важное значение для получения ненасыщенных углеводородов, например этилена и пропена. Для термического крекинга используются паровые крекинг-установки. В этих установках углеводородное сырье сначала нагревают в печи до 800°С, а затем разбавляют его паром. Это увеличивает выход алкенов. После того как крупные молекулы исходных углеводородов расщепятся на более мелкие молекулы, горячие газы охлаждают приблизительно до 400°С водой, которая превращается в сжатый пар. Затем охлажденные газы поступают в ректификационную (фракционную) колонну, где они охлаждаются до 40°С. Конденсация более крупных молекул приводит к образованию бензина и газойля. Несконденсировавшиеся газы сжимают в компрессоре, который приводится в действие сжатым паром, полученным на стадии охлаждения газов. Окончательное разделение продуктов производится в колоннах фракционной перегонки.

Таблица 18.8. Выход продуктов крекинга с паром из различного углеводородного сырья (масс. %)

В европейских странах главным сырьем для получения ненасыщенных углеводородов с помощью каталитического крекинга является лигроин. В Соединенных Штатах главным сырьем для этой цели служит этан. Его легко получают на нефтеперерабатывающих заводах как один из компонентов сжиженного нефтяного газа или же из природного газа, а также из нефтяных скважин как один из компонентов природных сопутствующих газов. В качестве сырья для крекинга с паром используются также пропан, бутан и газойль. Продукты крекинга этана и лигроина указаны в табл. 18.8.

Реакции крекинга протекают по радикальному механизму (см. разд. 18.1).

Риформинг

В отличие от процессов крекинга, которые заключаются в расщеплении более крупных молекул на менее крупные, процессы риформинга приводят к изменению структуры молекул или к их объединению в более крупные молекулы. Риформинг используется в переработке сырой нефти для превращения низкокачественных бензиновых фракций в высококачественные фракции. Кроме того, он используется с целью получения сырья для нефтехимической промышленности. Процессы риформинга могут быть подразделены на три типа: изомеризация, алкилирование, а также циклизация и ароматизация.

Изомеризация. В этом процессе молекулы одного изомера подвергаются перегруппировке с образованием другого изомера. Процесс изомеризации имеет очень важное значение для повышения качества бензиновой фракции, получаемой после первичной перегонки сырой нефти. Мы уже указывали, что эта фракция содержит слишком много неразветвленных алканов. Их можно превратить в разветвленные алканы, нагревая данную фракцию до под давлением 20-50 атм. Этот процесс носит название термического риформинга.

Для изомеризации неразветвленных алканов может также применяться каталитический риформинг. Например, бутан можно изомеризовать, превращая его в -метил-пропан, с помощью катализатора из хлорида алюминия при температуре 100°С или выше:

Эта реакция имеет ионный механизм, который осуществляется с участием карбкатионов (см. разд. 17.3).

Алкилирование. В этом процессе алканы и алкены, которые образовались в результате крекинга, воссоединяются с образованием высокосортных бензинов. Такие алканы и алкены обычно имеют от двух до четырех атомов углерода. Процесс проводится при низкой температуре с использованием сильнокислотного катализатора, например серной кислоты:

Эта реакция протекает по ионному механизму с участием карбкатиона

Циклизация и ароматизация. При пропускании бензиновой и лигроиновой фракций, полученных в результате первичной перегонки сырой нефти, над поверхностью таких катализаторов, как платина или оксид на подложке из оксида алюминия, при температуре 500°С и под давлением 10-20 атм происходит циклизация с последующей ароматизацией гексана и других алканов с более длинными неразветвленными цепями:

Отщепление водорода от гексана, а затем от циклогексана называется дегидрированием. Риформинг этого типа в сущности представляет собой один из процессов крекинга. Его

называют платформингом, каталитическим риформингом или просто риформингом. В некоторых случаях в реакционную систему вводят водород, чтобы предотвратить полное разложение алкана до углерода и поддержать активность катализатора. В этом случае процесс называется гидроформингом.

Очистка от серы

Сырая нефть содержит сероводород и другие соединения, содержащие серу. Содержание серы в нефти зависит от месторождения. Нефть, которую получают из континентального шельфа Северного моря, имеет низкое содержание серы. При перегонке сырой нефти органические соединения, содержащие серу, расщепляются, и в результате образуется дополнительное количество сероводорода. Сероводород попадает в нефтезаводской газ или во фракцию сжиженного нефтяного газа (см. выше). Поскольку сероводород обладает свойствами слабой кислоты, его можно удалить, обрабатывая нефтепродукты каким-либо слабым основанием. Из полученного таким образом сероводорода можно извлекать серу, сжигая сероводород в воздухе и пропуская продукты сгорания над поверхностью катализатора из оксида алюминия при температуре 400 С. Суммарная реакция этого процесса описывается уравнением

Приблизительно 75% всей элементной серы, используемой в настоящее время промышленностью несоциалистических стран, извлекают из сырой нефти и природного газа (см. разд. 15.4).

Нефть разделяется на фракции для получения нефтепродуктов в два этапа, то есть перегонка нефти проходит через первичную и вторичную обработку.

Процесс первичной нефтепереработки

На этом этапе перегонки производится предварительное обезвоживание и обессоливание сырой нефти на специальном оборудовании для выделения солей и остальных примесей, которые могут вызывать коррозию аппаратуры и снижать качество продуктов нефтепереработки. После этого в нефти содержится всего 3-4 мг солей на литр и не более 0,1 % воды. Подготовленный продукт готов к перегонке.

По причине того, что жидкие углеводороды кипят при различной температуре, это свойство используется при перегонке нефти, чтобы выделить из нее отдельные фракции при разных фазах кипения. Перегонка нефти на первых нефтеперерабатывающих предприятиях давала возможность выделять следующие фракции в зависимости от температуры: бензин (выкипает при 180°С и ниже), реактивное топливо (выкипает при 180-240°С) и дизтопливо (выкипает при 240-350°С). От перегонки нефти остается мазут.

В процессе перегонки нефть разделяется по на фракции (составные части). В результате получаются товарные нефтепродукты или их компоненты. Перегонка нефти является начальным этапом ее переработки на специализированных заводах.

При нагревании образуется паровая фаза, состав которой отличен от жидкости. Получаемые перегонкой нефти фракции обычно являются не чистым продуктом, а смесью углеводородов. Отдельные углеводороды удается выделить только благодаря многократной перегонке нефтяных фракций.

Прямая перегонка нефти выполняется

Методом однократного испарения (так называемая, равновесная дистилляция) или простой перегонки (фракционная дистилляция);

С использованием ректификации и без нее;

С помощью испаряющего агента;

Под вакуумом и при атмосферном давлении.

Равновесная дистилляция менее четко разделяет нефть на фракции, чем простая перегонка. При этом в парообразное состояние при одинаковой температуре в первом случае переходит больше нефти, чем во втором.

Фракционная перегонка нефти дает возможность получить различное для дизельных и реактивных двигателей), а также сырье (бензол, ксилолы, этилбензол, этилен, бутадиен, пропилен), растворители и другие продукты.

Процесс вторичной нефтепереработки

Вторичная перегонка нефти проводится способом химического или термического каталитического расщепления тех продуктов, что выделены из нее в результате первичной нефтеперегонки. При этом получается большее количество бензиновых фракций, а также сырье для производства ароматических углеводородов (толуола, бензола и других). Самой распространенной технологией вторичной нефтепереработки нефти является крекинг.

Крекингом называют процесс высокотемпературной переработки нефти и выделенных фракций для получения (в основном) продуктов, у которых меньшая К ним можно отнести моторное топливо, масла для смазки и т. п., сырье для нефтехимической и химической промышленности. Протекание крекинга проходит с разрывом С—С связей и образованием карбанионов или свободных радикалов. Разрыв связей С—С выполняется одновременно с дегидрированием, изомеризацией, полимеризацией и конденсацией промежуточных и исходных веществ. Последние два процесса образуют крекинг-остаток, т.е. фракцию с температурой кипения выше 350°C и кокс.

Перегонка нефти методом крекинга была запатентована в 1891 году В. Г. Шуховым и С. Гавриловым, затем эти инженерные решения повторил У. Бартон при сооружении в США первой промышленной установки.

Крекинг проводится посредством нагревания сырья или воздействия катализаторов и высокой температуры.

Крекинг позволяет выделить из мазута больше полезных составляющих.

Определения

Фракционный состав . Для всех индивидуальных веществ температура кипения при данном давлении является физической константой. Так как нефть представляет собой смесь большого числа органических веществ, обладающих различным давлением насыщенных паров, то говорить о температуре кипения нефти нельзя.

В условиях лабораторной перегонки нефти или нефтепродуктов при постепенно повышающейся температуре отдельные компоненты отгоняются в порядке возрастания их температур кипения, или, что то же самое, в порядке уменьшения давления их насыщенных паров. Следовательно, нефть и ее продукты характеризуется не температурами кипения, а температурными пределами начала и конца кипения и выходом отдельных фракций, перегоняющихся в определенных температурных интервалах. По результатам перегонки и судят о фракционном составе.

Фракцией называется доля нефти, выкипающая в определенном интервале температур. Нефти выкипают в очень широком интервале температур, в основном, от 28 до 520-540°С. Фракционный состав нефти определяется стандартным методом (ГОСТ 2177–82) по результатам лабораторных испытаний при разделении соединений по температурам кипения методом фракционирования (разгонки) нефти, отгона или смеси соединений на установках АВТ (атмосферно-вакуумная трубчатка).

Началом кипения фракции считают температуру падения первой капли сконденсированных паров.

Концом кипения фракции считают температуру, при которой испарение фракции прекращается.

При исследовании новых нефтей фракционный состав определяют на стандартных перегонных аппаратах, снабженных ректификационными колонками. Это позволяет значительно улучшить четкость погоноразделения и построить по результатам фракционирования так называемую кривую истинных температур кипения (ИТК) в координатах температура - выход фракций, в % (масс.). Отбор фракций до 200°С проводится при атмосферном давлении, а остальных во избежание термического разложения - под различным вакуумом. По принятой методике от начала кипения до 300°С отбирают 10-градусные, а затем 50-градусные фракции до фракций с концом кипения 475-550°С.

Нефтяные фракции

В зависимости от температурных диапазонов выкипания нефтяные фракции (продукты разделения нефти) подразделяют на:

  • углеводородный газ - выводится с установок в газообразном и жидком ("головка стабилизации”) виде, направляется для дальнейшей переработки на газофракционируюшие установки, используется как топливо нефтезаводских печей;
  • бензиновая фракция - выкипает в пределах 50-180°С, используется как компонент товарного автомобильного бензина, сырье установок каталитического риформинга и пиролиза; подвергается вторичной перегонке для получения узких фракций;
  • керосиновая фракция - выкипает в пределах 140-220°С (180-240°С), используется как топливо для реактивных и тракторных карбюраторных двигателей, для освещения, как сырье установок гидроочистки;
  • дизельная фракция (лёгкий или атмосферный газойль, соляровый дистиллят) - выкипает в пределах 180-350°С (220-350°С, 240-350°С), используется как топливо для дизельных двигателей и сырье установок гидроочистки;
  • мазут - остаток атмосферной перегонки - выкипает выше 350°С, применяется как котельное топливо или сырьё для установок гидроочистки и термического крекинга;
  • вакуумные дистилляты (вакуумные газойли) - выкипают в пределах 350-500°С, используются как сырье каталитического крекинга и гидрокрекинга;
  • На НПЗ с масляной схемой переработки получают несколько (2-3) вакуумных дистиллятов:
  • трансформаторный дистиллят (лёгкая масляная фракция) - выкипает в пределах 300-400°С (350-420°С);
  • машинный дистиллят (средняя масляная фракция) - выкипает в пределах 400-450°С (420-490°С);
  • цилиндровый дистиллят (тяжёлая масляная фракция) - выкипает в пределах 450-490°С;
  • гудрон - остаток атмосферновакуумной перегонки нефти, выкипает при температуре выше 500°С (490°С), используется как сырье установок термического крекинга, коксования, производства битумов и масел.

Определение фракционного состава

Фракционный состав определяется стандартным методом по ГОСТ 2177-99 (метод аналогичен распространенной за рубежом разгонке по Энглеру), а также различными способами с применением лабораторных колонок. Для пересчета температур выкипания, полученных стандартной перегонкой (Т гост ) в истинные температуры кипения (Т итк ) предложена формула:

Температуры начала Т нк и конца Т кк кипения по ИТК можно определить по формулам:


При определении фракционного состава нефть или нефтепродукт перегоняют в стандартном приборе при определенных условиях и строят кривую разгонки в системе координат: ось абсцисс - выход фракций (отгон) в % (об.) или % (маcc.) и ось ординат - температура кипения в °С.

При нагреве такой сложной смеси, как нефть, в паровую фазу прежде всего переходят низкокипящие компоненты, обладающие высокой летучестью. Частично с ними уходят высококипящие компоненты, однако концентрация низкокипящего компонента в парах всегда больше, чем в кипящей жидкости. По мере отгона низкокипящих компонентов остаток обогащается высококипящими. Поскольку давление насыщенных паров высококипящих компонентов при данной температуре ниже внешнего давления, кипение в конечном счете может прекратиться. Для того чтобы сделать кипение безостановочным, жидкий остаток непрерывно подогревают. При этом в пары переходят все новые и новые компоненты со всевозрастающими температурами кипения. Отходящие пары конденсируются, образовавшийся конденсат отбирают по интервалам температур кипения компонентов в виде отдельных нефтяных фракций.

Перегонку нефти и нефтепродуктов с целью разделения на фракции можно осуществлять с постепенным либо с однократным испарением. При перегонке с постепенным испарением образующиеся пары непрерывно отводят из перегонного аппарата, они конденсируются и охлаждаются в конденсаторе-холодильнике и собираются в приемник в виде жидких фракций.

В том случае, когда образующиеся в процессе нагрева пары не выводят из перегонного аппарата до тех пор, пока не будет достигнута заданная температура, при которой в один прием (однократно) отделяют паровую фазу от жидкой, процесс называют перегонкой с однократным испарением. После этого строят кривую ОИ.

Ни постепенным, ни тем более однократным испарением невозможно добиться четкого разделения нефтепродуктов на узкие фракции,так как часть высококипящих компонентов переходит в дистиллят, а часть низкокипящих остается в жидкой фазе. Поэтому применяют перегонку с дефлегмацией или ректификацией. Для этого в колбе нагревают нефть или нефтепродукт; образующиеся при перегонке пары, почти лишенные высококипящих компонентов, охлаждаются в специальном аппарате - дефлегматоре и переходят в жидкое состояние - флегму. Флегма, стекая вниз, встречается со вновь образовавшимися парами. В результате теплообмена низкокипящие компоненты флегмы испаряются, а высококипящие компоненты паров конденсируются. При таком контакте паров достигается более четкое разделение на фракции, чем без дефлегмации.

Еще более четкое разделение происходит при перегонке с ректификацией. Аппарат для такой перегонки состоит из перегонной колбы, ректификационной колонки, конденсатора-холодильника и приемника.

Ректификация осуществляется в ректификационных колонках. При ректификации происходит контакт между восходящим потоком паров и стекающим вниз конденсатом - флегмой. Пары имеют более высокую температуру, чем флегма, поэтому при контакте происходит теплообмен. В результате этого низкокипящие компоненты из флегмы переходят в паровую фазу, а высококипящие компоненты конденсируются и переходят в жидкую фазу. Для эффективного ведения процесса ректификации необходимо возможно более тесное соприкосновение между паровой и жидкой фазами. Это достигается с помощью особых контактирующих устройств, размещенных в колонке (насадок, тарелок и т. д.). От числа ступеней контакта и количества флегмы (орошения), стекающей навстречу парам, в основном и зависит четкость разделения компонентов смеси. Для образования флегмы в верхней части колонны помещен конденсатор-холодильник. По результатам четкой ректификации строят кривую ИТК (истинных температур кипения).

Определение фракционного состава нефтей и нефтяных фракций проводится в лабораторных условиях. Наибольшее распространение в лабораторной практике получили следующие виды перегонки.

  1. Перегонка, основанная на принципе постепенного испарения: простая перегонка нефти и нефтепродуктов, выкипающих до 350°С:
  • при атмосферном давлении;
  • простая перегонка нефтепродуктов, выкипающих выше 350°С при пониженном давлении (под вакуумом);
  • перегонка с дефлегмацией;
  • перегонка с четкой ректификацией.
  • Перегонка, основанная на принципе однократного испарения: перегонка с однократным испарением.
  • Молекулярная дистилляция для высокомолекулярных соединений и смол.
  • Имитированная перегонка.
  • kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей