Методы создания ГГС: триангуляция, полигонометрия, трилатерация. Триангуляция - что это такое? Триангуляция мобильного телефона в сотовой сети

Потребность в измерении громадных, в сотни километров, расстояний – как на суше, так и на море – появилась ещё в древние времена. Метод триангуляции позволил высчитать огромные расстояния и определить фигуру Земли.

Понятие триангуляции

Пежде чем говорить о методе триангуляции, рассмотрим суть термина. Триангуляция - это сеть прилегающих друг к другу треугольников разного вида, можно сравнить с примыканием паркетин; наряду с этим существенно, что примыкают только целые стороны, так что вершина одного треугольника не может лежать внутри стороны другого. Триангуляции сыграли наиболее значимую роль в измерении расстояний на земной поверхности, и тем самым - и в определении фигуры Земли.

История измерения земных расстояний

Капитаны судов, как мы знаем из детских книг, меряют расстояния числом выкуренных трубок. Близок к этому метод, использовавшийся во II в. до н. э. известным древнегреческим философом, математиком и астрономом Посидонием, учителем Цицерона: морские расстояния Посидоний измерял длительностью плавания (с учётом, очевидно, скорости судна).
Но ещё раньше, в III веке до н. э., другой известный древний грек, управлявший библиотекой в Александрии математик и астроном Эратосфен, мерил сухопутные расстояния по времени и скорости движения торговых караванов. Возможно предположить, что именно так Эратосфен замерил расстояние между Сиеной и Александрией, которая в настоящее время называется Асуаном (если наблюдать по современной карте, получается приблизительно 850 км). Это расстояние было для него очень серьёзным. Эратосфен желал измерить длину меридиана и думал, что эти два египетских города лежат на одном и том же меридиане; не смотря на то, что это в конечном итоге не совсем так, но близко к истине. Найденное расстояние он принял за протяжённость дуги меридиана. Объединив эту длину с наблюдением полуденных высот Солнца над горизонтом в Сиене и Александрии, он потом путём красивых геометрических рассуждений вычислил протяжённость всего меридиана и, как следствие, радиус земного шара. Ещё в XVI веке расстояние (приблизительно 100 км) между Амьеном и Парижем определили подсчитав обороты колеса экипажа. Неточность результатов аналогичных измерений очевидна и объяснима. Но уже в следующем веке голландский математик, астроном и оптик Снеллиус смог изобрести принципиально новый, излагаемый ниже метод триангуляции и с его помощью в 1615–1617 гг. измерил дугу меридиана, имеющую угловой размер 1° 11′ 30″.

Суть метода триангуляции при измерении расстояний

Посмотрим, как триангуляция позволяет определять расстояния. Вначале выбирают какой-нибудь фрагмент или участок земной плоскости, включающий в себя оба пункта, расстояние между которыми стремятся найти, и доступный для проведения измерительных работ на местности. Данный участок покрывают сетью множества треугольников, образующих триангуляцию т. е. триангулируют. После этого выбирают один из треугольников триангуляции; будем называть его начальным. Потом выбирают одну из сторон начального треугольника. Она является базой, и её длину тщательно измеряют. В вершинах начального треугольника строят башни (или вышки) - с таким расчётом, чтобы каждая была видна с других башен. Поднявшись на башню, расположенную в одной из вершин базы, измеряют угол, под которым видны две другие башни. Затем поднимаются на башню, расположенную в другой вершине базы, и делают то же самое. Так, путем непосредственного измерения, получают сведения о длине одной из сторон начального треугольника (в частности: о длине базы) и о величине прилегающих к ней углов. По известным и простым формулам тригонометрии (с применением косинуса, синуса, тангенса и катангенса) вычисляют длины 2-х других сторон этого треугольника. Каждую из них можно принять за новую базу, причём измерять её длину уже не нужно. Используя ту же процедуру, возможно теперь определить длины сторон и углы любого из треугольников, примыкающих к начальному, и т. д. Важно осмыслить, что непосредственное измерение какого-либо расстояния выполняют лишь 1 раз, а дальше уже измеряют только углы между направлениями на башни, что несравненно легче и может быть сделано с высокой точностью. По завершении процесса оказываются установленными величины всех участвующих в триангуляции отрезков и углов. А это, в свою очередь, позволяет находить любые расстояния в пределах участка поверхности, покрытого триангуляцией.

Длина дуги меридиана от широты Северного Ледовитого океана до широты Чёрного моря

В частности, как раз так в XIX веке нашлась длина дуги меридиана от широты Северного Ледовитого океана (в районе Хaммерфеста на острове Квaлё – Норвегия) до широты Чёрного моря (в районе низовья Дуная). Она была сформирована из длин 12 отдельных дуг. Процедура упрощалась тем, что для нахождения длины дуги меридиана вовсе не нужно, чтобы составляющие дуги примыкали друг к другу концами; достаточно, чтобы концы соседних дуг находились на одной и той же широте. (К примеру, если необходимо определить расстояние между семидесятой и сороковой параллелями, то возможно на одном меридиане замерить расстояние между 70-й и 50-й параллелями, на другом меридиане - расстояние между 50-й и 40-й параллелями, а после этого сложить полученные расстояния.) Общее число треугольников триангуляции составило 258, длина дуги равнялась 2800 км. Чтобы исключить ошибки и неточности, неизбежные при измерениях, а при вычислениях вероятные, 10 подверглись прямому измерению на местности. Измерения были проведены в перид с 1816 по 1855 г.г., а итоги были изложены в двух томах «Дуга меридиана в 25° 20′ между Дунаем и Ледовитым морем» (СПб., 1856–1861), написанным замечательным русским геодезистом и астрономом Василием Яковлевичем Струве (1793–1864), осуществившего российскую часть измерений.

Что собой представляет триангуляция? Следует отметить, что это слово имеет несколько значений. Так, оно используется в геометрии, геодезии и информационных технологиях. В рамках статьи внимание будет уделено всем темам, но наибольшее получит самое популярное направление - использование в технической аппаратуре.

В геометрии

Итак, начинаем разбирать, что собой представляет триангуляция. Что это такое в геометрии? Допустим, у нас есть неразвертываемая поверхность. Но при этом необходимо иметь представление о её строении. А для этого нужно развернуть её. Звучит невозможно? А вот и нет! И в этом нам поможет метод триангуляции. Следует отметить, что его использование предоставляет возможность построить только приближенную развертку. Метод триангуляции предусматривает использование примыкающих один ко второму треугольников, где можно вымерять все три угла. При этом должны быть известны координаты как минимум двух пунктов. Остальные подлежат определению. При этом создаётся или сплошная сеть, или цепочка треугольников.

Для получения более точных данных используют электронно-вычислительные машины. Отдельно следует упомянуть про такой момент, как триангуляция Делоне. Её суть в том, что при имеющемся множестве точек, за исключением вершин, все они лежат вне окружности, что описывается вокруг треугольника. Впервые это описал советский математик Борис Делоне в 1934 году. Его разработки используются в евклидовой задаче о коммивояжере, билинейной интерполяции и Вот что собой представляет триангуляция Делоне.

В геодезии

В данном случае предусматривается, что создаётся пункт триангуляции, который в последующем включается в сеть. Причем последняя строится таким образом, что напоминает группу треугольников на местности. У полученных фигур измеряют все углы, а также некоторые базисные стороны. То, как будет проведена триангуляция поверхности, зависит от геометрии объекта, квалификации исполнителя, доступного парка приборов и технико-экономических условий. Всё это и решает уровень сложности работ, что могут быть осуществлены, а также качество их проведения.

В информационных сетях

И постепенно подходим к самому интересному толкованию слова «триангуляция». Что это такое в информационных сетях? Следует отметить, что здесь существует большое количество различных вариантов трактовки и использования. Но в рамках статьи из-за ограничения её размера внимание получит только GPS (глобальная система позиционирования) и Несмотря на определённую схожесть, они довольно сильно различаются. И мы сейчас выясним, чем же именно.

Глобальная система позиционирования

Уже прошло не одно десятилетие с тех пор, как GPS был запущен и успешно функционирует. Глобальная система позиционирования состоит из центральной станции управления, размещённой в Колорадо, и наблюдательных пунктов по всему миру. За время её работы успело смениться уже несколько поколений спутников.

Сейчас GPS представляет собой мировую радионавигационную систему, которая базируется на ряде спутников и земных станций. Её преимуществом является возможность расчета координаты объекта с точностью до считанных метров. Как может быть представлена триангуляция? Что это и как работает? Представьте, что каждый метр на планете имеет свой уникальный адрес. И если есть пользовательский приёмник, то можно запросить координаты своего местонахождения.

Как это работает на практике?

Условно здесь можно выделить четыре основных этапа. Первоначально осуществляется триангуляция спутников. Затем измеряется расстояние от них. Проводится абсолютное измерение времени и определение спутников в космосе. И напоследок проводится дифференциальная коррекция. Это если кратко. Но не совсем понятно, как в данном случае работает триангуляция. Что это не хорошо, понятно. Давайте детализируем.

Итак, первоначально до спутника. Установили, что оно составляет 17 тысяч километров. И поиски нашего местоположения существенно сужаются. Точно известно, что мы находимся на конкретном расстоянии, и нас необходимо искать в той части земной сферы, которая находится в 17 тысячах километрах от засеченного спутника. Но это ещё не всё. Мы измеряем расстояние до второго спутника. И выявляется, что мы от него удалены на 18 тысяч километров. Итак, нас следует искать в месте, где пересекаются сферы этих спутников на установленном расстоянии.

Обращение к третьему спутнику позволит ещё дополнительно уменьшить территорию поиска. И так далее. Местонахождения определяется как минимум по трем спутникам. Определение точных параметров идёт согласно заложенным данным. Допустим, что радиосигнал двигается со скоростью близкой к световой (то есть, немногим меньше 300 тысяч километров в секунду). Определяется время, за которое он проходит от спутника к приёмнику. Если объект находится на высоте в 17 тысяч километров, то это будет около 0,06 секунды. Затем устанавливается позиция в пространственно-временной системе координат. Так, каждый спутник имеет четко заданную орбиту вращения. И зная все эти данные, техника и осуществляет расчет местонахождения человека.

Специфика глобальной системы позиционирования

По документации её точность колеблется в диапазоне от 30 до 100 метров. На практике, использование дифференциальной коррекции позволяет получать детализацию данных до сантиметров. Поэтому сфера применения глобальной системы позиционирования просто огромна. Она используется для отслеживания транспортировки дорогостоящих грузов, помогает точно посадить самолёты, вести судна в туманную погоду. Ну и самое известное - это применение в автомобильных

Алгоритмы триангуляции благодаря своей универсальности и охвате всей планеты позволяет свободно путешествовать даже по незнакомым местам. При этом система сама прокладывает путь, указывает, где необходимо свернуть, чтобы добраться до установленной конечной цели. Благодаря постепенному удешевлению GPS, даже есть автомобильные сигнализации на основе этой технологии, и сейчас если машину угонят, найти и вернуть её не составит труда.

А что там с мобильной связью?

Здесь, увы, не всё так гладко. Если GPS может определить координаты с точностью до метра, то триангуляция в сотовой связи такого качества обеспечить не может. Почему? Дело в том, что в данном случае в качестве опорного пункта выступает базовая станция. Считается, что если есть две БС, то можно получить одну из координат телефона. А если их три, то точное местоположение - это не проблема. Частично это верно. Но триангуляция мобильного телефона имеет свои особенности. Но тут встаёт вопрос о точности. Перед этим нами была рассмотрена система глобального позиционирования, которая может достигать феноменальной точности. А вот, несмотря на то, что мобильная связь имеет значительно больше аппаратуры, говорить о каком-то качественном соответствии не приходится. Но обо всём по порядку.

Ищем ответы

Но первоначально давайте сформируем вопросы. Поддаётся ли определению расстояние от базовой станции к телефону при использовании стандартных средств. Да. Но будет ли это кратчайшее расстояние? Кто занимается измерениями - телефон или базовая станция? Какова точность полученных данных? Во время обслуживания разговора базовая станция замеряет время прохождения сигнала от неё к телефону. Вот только при этом он может отражаться, скажем, от зданий. Следует понимать, что расстояние считается по прямой. И помните - только во время процесса обслуживания звонка.

Ещё один существенный минус - это довольно значительный уровень погрешности. Так, она может достигать значения в пятьсот метров. Триангуляция мобильного телефона осложняется ещё и тем, что базовые станции не знают, какие устройства есть на подконтрольной у них территории. Аппарат ловит их сигналы, но не информирует про себя. К тому же телефону под силу измерить сигнал базовой станции (что он, впрочем, постоянно делает), но вот величина затухания ему неизвестна. И здесь возникает идея!

Базовые станции знают свои координаты и мощность передатчиков. Телефон может определить, насколько хорошо он слышит их. В таком случае необходимо засекать все станции, которые работают, обмениваться данными (для этого понадобится специальная программа, рассылающая проверочные пакеты), собирать координаты и при надобности передавать их другим системам. Казалось бы всё, дело в шляпе. Но, увы, для этого необходимо осуществить ряд модификаций, в том числе и сим-карты, доступ к которой вовсе не гарантирован. И для того чтобы теоретическую возможность превратить в практическую, необходимо существенно поработать.

Заключение

Несмотря на то что телефоны есть практически у всех людей, утверждать, что человека можно запросто отследить, всё же не следует. Ведь это не такое легкое дело, как может показаться на первый взгляд. Более-менее уверенно можно говорить об удаче только при использовании глобальной системы позиционирования, но для неё необходим специальный передатчик. В целом, после прочтения этой статьи, надеемся, что у читателя больше не осталось вопросов относительного того, что же собой представляет триангуляция.

Основными методами создания государственной геодезической сети являются триангуляция, трилатерация, полигонометрия и спутниковые координатные определения.

Триангуляция (рис. 68, а) представляет собой цепь прилегающих друг к другу треугольников, в каждом из которых измеряют высокоточными теодолитами все углы. Кроме того, измеряю длины сторон в начале и конце цепи.

Рис. 68. Схема триангуляции (а) и полигонометрии (б).

В сети триангуляции известными являются базис L и координаты пунктов А и В. Для определения координат остальных пунктов сети измеряют в треугольниках горизонтальные углы.

Триангуляция делится на классы 1, 2, 3, 4. Треугольники разных классов различаются длинами сторон и точностью измерения углов и базисов.

Развитие сетей триангуляции выполняется с соблюдением основного принципа «от общего к частному», т.е. сначала строится триангуляция 1 класса, а затем последовательно 2, 3 и 4 классов.

Пункты государственной геодезической сети закрепляются на местности центрами. Для обеспечения взаимной видимости между пунктами над центрами устанавливают геодезические знаки деревянные или металлические. Они имеют приспособление для установки прибора, платформу для наблюдателя и визирное устройство.

В зависимости от конструкции, наземные геодезические знаки подразделяются на пирамиды и простые и сложные сигналы.

Типы подземных центров устанавливаются в зависимости от физико-географических условий региона, состава грунта и глубины сезонного промерзания грунта. Например, центр пункта государственной геодезической сети 1-4 классов типа 1 согласно инструкции «Центры и реперы государственной геодезической сети» (М., Недра, 1973) предназначен для южной зоны сезонного промерзания грунтов. Он состоит из железобетонного пилона сечением 16Х16 см (или асбоцементной трубы 14-16 см, заполненной бетоном) и бетонного якоря. Пилон цементируется в якорь. Основание центра должно располагаться ниже глубины сезонного промерзания грунта не менее 0,5 м и не менее 1,3 м от поверхности земли. В верхней части знака на уровне поверхности земли бетонируется чугунная марка. Над маркой в радиусе 0,5 м насыпается грунт слоем 10-15 см. В 1,5м от центра устанавливается опознавательный столб с охранной плитой.

В настоящее время широко используют радиотехнические средства для определения расстояний между пунктами сети с относительными ошибками 1:100 000 – 1:1 000 000. Это дает возможность строить геодезические сети методом трилатерации , при которой в сетях треугольников производится только измерение сторон. Величины углов вычисляют тригонометрическим способом.

Метод полигонометрии (рис. 68, б) состоит в том, что опорные геодезические пункты связывают между собой ходами, называемыми полигонометрическими. В них измеряют расстояния и справа лежащие углы.

Спутниковые методы создания геодезических сетей подразделяются на геометрические и динамические. В геометрическом методе искусственный спутник Земли используют как высокую визирную цель, в динамическом – ИСЗ является носителем координат.



При съемках на земной поверхности сеть опорных пунктов может быть создана двумя способами: построением триангуляционной сети или прокладки полигонов.
В том случае, когда площадь участка съемок небольшая, можно ограничиться прокладкой теодолитных ходов.

При съемках значительных участков поверхности земли, например территории всего рудника или угольного бассейна и т. п., прокладка полигонов значительной протяженности вызовет накопление ошибок измерений. Поэтому при съемке обширных территорий сеть опорных пунктов создается путем построения триангуляции.

Триангуляционная (тригонометрическая) сеть представляет собой цепь или сеть примерно равносторонних треугольников или других геометрических фигур, вершины которых надежно закрепляются визирными знаками - указателями, сооруженными на врытых в землю бетонных блоках или каменных центрах.

Цепь или сеть треугольников строится таким образом, чтобы каждый из треугольников цепи имел общую сторону с соседним треугольником (рис. 1). Если измерить углы полученных треугольников (или других фигур) и определить длину хотя бы одной из сторон, например сторону АБ , называемую выходной, то этого достаточно для вычисления длин сторон всех других треугольников.

Пусть в треугольнике АБВ (рис. 1) сторона АБ и внутренние его углы известны из непосредственных измерений. Тогда, по теореме синусов определяются длины двух других сторон этого треугольника:

АВ = АБ sin b: sin v
БВ = АБ sin a: sin v

Таким образом, для соседнего треугольника АВЖ становится известной связующая (пограничная) сторона АВ , а углы этого треугольника измерены непосредственно съемкой. По аналогии с предыдущим треугольником определяются стороны АЖ и ВЖ соседнего треугольника. Подобным образом, переходя от одного треугольника к другому, вычисляют размеры треугольников всей цепи или сети.

После вычисления дирекционных углов сторон треугольников могут быть вычислены координаты вершин треугольников, которые являются пунктами опорной сети.



Построением триангуляции можно создать сеть опорных пунктов на обширной территории.
В России принят следующий порядок построения государственной триангуляционной сети.
Вдоль меридианов и параллелей прокладываются ряды треугольников или геодезических четырёхугольников (рис. 2). Ряды триангуляции, пересекаясь, образуют систему замкнутых полигонов из звеньев длиной около 200 км. Такие пересекающиеся ряды образуют триангуляцию 1-го класса, которая является основой всей триангуляции страны.

Длина сторон треугольников или четырехугольников в рядах триангуляции 1-го класса принимается равной 20-25 км. В местах пересечения рядов (в концах звеньев) определяются длины входных сторон АА 1 , ББ 1 , ВВ 1 , ГГ 1 (рис. 2) с относительной ошибкой не более 1:350 000 из построения базисных цепей.
На рис. 2 показаны ромбические базисные сети, где непосредственно измерены базисы аа 1 , бб 1 , вв 1 , гг 1 и внутренние углы базисных сетей, а длины выходных сторон вычислены по измеренным и уравненным величинам.
На концах каждой выходной стороны производятся астрономические наблюдения по определению широты и долготы пунктов, а также азимута выходной стороны. Такие пункты называют пунктами Лапласа .

Координаты всех пунктов триангуляции 1-го класса вычисляют в единой системе координат.
Полученные значения длин сторон треугольников, дирекционных углов и координат пунктов принимаются как окончательные (жесткие) и при дальнейшем развитии сетей триангуляции последующих классов изменению не подлежат.

Дальнейшее сгущение пунктов триангуляции внутри полигонов 1-го класса производится построением сети треугольников 2-го класса со сторонами протяженностью 10-15 км. (рис. 2). Эта сеть опирается на стороны рядов 1-го класса, а также на выходные стороны базисных сетей, располагаемых в сетях 2-го класса.
В триангуляционных сетях 2-го класса выходные стороны определяются с точностью 1:250.000.

На основе рядов 1-го класса и сетей 2-го класса развиваются триангуляции 3-го класса путем вставки систем треугольников или отдельных пунктов. Длина сторон треугольников в сети 3-го класса около 8 км.
Аналогично посредством вставок систем треугольников или отдельных пунктов определяется положение пунктов 4-го класса. Длина сторон в треугольниках 4-го класса принимается от 1,5 до 6 км.
Для обоснования съемок крупных масштабов между пунктами триангуляционной сети прокладывают полигонометрические ходы, заменяющие триангуляцию 4-го класса, и ходы с меньшей степенью точности.

Метод триангуляции позволяет весьма точно определять относительное положение точек на земной поверхности, поэтому при разбивках сложных сооружений (мостов, плотин и т.д.), а также при проходке горных выработок большой протяженности строится специальная, в том числе и маркшейдерская, триангуляция.



; 3 — трилатерация .

Метод триангуляции. Принято считать, что метод триангуляции впервые был предложен голландским ученым Снеллиусом в 1614 г. Этот метод широко применяется во всех странах. Сущность метода заключается в следующем. На командных высотах местности закрепляют систему геодезических пунктов, образующих сеть треугольников (рис. 13). В Сеть триангуляции этой сети определяют координаты исходного пункта А, измеряют горизонтальные углы в каждом треугольнике, а также длины b и азимуты а базисных сторон, задающих масштаб и ориентировку сети по азимуту.

Сеть триангуляции может быть построена в виде отдельного ряда треугольников, системы рядов треугольников, а также в виде сплошной сети треугольников. Элементами сети триангуляции могут служить не только треугольники, но и более сложные фигуры: геодезические четырехугольники и центральные системы.

Основными достоинствами метода триангуляции являются его оперативность и возможность использования в разнообразных физико-географических условиях; большое число избыточных измерений в сети, позволяющих непосредственно в поле осуществлять надежный контроль всех измеренных величин; высокая точность определения взаимного положения смежных пунктов в сети, особенно сплошной. Метод триангуляции получил наибольшее распространение при построении государственных геодезических сетей.

Метод полигонометрии . Этот метод известен также давно, однако применение его при создании государственной геодезической сети сдерживалось до недавнего времени.

Полигонометрический ход трудоемкостью линейных измерений, выполняемых ранее с помощью инварных проволок. Начиная примерно с шестидесятых годов текущего столетия, одновременно с внедрением в геодезическое производство точных свето и радиодальномеров, метод полигонометрии получил дальнейшее развитие и стал широко применяться при создании геодезических сетей .

Сущность этого метода состоит в следующем. На местности закрепляют систему геодезических пунктов, образующих вытянутый одиночный ход (рис. 14) или систему пересекающихся ходов, образующих сплошную сеть. Между смежными пунктами хода измеряют длины сторон s,-, а на пунктах — углы поворота р. Азимутальное ориентирование полигонометрического хода осуществляют с помощью азимутов, определяемых или заданных, как правило, на конечных пунктах его, измеряя при этом примычные углы у. Иногда прокладывают полигонометрические ходы между пунктами с заданными координатами геодезической сети более высокого класса точности.

Метод полигонометрии в ряде случаев, например, в заселённой местности, на территории крупных городов и т. п. оказывается более оперативным и более экономичным, чем метод триангуляции. Это обусловлено тем, что в таких условиях на пунктах триангуляции строят более высокие геодезические знаки, чем на пунктах полигонометрии, поскольку в первом случае следует обеспечить прямую видимость между гораздо большим числом пунктов, чем во втором. Постройка,же геодезических знаков является самым дорогостоящим видом работ при создании геодезической сети (в среднем 50-60 % всех затрат).


Метод трилатерации. Данный метод, как и метод триангуляции, предусматривает создание на местности геодезических сетей либо в виде цепочки треугольников, геодезических четырехугольников и центральных систем, либо в виде сплошных сетей треугольников, в которых измеряются не углы, а длины сторон. В трилатерации, как и в триангуляции, для ориентирования сетей на местности должны быть определены азимуты ряда сторон.

По мере развития и повышения точности свето- и радиодальномерной техники измерений расстояний метод трилатерации постепенно приобретает все большее значение, особенно в практике инженерно-геодезических работ.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей