Поверхностью вращения называется. Поверхности вращения

Поверхности вращения и ограничиваемые ими тела имеют весьма широкое применение во всех областях техники. В качестве примеров на рис. 8.11 показаны баллон электронно-лучевой трубки (а), сосуд Дьюара для хранения жидкого воздуха (б), центр токарного станка (в), коллектор электронов мощного электронно-лучевого прибора (г),

объемный сверхвысокочастотный резонатор электромагнитных колебаний (∂).

В зависимости от вида образующей поверхности вращения могут быть линейчатыми, нелинейчатыми или состоять из частей таких поверхностей.

Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии вокруг неподвижной прямой – оси поверхности. На чертежах ось изображают штрихпунктирной линией. Образующаяся линия может в общем случае иметь как криволинейные, так и прямолинейные участки. Поверхность вращения на чертеже можно задать образующей и положением оси. На рис. 8.12 изображена поверхность вращения, которая образована вращением образующей ABCD (ее фронтальная проекция А "В"CD") вокруг оси OO1 (фронтальная проекция О"О"), перпендикулярной плоскости π,. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно линия пересечения поверхности вращения любой плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями. На виде сверху (рис. 8.12) показаны проекции окружностей, описываемых точками А, В, С, D, проходящие через проекции А", В",С, D". Наибольшую параллель из двух соседних с нею параллелей по обе стороны от нее называют экватором, аналогично наименьшую – горлом.

Плоскость, проходящую через ось поверхности вращения, называют меридианальной, линию ее пересечения с поверхностью вращения – меридианом. Если ось поверхности параллельна плоскости проекций, то меридиан, лежащий в плоскости, параллельной этой плоскости проекций, называют главным меридианом. На эту плоскость проекций главный меридиан проецируется без искажений. Так, если ось поверхности вращения параллельна плоскости π2, то главный меридиан проецируется на плоскость π 2 без искажений. Если ось поверхности вращении перпендикулярна плоскости π, то горизонтальная проекция поверхности имеет очерк в виде окружности.

Наиболее удобным для выполнения изображений поверхностей вращения являются случаи, когда их оси перпендикулярны плоскости Jt1, плоскости π2 или плоскости π3.

Некоторые поверхности вращения являются частными случаями поверхностей, рассмотренных в § 8.1, например цилиндр вращения, конус вращения . Для цилиндра и конуса вращения меридианами являются прямые линии. Они параллельны оси и равноудалены от нее для цилиндра или пересекают ось в одной и той же ее точке под одним и тем же углом к оси для конуса. Цилиндр и конус вращения – поверхности, бесконечные в направлении их образующих, поэтому на изображениях их ограничивают какими-либо линиями, например линиями пересечения этих поверхностей с плоскостями проекций или какими-либо из параллелей. Из стереометрии известно, что прямой круговой цилиндр и прямой круговой конус ограничены поверхностью вращения и плоскостями, перпендикулярными оси поверхности. Меридиан такого цилиндра – прямоугольник, конуса – треугольник.

Такая поверхность вращения, как сфера , является ограниченной и может быть изображена на чертеже полностью. Экватор и меридианы сферы – равные между собой окружности. При ортогональном проецировании на все три плоскости проекций сфера проецируется в круги.

Тор . При вращении окружности (или ее дуги) вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, получается поверхность, называемая тором. На рис. 8.13 приведены:

а – открытый тор или круговое кольцо; б – закрытый тор; в, г – самопересекающийся тор. Тор вида г называют также лимоновидным. На рис. 8.13 они изображены в положении, когда ось тора перпендикулярна плоскости проекций π1. В открытый и закрытый торы могут быть вписаны сферы. Тор можно рассматривать как поверхность, огибающую одинаковые сферы, центры которых находятся на окружности.

В построениях на чертежах широко используют две системы круговых сечений тора: в плоскостях, перпендикулярных его оси, и в плоскостях, проходящих через ось тора. При этом в плоскостях, перпендикулярных оси тора, в свою очередь имеются два семейства окружностей – линий пересечения плоскостей с наружной поверхностью тора и линий пересечения плоскостей с внутренней поверхностью тора. У лимоновидного тора (рис. 8.13, г) имеется только первое семейство окружностей.

Точки на поверхности вращения. Положение точки на поверхности вращения определяют с помощью окружности, проходящей через эту точку на поверхности вращения. В случае линейчатых поверхностей для этой цели возможно применение и прямолинейных образующих.

Применение параллели и прямолинейной образующей для построения проекций точек, принадлежащих данной поверхности вращения, показано на рис. 8.12. Если дана проекция М", то проводят фронтальную проекцию параллели, а затем радиусом проводят окружность – горизонтальную проекцию параллели – и на ней находят проекцию M". M ", то следовало бы провести радиусом

окружность, по точке F" построить F" и провести – фронтальную проекцию параллели и на ней в проекционной связи отметить точку М". Если дана проекция N" на линейчатом (коническом) участке поверхности вращения, то проводят фронтальную проекцию D"G" очерковой образующей и через проекцию N" фронтальную проекцию G "К" образующей на поверхности конуса. Затем на горизонтальной проекции G"K" этой образующей строят проекцию N". Если бы была задана горизонтальная проекция N", то следовало бы провести через нее горизонтальную проекцию G "K" образующей, по проекциям К " и G" (построение ее было рассмотрено выше) построить фронтальную проекцию G "К" и на ней в проекционной связи отметить проекцию N".

На рис. 8.14 показано построение проекций точки К, принадлежащей поверхности тора. Стрелками указано построение горизонтальной проекции К " по заданной фронтальной проекции К ". Если задана горизонтальная проекция, то построение выполняют в обратном порядке.

На рис. 8.15 показано построение по заданной фронтальной проекции M" точки на поверхности сферы ее горизонтальной M" и профильной M проекций. Проекция M" построена с помощью окружности – параллели, проходящей через M". Ее радиус – ОТ. Проекция M"" построена с помощью окружности, плоскость которой па

раллельна профильной плоскости проекций, проходящей через проекцию М". Ее радиус – О ""2

Построение проекций линий на поверхностях вращения может быть выполнено также с помощью окружностей – параллелей, проходящих через точки, принадлежащие этой линии.

На рис. 8.16 показано построение горизонтальной проекции А "В" линии, заданной фронтальной проекцией А "В" на поверхности вращения, состоящей из частей поверхностей сферы, тора, конической. Для более точного вычерчивания горизонтальной проекции линии продолжим ее фронтальную проекцию вверх и вниз и отметим проекции 6" и 5 " крайних точек. Горизонтальные проекции 6 ", Г,3",4",5" построены с помощью линий связи. Проекции В", 2", 7", 8", А " построены с помощью параллелей, фронтальные проекции которых проходят через проекции /?",2", 7", 8", А "этихточек. Количество и расположение промежуточных точек выбирают исходя из формы линии и требуемой точности построения. Горизонтальная проекция линии состоит из участков: В"–Г – части эллипса, 3 "8 "А "4 части другого эллипса, 1 "2"7"3"– кривой четвертого порядка (проекция кривой на поверхности тора).

8.ПОВЕРХНОСТИ ВРАЩЕНИЯ

Если перемещение образующей линии представляет собой вращение вокруг некоторой неподвижной прямой (оси), то образованная в этом случае поверхность называется поверхностью вращения (рис.2.3.45).

Образующая линия может быть плоской или пространственной кривой, а также прямой. Каждая точка, например В(В 1 , В 2), образующей линии l(l 1 , l 2)при вращении вокруг оси i(i 1 , i 2) описывает окружность, которая располагается в плоскости, перпендикулярной оси вращения (рис. 2.3.45). Эти окружности называются параллелями. Следовательно, плоскости, перпендикулярные оси, пересекают поверхность вращения по параллелям. Линия, например, m(m 1 , m 2) пересечения поверхности вращения плоскостью ( 1), проходящей через ось, называется меридианом. Все меридианы поверхности вращения конгруэнтны. Меридиан l(l 1 , l 2), который является результатом пересечения поверхности вращения с плоскостью уровня ( 1), называется главным. Проекция главного меридиана на плоскость, которой параллельна плоскость уровня, является очерковой линией соответствующей проекции поверхности вращения. Множество всех параллелей или меридианов представляет собой непрерывный каркас поверхности вращения. Через каждую точку поверхности проходит одна параллель и один меридиан. Проекции точки располагаются на соответствующих проекциях параллели или меридиана. Задать точку на поверхности или построить вторую проекцию точки, если одна задана, можно при помощи параллели или меридиана, которые проходят через эту точку. Геометрическая часть определителя поверхности вращения состоит из оси вращения i и образующей линии l. Чертеж поверхности вращения будет простейшим, если ось вращения расположить перпендикулярно одной из плоскостей проекций, а в качестве образующей линии взять главный меридиан (рис. 2.3.45, б). Алгоритмическая часть определителя поверхности вращения состоит из операции вращения образующей l вокруг оси i и построения каркаса параллелей необходимой плотности. При проектировании различных инженерных сооружений, машин и механизмов наибольшее распространение получили поверхности, образующиеся вращением прямой линии и кривых второго порядка.

а. Поверхности, образуемые вращением прямой (линейчатые поверхности вращения)

Вращением прямой линии образуются: 1) цилиндр вращения, если прямая l параллельна оси i (рис. 2.3.46); 2)конус вращения, если прямая l пересекает ос i (рис. 2.3.47); 3)однополостный гиперболоид вращения, если прямая l(ВС) скрещивается с осью i (рис. 2.3.48).

Рис. 2.3.46

Поверхность (рис. 2.3.48) имеет две образующие линии l(ВС) и l"(В"С"), наклоненные в разные стороны и пересекающиеся в точке (А), принадлежащей наименьшей параллели. Отрезок ОА является кратчайшим расстоянием между образующей и осью. Таким образом, на поверхности однополостного гиперболоида располагаются два семейства прямолинейных образующих. Все образующие одного семейства - скрещивающиеся прямые.

Рис. 2.3.47

Каждая образующая одного семейства пересекает все образующие другого. Через каждую точку поверхности проходят две образующие разных семейств. Меридианом поверхности является гипербола. Все рассмотренные линейчатые поверхности вращения являются поверхностями второго порядка. Построение проекций точки, принадлежащей каждой из них, можно выполнить при помощи параллели или прямолинейной образующей, проходящих через нее.

Рис. 2.3.48

б. Поверхности, образуемые вращением кривых второго порядка вокруг их осей

1. Сфера образуется вращением окружности вокруг ее диаметра (рис. 2.3.49). 2. Эллипсоид вращения образуется вращением эллипса вокруг большой или малой оси. 3. Параболоид вращения образуется вращением параболы вокруг ее оси.

Рис. 2.3.49

4. Однополостный гиперболоид вращения образуется вращением гиперболы вокруг ее мнимой оси. Эта поверхность образуется также вращением прямой (рис. 2.3.48 справа). 5. Двуполостный гиперболоид вращения образуется вращением гиперболы вокруг ее действительной оси. При вращении асимптот гиперболы образуется конус вращения, который называется асимптотическим по отношению к поверхности гиперболоида. Все рассмотренные поверхности вращения являются поверхностями второго порядка. Построение проекции точки, принадлежащей каждой из них, можно выполнить при помощи параллели, проходящей через эту точку. в. Поверхности, образуемые вращением кривых второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости Существует теорема: "При вращении плоской или пространственной алгебраической кривой n-го порядка вокруг произвольной оси образуется алгебраическая поверхность вращения, имеющая в общем случае порядок 2n". Из этой теоремы следует, что при вращении кривой второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости, образуется поверхность четвертого порядка. Наиболее распространенной поверхностью четвертого порядка является тор.

Рис. 2.3.50

Тором называется поверхность, образованная вращением окружности вокруг оси, принадлежащей плоскости окружности, но не проходящей через ее центр. При этом ось вращения может пересекать окружность, касаться ее и располагаться вне окружности. В первых двух случаях тор называется закрытым, в последнем - открытым, или кольцом. На рис. 2.3.50 изображены проекции тора-кольца. Являясь поверхностью четвертого порядка, тор пересекается произвольной прямой в четырех точках, произвольной плоскостью по кривой четвертого порядка.

Рис. 2.3.50,1(анимационный) Эта кривая распадается на две окружности (параллели), если плоскость перпендикулярна оси тора (плоскость на рис. 2.3.50), на две окружности (меридиан), если плоскость проходит через ось тора(плоскости Г и Г" на рис. 2.3.50), на две окружности, если плоскость проходит через центр тора и касается его меридиана (плоскость). Проекции точки, например М, принадлежащей поверхности тора, можно построить при помощи параллели (рис. 2.3.50). На рис. 2.3.51 показана динамическая сцена формообразования поверхности тора.

Линия пересечения двух поверхностей второго порядка в общем случае представляет собой алгебраическую кривую четвертого порядка. В частных случаях она может распадаться на линии низших порядков, сумма порядков которых равна четырем: а) на четыре прямые - 1 + 1 + 1 + 1 (рис. 4.56, a). Общие образующие m, m", n, n", по которым пересекаются два цилиндра с параллельными осями, являются частями распавшейся кривой;

б) на две прямые и кривую второго порядка - 1 + 1 +2 (рис. 4.56, б); в) на прямую и кривую третьего порядка - 1 + 3; г) на две кривые второго порядка - 2+2 (рис. 4.57, 4.58, 4.59). Признаки распадения кривой четвертого порядка на две кривые второго порядка сформулированы в следующих теоремах: Теорема 1 . Если две поверхности второго порядка пересекаются по одной плоской кривой (1 - 5 - 2 - 6 на рис. 4.57), то они пересекаются еще по одной кривой, которая тоже будет плоской (3 - 5 - 4 - 6 на рис. 4.57).

Примечание. Плоская кривая, принадлежащая поверхности второго порядка, является кривой второго порядка. Теорема 2. Если две поверхности второго порядка имеют касание в двух точках (1 и 2 на рис. 4.58), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания. Сфера, имеющая двойное касание с поверхностью второго порядка (рис. 4.59), может быть использована для нахождения круговых сечений тех поверхностей второго порядка, которые их имеют. Пусть требуется найти круговые сечения эллиптического цилиндра (рис. 4.59). Проведем сферу с центром на оси цилиндра и диаметром, равным длине отрезка /1 - 2/ - большой оси эллипса. Эта сфера будет касаться двух образующих цилиндра в точках 1 и 2. Линия пересечения со сферой распадается на две окружности, расположенные в профильно проецирующих плоскостях и". Полученные окружности определяют два семейства круговых сечений эллиптического цилиндра.Теорема 3 (теорема Монжа ). Если две поверхности второго порядка описаны около третьей или вписаны в не<(рис. 4.60), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения линий касания (прямая 5 - 6). Теорема Монжа является частным случаем теоремы 2. Построение проекций указанных выше кривых второго порядка (рис. 4.58, 4.58, 4.59, 4.60) ясно из чертежей.

Заканчивая рассмотрение второй позиционной задачи на пересечение поверхностей, приведем несколько динамических сцен, демонстрирующих процесс взаимного пересечения поверхностей. На рис.4.61 показано пересечение поверхностей сферы и эллиптическогo цилиндра. На рис. 4.62 сфера пересекается с пирамидой, а на рис. 4.63 показано пересечение двух кривых поверхностей.

Возможно, самым простым способом создания трехмерной поверхности является вращение двумерного объекта, например прямой или плоской кривой вокруг оси в пространстве. Такие поверхности называются поверхностями вращения. Сначала для простоты предположим, что ось вращения совпадает с осью и положительно направлена. Предположим также, что объекты вращения - отрезок, прямая или плоская кривая - лежат на плоскости . Позднее мы рассмотрим метод, позволяющий избавиться от этих ограничений.

Самый простой объект, который можно вращать вокруг оси, - это точка. При условии, что точка не лежит на оси, вращение на угол породит окружность. Поворот на меньший угол даст дугу окружности.

Следующим по сложности является отрезок, параллельный, но не совпадающий с осью вращения. Вращение на угол породит в этом случае круговой цилиндр. Радиусом этого цилиндра является длина перпендикуляра, опущенного с отрезка на ось вращения. Длина цилиндра равна длине отрезка. Пример изображен на рис. 6-1.

Если отрезок и ось вращения компланарны и отрезок не параллелен оси вращения, то в результате вращения вокруг оси на угол мы получим усеченный круговой конус. Радиусы оснований усеченного конуса - длины перпендикуляров, опущенных с концов отрезка на ось вращения. Высота конуса - это длина спроецированного на ось вращения отрезка. Пример изображен на рис. 6-2.

И снова, если отрезок и ось вращения компланарны и отрезок перпендикулярен оси вращения, то в результате вращения на угол мы получим плоский диск. Если отрезок пересекает (или касается) ось вращения, то получится сплошной диск, в противном случае диск будет иметь круглое отверстие. Примеры изображены на рис. 6-3.

И наконец, если отрезок наклонен к оси вращения, т.е. некомпланарен, то вращение на угол породит однополостный гиперболоид (см. разд. 6-4 и 6-7).

Рис. 6-1 Цилиндрическая поверхность вращения. (а) Схема построения; (b) результат.

Рис. 6-2 Коническая поверхность вращения. (а) Схема построения; (b) результат.

Рис. 6-3 Диск в качестве поверхности вращения. (а) Схема построения; (b) результат.

Рис. 6-4 Поверхность вращения из замкнутой ломаной. (a) Схема построения; (b) результат.

Рис. 6-5 Бипараметрическая поверхность вращения.

Для создания поверхностей вращения могут быть также использованы замкнутые и незамкнутые ломаные. На рис. 6-4 представлен конус с цилиндрическим отверстием.

Параметрическое уравнение точки на поверхности вращения можно получить, если вспомнить, что параметрическое уравнение вращаемого объекта, например

есть функция одного параметра . Вращение вокруг оси приводит к тому, что координаты зависят также от угла поворота. Таким образом, точка на поверхности вращения определяется двумя параметрами и . Как показано на рис. 6-5, это бипараметрическая функция.

Для рассматриваемого частного случая, т. е. вращения вокруг оси объекта, расположенного в плоскости , уравнение поверхности записывается

Заметим, что здесь координата не меняется. В качестве иллюстрации приведем пример.

Пример 6-1 Простая поверхность вращения

Рассмотрим отрезок с концами и , лежащий в плоскости . Вращение отрезка вокруг оси породит коническую поверхность. Определим на поверхности координаты точки с параметрами , .

Параметрическое уравнение отрезка, соединяющего и , имеет вид

с декартовыми координатами

.

Используя уравнение (6-1), получим точку на поверхности вращения

.

Вращение плоских кривых также порождает поверхности вращения. Как показано на рис. 6-6а, сфера получается в результате вращения вокруг оси расположенной в плоскости полуокружности, центрированной относительно начала координат. Вспомнив параметрическое уравнение окружности (см. разд. 4-5)

получим параметрическое уравнение сферы

Рис. 6-6 Поверхности вращения. (а) Сфера; (b) эллипсоид.

Если вместо окружности подставить параметрическое уравнение центрированного полуэллипса, расположенного в плоскости , получится эллипсоид вращения. Напомнив параметрическое уравнение полуэллипса (см. разд. 4-6)

получим для любой точки эллипсоида следующее параметрическое уравнение:

При уравнение (6-3) превращается в уравнение (6-2) для сферы. Эллипсоид вращения показан на рис. 6-66.

Если ось вращения не проходит через центр окружности или эллипса, то в результате вращения получается тор с сечением в виде окружности или эллипса, соответственно. Параметрическое уравнение эллипса на плоскости с центром, не совпадающим с началом координат, выглядит так

где - это , - координаты центра эллипса, тогда параметрическое уравнение для любой точки тора имеет вид:

где , . Если , то уравнение (6-4) задает тор с сечением в виде окружности. Если , то получится тор с сечением в виде эллипса. На рис. 6-7 представлены оба типа торов.

Рис. 6-7 Торы. (а) С сечением в виде окружности; (b) с сечением в виде эллипса.

Параболоид вращения получается при вращении параметрической параболы (см. разд. 4-7)

Гиперболоид вращения получается при вращении параметрической гиперболы

вокруг оси . Параметрическая поверхность задается уравнением

Примеры показаны на рис. 6-8.

Для создания поверхности вращения можно использовать любую параметрическую кривую, например кубический сплайн, параболический сплайн, кривую Безье и В-сплайн. На рис. 6-9 изображена поверхность вращения, созданная из относительно простого параболического сплайна. На рис. 6-10 изображен бокал, созданный как поверхность вращения с помощью незамкнутого В-сплайна.

Рис. 6-8 Поверхности вращения. (а) Параболоид; (b) гиперболоид.

Рис. 6-9 Поверхность вращения из параболически интерполированной кривой. (а) Создание кривой; (b) поверхность.

Заметим, что бокал имеет как внутреннюю, так и внешнюю стороны. Вращение производится относительно оси .

Рис. 6-10 В-сплайн поверхность вращения. (а) Вершины ломаной; (b) В-сплайн; (с) поверхность.

Напомним, что в матричной форме параметрическая пространственная кривая (см. уравнения (5-27), (5-44), (5-67) и (5-94)) задается следующим образом:

,

где , и - соответственно матрица параметров, матрица функций смешивания и геометрическая матрица. Таким образом, в общей форме матричное уравнение поверхности вращения записывается в виде:

, (6-7)

где представляет вклад вращения вокруг оси на угол . Для частного случая вращения вокруг оси имеем:

. (6-8)

Эти методы иллюстрируются в следующем примере.

Пример 6-2 Поверхность вращения, созданная по параболической кривой

Рассмотрим параболическую кривую, заданную точками , , , . Будем вращать эту кривую вокруг оси на угол , чтобы получить поверхность вращения. Найдем на поверхности точку с параметрами , .

Из уравнений (6-7) и (6-8) получим параметрическое уравнение поверхности вращения

,

где , , и задаются уравнениями (5-44), (5-52) и (5-53) соответственно.

Конкретнее,

.

Рис. 6-11 Поверхность вращения вокруг произвольной оси.

Результаты изображены на рис. 6-9. Такая поверхность может быть результатом разработки кубка или даже газового канала двигателя или ракетного сопла.

Предыдущие результаты были получены путем вращения точки, отрезка, ломаной или кривой вокруг координатной оси, а именно вокруг оси . К более общему случаю поворота вокруг произвольной оси в пространстве поверхность вращения, полученную в более удобной локальной системе координат, можно свести с помощью переносов и поворотов, приводящих поверхность в нужное положение.

На рис. 6-11 показана параметрическая кривая , повернутая вокруг произвольной оси в пространстве, проходящей через точки и и направленной от к . После того как поверхность создана в удобной системе координат для приведения поверхности вращения в нужное положение, нужно совершить следующие действия:

1. Перенести точку в начало координат.

2. Выполнить повороты, необходимые для совмещения осей и (см. разд. 5-9).

3. Повернуть вокруг оси на угол для совмещения осей и .

Эти три шага необходимы только для того, чтобы найти обратное преобразование, размещающее поверхность вращения в нужном месте в трехмерном пространстве. Получив поверхность вращения вокруг оси , приведем ее в нужное положение в пространстве:

1. Сдвинуть по оси , чтобы переместить центр поверхности вращения в нужное положение на оси .

2. Применить к поверхности вращения преобразование, обратное к суммарному преобразованию поворотов.

3. Применить к поверхности вращения обратный перенос точки .

Точка на поверхности вращения тогда задается уравнением:

где , , задаются уравнениями (3-22)-(3-24). задается уравнением (3-8), и матрица задается в форме уравнения (6-7) с геометрической матрицей , представленной в однородных координатах. теперь является матрицей , заданной в виде

. (6-10)

Данный метод иллюстрируется на следующем примере.

Пример 6-3 Поверхность вращения вокруг произвольной оси

Найдем координаты точки с параметрами , на поверхности вращения, образованной вращением эллипса с главной осью, наклоненной относительно оси вращения. Ось вращения проходит через центр эллипса и лежит в плоскости эллипса. Угол наклона . Полуоси эллипса , . Ось проходит через точки и . Центр эллипса находится в точке .

Формальное дифференцирование уравнения (6-7) дает параметрические производные для поверхности вращения. А именно, производная в осевом направлении равна

а производная в радиальном направлении

, (6-12)

где штрих обозначает соответствующее дифференцирование.

Нормаль к поверхности задается векторным произведением параметрических производных, т.е.

Если перемещение образующей линии представляет собой вращение вокруг некоторой неподвижной прямой (оси), то образованная в этом случае поверхность называется поверхностью вращения .

Образующая линия может быть плоской или пространственной кривой, а также прямой. Каждая точка образующей линии при вращении вокруг оси описывает окружность, которая располагается в плоскости перпендикулярной оси вращения (рис. 42).

Эти окружности называются параллелями . Следовательно, плоскости, перпендикулярные оси, пересекают поверхность вращения по параллелям . Линия пересечения поверхности вращения плоскостью Σ , проходящей через ось, называется меридианом .

Меридиан, который является результатом пересечения поверхности вращения с плоскостью уровня, называетсяглавным . Проекция главного меридиана на плоскость, которой параллельна плоскость уровня, является очерковой линией соответствующей проекции поверхности вращения.

М

Рис. 42 Элементы поверхности вращения

ножество всех параллелей или меридианов представляет собой непрерывныйкаркас поверхности вращения. Через каждую точку поверхности проходит одна параллель и один меридиан. Проекции точки располагаются на соответствующих проекциях параллели или меридиана. Задать точку на поверхности или построить вторую проекцию точки, если одна задана, можно при помощи параллели или меридиана, которые проходят через эту точку.

При проектировании различных инженерных сооружений, машин и механизмов наибольшее распространение получили поверхности, образующиеся вращением прямой линии и кривых второго порядка.

Вращением прямой линии образуются:

цилиндр вращения , если прямая l параллельна оси i (рис. 43 а );

конус вращения , если прямая l пересекает ось i (рис. 43 б );

однополостный гиперболоид , если прямая l скрещивается с осью i (рис. 43 в ).

Рис. 43 Линейчатые поверхности вращения

К поверхностям вращения, образованным вращением кривых второго порядка вокруг оси относятся:

сфера образуется вращением окружности вокруг ее диаметра (рис. 44 а );

эллипсоид вращения образуется вращением эллипса вокруг большой или малой оси (44 б , в );

тор образуется вращением окружности вокруг внешней оси (рис. 44 г );

Рис. 44 Поверхности вращения второго порядка

параболоид вращения образуется вращением параболы вокруг ее оси (рис. 44 д );

однополостный гиперболоид вращения образуется вращением гиперболы вокруг ее мнимой оси. Эта поверхность образуется также вращением прямой (рис. 44 е ).

Каналовые и циклические поверхности

Каналовой называют поверхность, образованную непрерывным каркасом замкнутых плоских сечений, определенным образом ориентированных в пространстве. Площади этих сечений могут оставаться постоянными или монотонно изменяться в процессе перехода от одного сечения к другому. На рис. 45 приведены два изображения каналовой поверхности. В инженерной практике наибольшее распространение получили два способа ориентирования плоскостей образующих:

– параллельно какой-либо плоскости – каналовые поверхности с плоскостью параллелизма ;

– перпендикулярно к направляющей линии – прямые каналовые поверхности .

Каналовая поверхность может быть использована для создания переходных участков между двумя поверхностями типа трубопроводов, имеющих:

– различную форму, но одинаковую площадь нормального сечения;

– одинаковую форму, но различные площади сечения;

– различную форму и различные площади поперечных сечений.

Циклическую поверхность можно рассматривать как частный случай каналовой поверхности. Она образуется с помощью окружности, центр которой перемещается по криволинейной направляющей. В процессе движения радиус окружности монотонно меняется. Пример циклической поверхности показан на рис. 46.

Трубчатая поверхность относится к группе нелинейчатых поверхностей с образующей постоянного вида и является частным случаем циклической и каналовой поверхностей. Она обладает свойствами, присущими этим видам поверхностей. У циклической поверхности она позаимствовала форму образующей, а у каналовой – закон движения этой образующей. На рис. 47 приведен пример трубчатой поверхности.

Теорема.

Расстояние от точки до прямой , заданной точкой и направляющим вектором может быть найдено по формуле

.

А расстояние между двумя скрещивающимися прямыми находится по формуле

.

Поверхностью вращения называется поверхность, которая вместе с каждой своей точкой содержит всю окружность, полученную вращением этой точки вокруг некоторой фиксированной прямой . Прямая , вокруг которой производится вращение, называется осью вращения . Вращение точки вокруг оси происходит в плоскости, перпендикулярной оси. В сечении поверхности вращения плоскостями, перпендикулярными оси вращения, получаются окружности, которые называются параллелями . Плоскости, проходящие через ось вращения, пересекают поверхность вращения по линиям, называемым меридианами .

Теорема. В прямоугольной системе координат уравнение

есть уравнение поверхности вращения, образованной вращением вокруг оси линии, заданной уравнениями

Цилиндрической поверхностью или цилиндром называется поверхность, которая вместе с каждой точкой содержит всю прямую, проходящую через точку , параллельно данному ненулевому вектору . Прямые, параллельные вектору и принадлежащие цилиндрической поверхности, называются образующими этой поверхности.

Цилиндрическая поверхность может быть образована следующим образом. Пусть - некоторая линия, а - ненулевой вектор. Поверхность, образованная всеми прямыми, каждая из которых проходит через некоторую точку линии параллельно вектору , будет цилиндрической. В этом случае линия называется направляющей это поверхности.

Если прямоугольная система координат выбрана так, что образующие цилиндрической поверхности второго порядка были параллельны оси , а направляющая в системе имела каноническое уравнение, то цилиндрические поверхности определяются следующим образом.

- эллиптический цилиндр;

- гиперболический цилиндр;

- параболический цилиндр;

-цилиндр, распавшийся на пару пересекающихся по оси плоскостей;

- цилиндр, распавшийся на пару параллельных плоскостей;

- цилиндр, представляющий собой пару слившихся плоскостей.

Эти уравнения называются каноническими уравнениями соответствующих цилиндрических поверхностей второго порядка.

Если в каноническом уравнении эллиптического цилиндра , то направляющей цилиндра служит окружность , лежащая в плоскости . В этом случае поверхность является цилиндром вращения .

Конической поверхностью или конусом с вершиной в точке называется поверхность, которая обладает тем свойством, что вместе с каждой своей точкой , отличной от точки , эта поверхность содержит прямую .



Прямые проходящие через вершину конуса и лежащие на нем, называются образующими этого конуса.

Рассмотрим в пространстве линию и точку , не лежащую на линии . Поверхность, образованная всеми прямыми, каждая из которых проходит через точку и через некоторую точку линии , является конической поверхностью с вершиной .

В этом случае линия называется направляющей .

Рассмотрим коническую поверхность с вершиной в начале прямоугольной системы координат , направляющая которой служит эллипс :

.

Найдем уравнение этой поверхности. Пусть точка , отличная от точки , принадлежит конусу . Тогда прямая пересечет направляющую в некоторой точке . Так как и векторы и коллинеарны, то найдется такое вещественное число , что , или в координатах:

Отсюда находим

.

Подставив полученные выражения в первое из равенств, после несложных преобразований найдем:

.

Итак, координаты любой точки конуса удовлетворяют этому уравнению. Нетрудно убедиться также, что если точка не принадлежит конусу, то ее координаты не удовлетворяют этому уравнению.

Таким образом, мы получили уравнение второй степени, поэтому конус называется конусом второго порядка. А само уравнение называется каноническим уравнением конической поверхности второго порядка .

В случае, когда направляющая конической поверхности второго порядка является окружностью, то есть когда , уравнение принимает вид

.

Поверхность, определяемая этим уравнением в прямоугольной системе координат, называется круговой конической поверхностью или круговым конусом.


Практические занятия:

Тема 1:

Тема 2:

Тема 3:

Тема 4:

Тема 5:

Тема 6:

Тема 7:

Тема 8:

Тема 9:

Тема 10:

Тема 11.

Тема 12.

Тема 13.

Тема 14.

Тема 15.

Самостоятельная работа студентов:

Тема 1: Бинарные операции на множестве. Понятие группы, кольца и поля. Примеры. Поле комплексных чисел. № 101 – 113, 17 – 18 б. ; № 2.8, 2.10, 2.13, 2.15-2.21, 18-20 б.

Тема 2: Операции над комплексными числами. Алгебраическая и тригонометрическая форма комплексного числа. № 118 – 119, 136 – 140, 19 -20 б., № 2.22 – 2.23, 2.26 – 2.28, 2.46-2.50 , 20 – 23 б.

Тема 3: Перестановки и подстановки. Группа подстановок. Циклические подстановки. № 219 -221, 223, № 410 / 28 – 29, 55 -56 б. № 3.2 – 3.6, 3.38 / 26 – 27, 33 б

Тема 4: Матрицы и действия над ними. Определители второго и третьего порядка. № 235 – 240, 243 – 245, 231-232 /31-32 б., № 3.24-3.27, 3.30(1,2)/29-30б.

Тема 5: Определители и их свойства. Миноры и алгебраические дополнения. Определители n-го порядка № 231–232, 266–267, 273–280, № 374, 31, 35–37, 48 б., № 442 / 61 б. , № 3.30–3.31 / 30–31 б., № 4.24–4.28 / 44-45 б.

Тема 6: Обратная матрица и методы ее вычисления. Матричные уравнения. № 400, 410–411 / 55–56 б. , № 3.38–3.40 / 33–34 б.

Тема 7: Системы линейных уравнений. Арифметическое n-мерное векторное пространство. Метод Гаусса. Правило Крамера. № 443– 447 / 62 – 64 б. , № 4.18–4.19, 4.64 / 41 – 43, 51 б.

Тема 8: Многочлены от одной переменной НОД многочленов. Корни многочленов. Формулы Виета. Основная теорема алгебры и ее следствие. № 400– 402 / 53 – 54 б. , № 443–447, 449 / 62 – 64 б. № 3.55-3.59, 4.18 - 4.19, 4.64 /36-37, 41-43, 51 б.

Тема 9: Векторы. Базис векторного пространства. № 650, 167, 173 /89, 22 – 23 б. , № 11.59, 11.60, 11.65, 11.74 – 11.77, 11.81 – 11.86 / 123 – 125 б.

Тема 10: Скалярное, векторное и смешанное произведение векторов. 104, 114, 117, 118, 124, 424, 428, 445(1,3,6), 446(1,3), 454, 462, 468(1,3), 473, 487(1), 489(1,3) .

Тема 11. Прямая линия на плоскости. Различные виды уравнений на плоскости. Расстояние от точки до плоскости. Взаимное расположение двух прямых. 279(а, в), 282(а, в), 289(а, в), 294(а), 552, 553.

Тема 12. Кривые второго порядка. Эллипс, гипербола, парабола. Вывод канонических уравнений. 376, 379, 392, 403, 477(а, в), 479, 486, 507(а), 515, 558(1,3), 559(1,3), 564(1, 3), 567, 584(1), 585(1), 598, 600(1).

Тема 13. Плоскость в пространстве. Различные виды уравнения плоскости. Расстояние от точки до плоскости. Взаимное расположение двух плоскостей. 756, 758(а, в), 764(а, в), 765(а, в), 767(а, в), 794(а, в), 796(а, в), 798, 713, 715, 718(1), 719(1), 728(1, 3), 730(1), 733(1, 3).

Тема 14. Прямая линия в пространстве. Различные виды уравнения. Взаимное расположение двух прямых. 1058(а), 1059(а, в), 1060(а), 1066(а), 1068(а), 1113(а), 1116(а), 1122(а) , 624(1, 3), 625(1,3), 630(1), 632, 645(1).

Тема 15. Поверхности 2-го порядка. Поверхности вращения. Цилиндрические поверхности. Конические поверхности. 1252, 1254(а, в), 1256 , 769, 770(1), 771, 775(1).

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей