Размер молекулы кальция в воде. Основные положения молекулярно-кинетической теории


Понятно, что мы не сможем непосредственно измери ть такую малую частичку вещества. Мы проведем опыт, из которого путем простых расчетов можно определить размер молекул. Вы, конечно, видели на поверхности воды тонкие цветные пленки, образуемые нефтепродуктами (смазочные масла, дизельное топливо и т. п.). Цвет тонких пленок возникает из-за наложения световых лучей, отраженных от верхней и нижней поверхностей пленки - такое явление называется интерференцией света. ПотоЙ же причине переливаются всеми цветами радуги мыльные пузыри.
Явление интерференции вы будете изучать на уроках физики. А сейчас нас интересует толщина пленки - !зы никогда не задумывались, насколько она ййїкіія? Определить толщину пленки очень просто: надо ее объем разделить на площадь поверхности. Еще древние мореплаватели заметили, что если на поверхность воды вылить растительное масло, то оно растечется очень большим пятном (тогда же появилось довольно странное мнение о том, что таким способом можно «утихомирить» море во время бури). Вероятно, впервые измерил площадь масляного пятна на воде выдающийся американский ученый и дипломат Бенджамин Франклин (1706- 1790), изображение которого красуется на стодолларовой купюре. Его самое знаменитое изобретение - громоотвод (вернее, молниеотвод). В 1774 году Франклин поехал в Европу, чтобы уладить очередной конфликт между Англией и США. В свободное от переговоров время он экспериментировал с масляными пленками на поверхности воды. К его удивлению, одна ложка растительного масла растеклась по всей поверхности небольшого пруда. Если же налить па воду не растительное, а невязкое машинное масло, пятно от него будет не таким большим: одна капля дает круг диаметром около 20 см. Площадь такой пленки равна примерно 300 см3, объем одной капли - около 0,03 см3. Следовательно, толщина пленки равна 0,03 см1 / 300 см3 = 0,0001 см = 0,001 мм - 1 мкм. Тысячная доля миллиметра - это очень малая величина, не во всякий микроскоп разглядишь час тичку такого размера.
Но есть ли у нас гарантия, что молекулы машинного масла растеклись по воде в один слой? Ведь только в этом случае толщина пленки будет соответствовать размеру молекул. Такой гарантии у нас нет, и вот почему. Молекулы, входящие в состав машинного масла, называют гидрофобными (в переводе с греческого «гидрофобные» - «боящиеся воды»). Они довольно хорошо «сцепляются» между собой, очень неохотно - с молекулами воды. Если вещество, подобное машинному маслу, налить на поверхность воды, оно образует на ней довольно толстую (по молекулярным меркам) пленку, состоящую из сотен и даже тысяч молекулярных слоев. Помимо того, что подобные расчеты любопытны и сами по себе, они имеют большое практическое значение. Например, по сей день не удается избежать аварий огромных танкеров, перевозящих нефть за тысячи километров от места ее добычи. В результате такой аварии в море может вылиться огромное количество нефти, что губительно скажется на живых организмах. Нефть более вязкая по сравнению с машинным маслом, поэтому ее пленка на водной поверхности может оказаться несколько толще. Так, в одной из аварий вылилось 120 000 тонн нефти, которая покрыла площадь 500 км3. Как показывает несложный расчет, средняя толщина такой пленки равна 200 мкм. Толщина пленки зависит как от сорта нефти, так и от температуры воды: в холодных морях, где нефть делается более густой, пленка толще, в теплых морях, где нефть становится менее вязкой, - тоньше. Но в любом случае авария большого танкера, когда в море попадают десятки тысяч тонн нефти, - это катастрофа. Ведь если вся пролитая нефть растечется тонким слоем, то образуется пятно огромной площади, и ликвидировать такую пленку чрезвычайно трудно.
А можно ли заставить вещество растекаться по воде так, чтобы образовался всего один слой молекул (такая пленка называется мономолекулярной)? Оказывается, это возможно, только вместо машинного масла или нефти надо взять другое вещество. Молекулы такого вещества должны на одном конце иметь гак называемую гидрофильную (т. е. «водолюбивую») группу атомов, а на другом конце - гидрофобную. Что будет, если вещество, состоящее из таких молекул, поместить на поверхность воды? Гидрофильная часть молекул, стремясь раствориться в воде, будет тянуть молекулу в воду, тогда как гидрофобная часть, которая воды «боится», будет упорно избегать контакта с водой. В результате такого взаимного «непонимания» молекулы (если их слегка «поджать» сбоку с помощью планочки) выстроятся па поверхности воды так, как показано нарис. 3.1: их гидрофильные концы утоплены в воду, а гидрофобные торчат наружу.
\6666666666Ы/
Рис. 3.1. Так ориентируются на границе вода-воздух молекулы поверхностно-активных веществ, образуя «частокол Ленгмюра» - по имени американского химика и физика Ирвинга Ленгмюра (1881-1957), который в 1916 году создал теорию строения таких слоев на поверхности жидкостей
Вещества, которые ведут себя таким образом, называют поверхностно-активными. К ним относятся, например, мыло и другие моющие средства; олеиновая кислота, входящая в состав подсолнечного масла; паль-митиновый спирт, который входит в состав пальмового масла и китового жира. Растекание таких веществ по поверхности воды дает значительно более тонкие пленки, чем машинное масло. Это явление было известно давно, подобные опыты проводили еще в XVIII веке. Нотолько в конце XIX - начале XX столетия в результате экспериментов, проведенных английским физиком Джоном Уильямом Рэлеем (1842-1919), немецким физиком Вильгельмом Конрадом Рент- геном (1845-1923) и рядом других ученых, было показано, что толщина пленки может достигать таких малых размеров, которые сопоставимы с размерами отдельных молекул.
В одном из таких опытов английский химик НеЙл Кенсингтон Адам Размеры порядка I нм имеют большинство молекул и ионов знакомых нам веществ. Так, диаметр молекул водорода равен примерно 0,2 нм, иода - 0,5 нм, этилового спирта - 0,4 нм; радиус ионов алюминия - 0,06 нм, натрия - 0,10 нм, к&чия - 0,13 нм, хлора - 0,18 нм, иода - 0,22 нм. Но есть среди молекул и гиганты, размеры которых, по молекулярным меркам, поистине астрономические. Так, в ядрах клеток высших животных и растений находятся молекулы наследственности - дезоксирибонуклеиновые кислоты (ДНК). Их длина может превышать 2 000 000 нм, т. е. 2 мм!
В заключение этого раздела - небольшой рассказ о том, какой остро- умный (хотя и не самый точный) метод использовал в 1908 году французский ученый Жан Перрен, чтобы «взвесить» молекулы. Как известно, плотность воздуха уменьшается с высотой. Еще в начале XIX века французский ученый Пьер Лаплас вывел формулу, позволяющую рассчитать давление на разных высотах. В соответствии с этой формулой атмосферное давление падает вдвое при подъеме на каждые 6 км. Это значение зависит, конечно, от силы земного притяжения, а также от массы молекул воздуха. Если бы воздух состоял не из азота и кислорода, а из очень легких молекул водорода (они в 16 раз легче молекул кислорода), то падение атмосферного давления вдвое наблюдалосьбы на высоте не 6 км, а примерно в 16 раз больше, т. е. около 100 км. И наоборот, если бы молекулы были очень тяжелые, атмосфера была бы «прижата» к поверхности Земли и давление быстро падало бы с высотой.
Рассуждая таким образом. Перрен решил вместо молекул использовать крошечные шарики краски гуммигута, взвешенные в воде. Он постарался приготовить взвесь (эмульсию) с одинаковыми по размеру шариками - около 1 мкм в диаметре. Затем он поместил капельку эмульсии под микроскоп и, перемещая винт микроскопа по вертикали, считал число шариков гуммигута на разных высотах. Оказалось, что формула Лапласа вполне применима и к эмульсиям: при подъеме на каждые 6 мкм число шариков в поле зрения уменьшалось в два раза. Поскольку 6 км ровно в миллиард раз больше 6 мкм, Перрен сделал вывод, что во столько же раз молекулы кислорода и азота легче шариков гуммигута (а их массу уже можно определить экспериментально).

Когда два или более атома вступают в химические связи друг с другом, возникают молекулы. При этом не имеет значения, являются ли эти атомы одинаковыми или они вовсе отличаются друг от друга как по форме, так и по своему размеру. Мы с вами разберемся, какова величина молекул и от чего это зависит.

Что такое молекулы?

На протяжении тысячелетий ученые размышляли о тайне жизни, о том, что именно происходит при ее зарождении. Согласно самым древним культурам, жизнь и все-все в этом мире состоит из основных элементов природы - земли, воздуха, ветра, воды и огня. Однако со временем многие философы начали выдвигать идею, что все вещи состоят из крошечных, неделимых вещей, которые не могут быть созданы и уничтожены.

Однако только после появления атомной теории и современной химии ученые начали постулировать, что частицы, взятые в совокупности, породили основные строительные блоки всех вещей. Так появился термин, который в контексте современной теории частиц относится к мельчайшим единицам массы.

По своему классическому определению, молекула - это наименьшая частица вещества, которая помогает сохранять его химические и физические свойства. Она состоит из двух или более атомов, а также групп одинаковых или разных атомов, удерживаемых вместе химическими силами.

Какова величина молекул? В 5 классе природоведение (школьный предмет) дает лишь общее представление о размерах и формах, более подробно этот вопрос изучается в старших классах на уроках химии.

Примеры молекул

Молекулы могут быть простыми или сложными. Вот некоторые примеры:

  • H 2 O (вода);
  • N 2 (азот);
  • O 3 (озон);
  • CaO (оксид кальция);
  • C 6 H 12 O 6 (глюкоза).

Молекулы, состоящие из двух или более элементов, называются соединениями. Так, вода, оксид кальция и глюкоза являются составными. Не все соединения являются молекулами, но все молекулы являются соединениями. Насколько большими они могут быть? Какова величина молекулы? Известен тот факт, что почти все вокруг нас состоит из атомов (кроме света и звука). Их общий вес и будет составлять массу молекулы.

Молекулярная масса

Говоря о том, какова величина молекул, большинство ученых отталкиваются от молекулярной массы. Это общий вес всех входящих в нее атомов:

  • Вода, состоящая из двух атомов водорода (имеющих по одной единице атомной массы) и одного атома кислорода (16 единиц атомной массы), имеет молекулярный вес 18 (точнее, 18,01528).
  • Глюкоза имеет молекулярную массу 180.
  • ДНК, которая является очень длинной, может иметь молекулярную массу, которая составляет около 1010 (приблизительный вес одной человеческой хромосомы).

Измерение в нанометрах

В дополнение к массе мы также можем измерить, какова величина молекул в нанометрах. Единица воды составляет около 0,27 Нм в поперечнике. ДНК достигает 2 Нм в поперечнике и может растягиваться до нескольких метров в длину. Трудно себе представить, как такие размеры могут умещаться в одной клетке. Соотношение длины и толщины ДНК удивительно. Оно составляет 1/100 000 000, это как человеческий волос с длиной в футбольное поле.

Формы и размеры

Какова величина молекул? Они бывают разных форм и размеров. Вода и углекислый газ при этом являются одними из самых маленьких, белки - одними из самых больших. Молекулы - это элементы, состоящие из атомов, которые связаны друг с другом. Понимание внешнего вида молекул традиционно является частью химии. Помимо их непостижимо странного химического поведения, одной из важных характеристик молекул является их размер.

Где может быть особенно полезным знание о том, какова величина молекул? Ответ на этот и многие другие вопросы помогает в сфере нанотехнологий, так как концепция нанороботов и интеллектуальных материалов обязательно имеет дело с эффектами молекулярных размеров и форм.

Какова величина молекул?

В 5 классе природоведение по этой теме дает только общую информацию, что все молекулы состоят из атомов, которые находятся в постоянном беспорядочном движении. В старших классах можно уже увидеть структурные формулы в учебниках химии, которые напоминают действительную форму молекул. Однако невозможно измерить их длину с помощью обычной линейки, а чтобы это сделать, нужно знать, что молекулы представляют собой трехмерные объекты. Их изображение на бумаге является проекцией на двумерную плоскость. Длина молекулы изменяется с помощью связей длин ее углов. Существуют три основных:

  • Угол тетраэдра 109°, когда все связи этого атома со всеми другими атомами являются одинарными (только одно тире).
  • Угол шестиугольника 120°, когда один атом имеет одну двойную связь с другим атомом.
  • Угол линии 180°, когда атом имеет либо две двойные связи, либо одну тройную с другим атомом.

Реальные углы часто отличаются от этих углов, так как необходимо учитывать целый ряд разнообразных эффектов, в том числе электростатические взаимодействия.

Как представить себе размер молекул: примеры

Какова величина молекул? В 5 классе ответы на этот вопрос, как мы уже говорили, носят общий характер. Школьники знают, что размер названных соединений очень маленький. Вот, например, если превратить молекулу песка в одной единственной песчинке в целую песчинку, то под получившейся массой можно было бы спрятать дом в пять этажей. Какова величина молекул? Краткий ответ, которой также является и более научным, имеет следующий вид.

Молекулярная масса приравнивается к отношению массы всего вещества к количеству молекул в веществе или отношению молярной массы к постоянной Авогадро. Единицей измерения является килограмм. В среднем молекулярная масса составляет 10 -23 -10 -26 кг. Возьмем, например, воду. Ее молекулярная масса будет 3 х 10 -26 кг.

Как размер молекулы влияет на силы притяжения?

Ответственной за притяжение между молекулами является электромагнитная сила, которая проявляется через притяжение противоположных и отталкивание подобных зарядов. Электростатическая сила, которая существует между противоположными зарядами, доминирует во взаимодействиях между атомами и между молекулами. Гравитационная сила настолько мала в этом случае, что ею можно пренебречь.

При этом размер молекулы влияет на силу притяжения через электронное облако случайных искажений, возникающих при распределении электронов молекулы. В случае неполярных частиц, проявляющих только слабые ван-дер-ваальсовые взаимодействия или дисперсионные силы, размер молекул оказывает прямое влияние на величину электронного облака, окружающего указанную молекулу. Чем она больше, тем больше и заряженное поле, которое ее окружает.

Большее электронное облако означает, что между соседними молекулами может происходить больше электронных взаимодействий. В результате одна часть молекулы развивает временный положительный частичный заряд, а другая - отрицательный. Когда это происходит, молекула может поляризовать электронное облако у соседней. Притяжение происходит потому, что частичная положительная сторона одной молекулы притягивается к частичной отрицательной стороне другой.

Заключение

Итак, какова величина молекул? В природоведении, как мы выяснили, можно найти лишь образное представление о массе и размерах этих мельчайших частиц. Но мы знаем, что есть простые и сложные соединения. И ко вторым можно отнести такое понятие, как макромолекула. Это очень большая единица, например белок, которая обычно создается путем полимеризации меньших субъединиц (мономеров). Они обычно состоят из тысяч атомов или более.

Представление о молекулярном строении тел на первый взгляд не согласуется с нашим обычным опытом: мы не наблюдаем этих отдельных частиц, тела представляются нам сплошными. Однако это возражение нельзя считать убедительным. М. В. Ломоносов в одной из своих работ писал: «Нельзя также отрицать движение там, где глаз его не видит; кто будет отрицать, что движутся листья и ветви деревьев при сильном ветре, хотя издали он не заметит никакого движения. Как здесь из-за отдаленности, так и в горячих телах вследствие малости частичек вещества движение скрывается от взоров». Итак, причина кажущегося разногласия в том, что атомы и молекулы чрезвычайно малы.

В лучший оптический микроскоп, который дает возможность различать предметы, размеры которых не меньше , рассмотреть отдельные молекулы, даже самые крупные, нельзя. Однако целый ряд косвенных методов позволил не только надежно доказать существование молекул и атомов, но даже установить их размеры. Так, размер атома водорода можно считать равным ; длина молекулы водорода, т. е. расстояние между центрами двух атомов, ее составляющих, равна . Существуют более крупные молекулы, например молекулы белка (альбумин) имеют размеры . В последние годы благодаря устройству специального прибора, позволяющего исследовать объекты чрезвычайно малых размеров, - электронного микроскопа - оказалось возможным сфотографировать не только крупные молекулы, но и атомы.

О том, что размеры молекул чрезвычайно малы, можно судить и без измерений, исходя из возможности получать очень малые количества разных веществ. Разведя чернил (например, зеленых) в литре чистой воды, а затем разведя этого раствора еще раз в литре воды, мы получим разведение в раз. И все же мы увидим, что последний раствор имеет заметную зеленую окраску и вместе с тем вполне однороден. Следовательно, в самом малом объеме, который еще может различить глаз, даже при таком разведении находится очень много молекул красящего вещества, Это показывает, как малы эти молекулы.

Золото можно расплющивать в листки толщины , а обрабатывая такие листки водным раствором цианистого калия, можно получать листки золота толщины . Следовательно, размер молекулы золота значительно меньше одной сотой доли микрометра.

На рисунках мы будем изображать молекулы в виде шариков. Однако молекулы (а также, как увидим дальше, и атомы) имеют строение, различное у разных веществ, часто довольно сложное. Известны, например, форма и строение не только таких простых «молекул, как и (рис. 370), но и несравненно более сложных, содержащих многие тысячи атомов.

Рис.. 370. Схемы строения молекул воды (а) и углекислого газа (б)

Молекулы имеют размеры и разнообразные формы. Для наглядности будем изображать молекулу в виде шарика, воображая, что она охвачена сферической поверхностью, внутри которой находятся электронные оболочки ее атомов (рис. 4, а). По современным представлениям молекулы не имеют геометрически определенного диаметра. Поэтому за диаметр d молекулы условились принимать расстояние между центрами двух молекул (рис. 4, б), сблизившихся настолько, что силы притяжения между ними уравновешиваются силами отталкивания.

Из курса химии" известно, что килограмм-молекула (киломоль) любого вещества, независимо от его агрегатного состояния, содержит одинаковое количество молекул, называемое числом Авогадро, а именно N A = 6,02*10 26 молекул.

Теперь оценим диаметр молекулы, например воды. Для этого разделим объем киломоля воды на число Авогадро. Киломоль воды имеет массу 18 кг. Считая, что молекулы воды расположены плотно друг к другу и ее плотность 1000 кг / м 3 , можем сказать, что 1 кмоль воды занимает объем V = 0,018 м 3 . На долю одной молекулы воды приходится объем



Приняв молекулу за шарик и воспользовавшись формулой объема шара вычислим приблизительный диаметр, иначе линейный размер молекулы воды:


Диаметр молекулы меди 2,25*10 -10 м. Диаметры молекул газов того же порядка. Например, диаметр молекулы водорода 2,47*10 -10 м, углекислого газа - 3,32*10 -10 м. Значит, молекула имеет диаметр порядка 10 -10 м. На длине 1 см рядом могут расположиться 100 млн. молекул.

Произведем оценку массы молекулы, например сахара (C 12 H 22 О 11). Для этого надо массу киломоля сахара (μ = 342,31 кг / кмоль) разделить на число Авогадро, т. е. на число молекул в

ГЛАВА 4. ПЕРВОНАЧАЛЬНЫЕ СВЕДЕНИЯ КЛАСС О СТРОЕНИИ ВЕЩЕСТВА

Решение задач по данной теме должно помогать формированию у учащихся первоначальных понятий о молекулярном строении веществ.

В задачах необходимо рассмотреть прежде всего такие факты, научное объяснение которых неизбежно приводит к представлениям о том, что тела состоят из мельчайших частиц - молекул.

Далее следует решить ряд задач, дающих понятие о размерах молекул, а также их свойствах, движении и взаимодействии. Из-за недостаточной математической подготовки учащихся большинство задач должны быть качественными.

Значительное внимание необходимо уделить также экспериментальным задачам. Несложные экспериментальные задачи учащиеся могут выполнять и в домашних условиях.

Полученные сведения о молекулярном строении веществ затем используют для объяснения различия между твердым, жидким и газообразным состояниями вещества.

1. Существование молекул. Размеры молекул

Первоначальное понятие о молекулах и их размерах полезно уточнить и углубить с помощью задач, в которых даны фотографии молекул, полученные с помощью электронного микроскопа.

Решение задач, показывающих сложное строение молекул, необязательно. Но в ознакомительном плане, особенно в сильных по успеваемости классах, можно рассмотреть 2-3 задачи, показывающие, что молекулы сложных веществ состоят из более мелких частиц - атомов.

Наряду с качественными можно дать задачи на несложные расчеты абсолютных и относительных размеров молекул.

43. На рисунке 11 показана фотография частицы твердого тела, полученная с помощью электронного микроскопа. Какой

Рис. 11. (см. скан)

вывод можно сделать на основе этой фотографии о строении твердого тела? Пользуясь указанным на фотографии масштабом, определите размер одной частички - молекулы.

Решение. Внимание обращают на то, что все молекулы одинаковы, расположены в твердом теле в определенном порядке и имеюг такую плотную упаковку, что между ними остаются только незначительные промежутки.

Для определения диаметра молекул подсчитывают их число (50) на указанном расстоянии 0,00017 см, и, вычисляя, находят, что диаметр молекулы равен примерно 0,000003 см.

Нужно сказать учащимся, что это гигантская молекула. Молекула воды, например, имеет поперечник примерно в сто раз меньше.

44. Оптический микроскоп позволяет различить объекты размером около 0,00003 см. Можно ли в такой микроскоп увидеть капельку воды, по диаметру которой укладывается сто, тысяча, миллион молекул? Диаметр молекулы воды равен примерно

Следовательно, в оптический микроскоп можно увидеть только такую капельку воды, диаметр которой не менее чем в 1000 раз больше диаметра молекулы воды. Сами же молекулы воды нельзя увидеть в оптический микроскоп.

45. Число молекул в воздуха при нормальном давлении и 0°С составляет . Считая, что диаметр одной молекулы газа равен примерно 0,00000003 см, подсчитайте, какой длины получились бы «бусы», если бы все эти молекулы можно было плотно нанизать на невидимую нить.

Ответ. 8 млн. км.

46 (э). Опустите в воду вверх дном две пробирки и поместите в них оголенные провода, присоединенные к полюсам батарейки Пронаблюдайте за пузырьками газов и исследуйте их состав с помощью тлеющей лучинки. Откуда появились газы?

Решение. По яркому горению лучинки в одной пробирке и вспышке в другой заключают, что в одной пробирке находился кислород, а в другой - водород.

Поясняют, что газы появились при разложении молекулы воды. Следовательно, свойства молекулы при ее делении на более мелкие части не сохраняются. Учащимся можно сообщить, что вода разлагается на кислород и водород также при нагревании водяного пара до очень высокой температуры.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей