Рациональный дизайн белковых молекул. Белковая инженерия

Технология белковой инженерии используется (часто - в сочетании с методом рекомбинантных ДНК) для улучшения свойств существующих белков (ферментов, антител, клеточных рецепторов) и создания новых, не существующих в природе протеинов. Такие белки применяются для создания лекарственных препаратов, при обработке пищевых продуктов и в промышленном производстве .

В настоящее время наиболее популярной областью применения белковой инженерии является изменение каталитических свойств ферментов для разработки «экологически дружественных» промышленных процессов. С точки зрения охраны окружающей среды ферменты являются наиболее приемлемыми из всех катализаторов, используемых в промышленности. Это обеспечивается способностью биокатализаторов растворяться в воде и полноценно функционировать в среде с нейтральным рН и при сравнительно низких температурах. Кроме того, благодаря их высокой специфичности, в результате применения биокатализаторов образуется совсем немного нежелательных побочных продуктов производства. Экологически чистые и энергосберегающие промышленные процессы, использующие биокатализаторы, уже давно активно внедряются химической, текстильной, фармацевтической, целлюлозно-бумажной, пищевой, энергетической и других областях современной промышленности.

Однако некоторые характеристики биокатализаторов делают их использование в ряде случаев неприемлемым. Например, большинство ферментов распадается при повышении температуры. Ученые пытаются преодолеть подобные препятствия и увеличить стабильность ферментов в суровых условиях производства с помощью методов белковой инженерии .

Кроме промышленного применения, белковая инженерия нашла себе достойное место и в медицинских разработках. Исследователи синтезируют белки, способные связываться с вирусами и мутантными генами, вызывающими опухоли, и обезвреживать их; создают высокоэффективные вакцины и изучают белки-рецепторы клеточной поверхности, которые часто являются мишенями для фармацевтических препаратов. Ученые, занимающиеся усовершенствованием продуктов питания, используют белковую инженерию для улучшения качеств белков, обеспечивающих сохранность продуктов растительного происхождения, а также желирующих веществ или загустителей.

Еще одной областью применения белковой инженерии является создание белков, способных нейтрализовать вещества и микроорганизмы, которые могут быть использованы для химических и биологических атак. Например, ферменты гидролазы способны обезвреживать как нервнопаралитические газы, так и используемые в сельском хозяйстве пестициды. При этом производство, хранение и использование ферментов не опасно для окружающей среды и здоровья людей .

Библиотеки пептидов и эпитопов

В живом организме большинство биологических процессов управляется посредством специфических белок-белковых или белково-нуклеиновых взаимодействий. К таким процессам относятся, например регуляция транскрипции генов под действием различных белковых факторов, взаимодействие белковых лигандов с рецепторами на поверхности клеток, а также специфическое связывание антигенов соответствующими антителами. Понимание молекулярных механизмов взаимодействия белковых лигандов с рецепторами имеет большое фундаментальное и прикладное значение. В частности, разработка новых лекарственных препаратов белковой природы обычно начинается с идентификации исходной последовательности аминокислот, обладающей требуемой биологической активностью (так называемая "основная" (lead) последовательность). Однако пептиды с основной последовательностью аминокислот могут обладать и нежелательными биологическими свойствами: низкой активностью, токсичностью, малой стабильностью в организме и т.п.

До появления библиотек пептидов улучшение их биологических свойств осуществляли путем последовательного синтеза большого числа аналогов и проверкой их биологической активности, что требовало больших затрат времени и средств. В последние годы появилась возможность с помощью автоматических синтезаторов создавать за короткое время тысячи различных пептидов. Разработанные методы направленного мутагенеза также позволили резко расширить число белков, получаемых одновременно и последовательно тестируемых на биологическую активность. Однако только недавно разработанные подходы к созданию библиотек пептидов привели к получению миллионов последовательностей аминокислот, требуемых для проведения эффективного скрининга с целью выявления среди них пептидов, максимально удовлетворяющих предъявляемым критериям. Такие библиотеки используются для исследования взаимодействия антител с антигенами, получения новых ингибиторов ферментов и антимикробных агентов, конструирования молекул, обладающих требуемой биологической активностью, или придания новых свойств белкам, например антителам .

По способам получения библиотеки пептидов разделяются на три группы. К первой группе можно отнести библиотеки, полученные с использованием химического синтеза пептидов, в которых индивидуальные пептиды иммобилизованы на микроносителях. При таком подходе после присоединения очередных аминокислот в индивидуальных реакционных смесях к пептидам, иммобилизованным на микроносителях, содержимое всех реакционных смесей объединяют и разделяют на новые порции, которые используют на следующей стадии присоединения новых аминокислотных остатков. После проведения ряда таких этапов оказываются синтезированными пептиды, содержащие последовательности использованных в синтезе аминокислот во всевозможных случайных сочетаниях.

Библиотеки пептидов, иммобилизованных на микроносителях, обладают существенным недостатком: они требуют при скрининге использования очищенных рецепторов, находящихся в растворимой форме. В то же время в большинстве случаев при биологических испытаниях, проводящихся для фундаментальных и фармакологических исследований, чаще всего находят применение рецепторы, ассоциированные с мембранами. По второму способу библиотеки пептидов получают с помощью твердофазного синтеза пептидов, при котором на каждой стадии химического присоединения очередной аминокислоты к растущим пептидным цепям используют эквимолярные смеси всех или некоторых аминокислот-предшественников. На конечной стадии синтеза проводят отделение пептидов от носителя, т.е. перевод их в растворимую форму. Третий подход к конструированию библиотек пептидов, к описанию которого мы сейчас переходим, стал реальным именно благодаря развитию методов генной инженерии. Он прекрасно иллюстрирует возможности таких методов и, несомненно, является крупным достижением в их применении. В этой связи рассмотрим более подробно результаты использования библиотек пептидов в исследовании эпитопов (антигенных детерминант) белков .

Генно-инженерная технология получения гибридных белков позволила разработать эффективный метод наработки коротких пептидов для анализа их биологической активности. Как и в случае клонотек генов, библиотеки пептидов, полученные генно-инженерными методами, представляют собой большой (часто исчерпывающий) набор коротких пептидов. Два недавно сделанных наблюдения позволяют рассматривать библиотеку пептидов одновременно и в качестве библиотеки эпитопов белков. Во-первых, короткие пептиды могут включать все основные остатки аминокислот, играющие главную роль во взаимодействии с антителами, и они в состоянии имитировать крупные антигенные детерминанты белков. Во-вторых, в большинстве случаев нековалентные связи, образуемые между немногими наиболее важными остатками аминокислот белковых лигандов и их рецепторами, вносят основной вклад в общую энергию взаимодействия лиганд-рецептор. С учетом этого любой пептид можно рассматривать как потенциальный лиганд, гаптен или часть антигенной детерминанты более крупных полипептидов, а любую библиотеку пептидов - как библиотеку эпитопов белков или потенциальных лигандов для соответствующих белковых рецепторов.

Библиотека пептидов, полученная в результате реализации третьего подхода, в современном виде представляет собой набор десятков или даже сотен миллионов коротких различающихся последовательностей аминокислот, которые экспрессированы на поверхности вирионов бактериофагов в составе их собственных структурных белков. Это становится возможным благодаря введению методами генной инженерии в геном бактериофагов гибридных рекомбинантных генов, кодирующих измененные структурные белки его вирионов. (Данный метод известен под названием фагового дисплея.) В результате экспрессии таких генов образуются гибридные белки, на N- или С-концах которых присутствуют дополнительные последовательности аминокислот.

Библиотеки пептидов и эпитопов найдут свое применение и в исследованиях механизмов гуморального иммунного ответа, а также заболеваний иммунной системы. В частности, большинство аутоиммунных заболеваний сопровождается образованием аутоантител против антигенов собственного организма. Эти антитела во многих случаях служат специфическими маркерами того или иного аутоиммунного заболевания. С использованием библиотеки эпитопов, в принципе, можно получить пептидные маркеры, с помощью которых было бы возможно следить за специфичностью аутоантител во время развития патологического процесса как в индивидуальном организме, так и в группе пациентов и, кроме того, определять специфичность аутоантител при заболеваниях неизвестной этиологии.

Библиотеки пептидов и эпитопов потенциально могут быть использованы также для скрининга иммунных сывороток с целью выявления пептидов, специфически взаимодействующих с защитными антителами. Такие пептиды будут имитировать антигенные детерминанты патогенных организмов и служить мишенями для защитных антител организма. Это позволит использовать подобные пептиды для вакцинации пациентов, у которых отсутствуют антитела против соответствующих патогенов. Изучение эпитопов с помощью библиотек пептидов является частным случаем одного из многочисленных направлений их использования в прикладных и фундаментальных исследованиях взаимодействия лигандов и рецепторов. Дальнейшее усовершенствование этого подхода должно способствовать созданию новых лекарственных препаратов на основе коротких пептидов и быть полезным в фундаментальных исследованиях механизмов белок-белковых взаимодействий .




Словарь Элюция Элюция – метод извлечения вещества (вируса) из твердого носителя вымыванием Методдисплея Метод дисплея – метод представления гетерологичных белков/ пептидов на поверхности вирусов, клеток или бесклеточных культур для отбора белков или пептидов с требуемыми свойствами Биосенсор Биосенсор – аналитическая система (биологический материал + преобразователь), позволяющая обнаруживать вещества в исследуемой пробе и оценивать их концентрации Элюция Элюция – метод извлечения вещества (вируса) из твердого носителя вымыванием Методдисплея Метод дисплея – метод представления гетерологичных белков/ пептидов на поверхности вирусов, клеток или бесклеточных культур для отбора белков или пептидов с требуемыми свойствами Биосенсор Биосенсор – аналитическая система (биологический материал + преобразователь), позволяющая обнаруживать вещества в исследуемой пробе и оценивать их концентрации


Белковая инженерия 4 Комплекс методов и подходов по изучению белков и получению белков с новыми свойствами ОСНОВНЫЕ ЗАДАЧИ Создать клонотеку нуклеотидных и аминокислотных последовательностей Исследовать влияния одиночных замен аминокислотных остатков на фолдинг и функции белка Разработать методы эффективной модификации белков для придания им необходимых свойств Разработать методы и подходы для скрининга и отбора белков с требуемыми свойствами




Рациональныйдизайн Рациональный дизайн Необходимость знаний о пространственной организации белка Необходимость знаний о внутри- и межмолекулярных взаимодействиях Несовершенство методик и аппаратуры направление, нацеленное на создание новых белков de novo путем их пространственного конструирования


Направленная эволюция белковых молекул направление, нацеленное на создание новых белков, посредством селекции 1 получение клонотек случайных аминокислотных последовательностей 2 отбор полипептидных цепей, обладающих хотя бы в небольшой степени требуемыми свойствами 3 с использованием случайного мутагенеза получение новых клонотек белков, которые применяют в следующем раунде селекции или с использованием генно-инженерных конструкций, экспрессирующих новые белки


Направленная эволюция белковых молекул (варианты) рациональный редизайн с помощью направленного мутагенеза заменяют конкретные аминокислотные остатки в активном центре фермента инженерия белковых поверхностей с помощью мутаций изменяют участки полипептидной цепи в окрестностях аминокислотных остатков, сближенных на поверхности белковой глобулы, но находящихся в полипептидной цепи на значительном расстоянии друг от друга


Скрининг и отбор белков с заданными свойствами случайный скрининг улучшенный скрининг отбор каждый белок исследуется на наличие требуемых свойств; выбор белков из клонотеки происходит случайно каждый белок исследуется на наличие требуемых свойств; выбор белков из клонотеки происходит случайно возможен, если объекты, составляющие клонотеку, различаются фенотипически (например, по наличию ферментативной активности) создаются условия для избирательного сохранения компонентов клонотеки, которые обладают определенными свойствами (фаговый, клеточный дисплей) создаются условия для избирательного сохранения компонентов клонотеки, которые обладают определенными свойствами (фаговый, клеточный дисплей) обнаружение белка с требуемыми свойствами среди большого числа макромолекул, составляющих полученную клонотеку




Фаговый дисплей Цель – экспонировать чужеродные белки на поверхности фага Метод был разработан в 1985 г. для нитчатого бактериофага М13. (гены pIII и pVIII являются пригодными сайтами мишенями для вставки чужеродного кДНК фрагмента) Цель – экспонировать чужеродные белки на поверхности фага Метод был разработан в 1985 г. для нитчатого бактериофага М13. (гены pIII и pVIII являются пригодными сайтами мишенями для вставки чужеродного кДНК фрагмента) конструируют гибридный ген, состоящий из кодирующих последовательностей целевого белка и одного из белков оболочки фага бактериофагом инфицируют E.coli в ходе сборки фага гибридные белки включаются в фаговую частицу


Фагмида Фаг-помощник Геном фага Инфицирование E.coli фагом-помощником клетки E.coli, трансформированные плазмидной библиотекой / фагмидой, инфицируют хелперным фагом для получения фаговых частиц, на поверхности которых экспонированы различные варианты целевого белка клетки E.coli, трансформированные плазмидной библиотекой / фагмидой, инфицируют хелперным фагом для получения фаговых частиц, на поверхности которых экспонированы различные варианты целевого белка



Перспективы практического использования белковой инженерии Медицина: *для получения новых лекарственных препаратов; для создания диагностических средств и производства вакцин; *для исследование механизмов иммунного ответа, а также заболеваний иммунной системы Экология: *для получение биокатализаторов в виде целых клеток с иммобилизованными на их поверхности ферментами; *для получения биосенсоров с целью диагностики и мониторинга окружающей среды; *для создание био адсорбентов с целью удаления из окружающей среды токсических веществ и ионов тяжелых металлов






Измерение глюкозы с помощью ферментного электрода (схематическое представление опыта Л. Кларка). Окисление глюкозы ферментом глюкозооксидазой в присутствии кислорода: глюкоза + О 2 Н 2 О 2 + глюконо-1,5-лактон. Н 2 О 2 восстанавливается на платиновом электроде при потенциале +700 мВ; протекающий в цепи ток пропорционален концентрации пероксида водорода (т.е., косвенно, глюкозы).




Словарь Иммобилизация Иммобилизация – это ограничение подвижности молекул и их конфирмационных перестроек Аэротенк Аэротенк – система очистки стоков, резервуары в которых происходит перемешивание СВ, микробного ила и воздуха Метантенк Метантенк – резервуар для биологической переработки органических загрязнителей с помощью бактерий в анаэробных условиях Биоремедиация Биоремедиация – комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов – растений, грибов, насекомых, червей и других организмов Иммобилизация Иммобилизация – это ограничение подвижности молекул и их конфирмационных перестроек Аэротенк Аэротенк – система очистки стоков, резервуары в которых происходит перемешивание СВ, микробного ила и воздуха Метантенк Метантенк – резервуар для биологической переработки органических загрязнителей с помощью бактерий в анаэробных условиях Биоремедиация Биоремедиация – комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов – растений, грибов, насекомых, червей и других организмов




Классификация ферментов Класс Катализируемые реакции Примеры ферментов Оксидо- редуктазы Восстановительные и окислительные реакции Известно более 200 ферментов. Каталаза, глюкооксидаза Трансфе- разы Обратимый перенос групп атомов от доноров к акцепторам. Известно более 450 ферментов. Пируваткиназа, протеинкиназа Гидролазы Реакции гидролиза Известно более 200 гидролаз. Протеаза, амилаза, целлюлаза Лиазы Негидролитического отщепления от субстрата групп атомов с образованием двойных связей Известно более 100 лиаз. Аспартаза, фумараза Изомеразы Внутримолекулярные реакции перестройки органических соединений Известно более 50 ферментов. Глюкозоимераза Лигазы Реакции присоединения друг к другу двух различных молекул Известно более 100. ДНК-лигаза, триптофан-синтетаза




Микроорганизмы Источники ферментов Бациллы – био синтезаторы рибонуклеаз, дезоксирибонуклеаз и протеаз, а дрожжи – глюкоамилаз, инвертаз и кислой фос-фатазы растения Амилазы выделяют из ячменя, кислую фосфатазу из картофеля, пероксидазу из хрена животные Из сердца КРС выделяют лактатдегидрогеназу, из желудка – щелочную фосфатазу. Желудок свиней используют для получения пепсина Из сердца КРС выделяют лактатдегидрогеназу, из желудка – щелочную фосфатазу. Желудок свиней используют для получения пепсина




Методы иммобилизации Физические методы Химические методы адсорбция на нерастворимом носителе, включение в поры геля, пространственное отделение с помощью полупроницаемой мембраны и другие основывается на создании новых ковалентных связей между ферментом и носителем


Преимущества иммобилизованных ферментов отделять ферменты от реакционной среды, останавливать реакцию в нужный момент и получать продукт не загрязненный ферментом; проводить процесс в непрерывном режиме и регулировать скорость реакции; изменять свойства катализатора, его специфичность, зависимость от условий реакции и чувствительность к денатурирующим воздействиям; регулировать каталитическую активность фермента посредством воздействия на носитель


Ферменты в биотехнологическом производстве Фермент Источник, метод иммобилизации Биотехнология Ацетилнейтраминат -9-фосфатсинтаза Фермент E. coli. Включение в полиакриламидный гель. Синтез сиаловых кислот. Пероксидаза Фермент из хрена. Сополимеризация и включение в гель альгината. Окисление фенола в сточных водах. 3-Кетостероид- дегидрогеназа Клетки Mycobacterium globiformis. Включение в полиакриламидный гель. Трасформация гидрокортизона в преднизолон




Лавряшина М.Б. КемГУ Методы экологической биотехнологии Биологическая очистка сточных вод Био(фито)ремедиация Созданиебиобезопасныхинсектицидови гербицидов Создание биобезопасных инсектицидов и гербицидов Получение экологически чистой энергии Создание сельскохозяйственных растений устойчивых к болезням Бактериальное выщелачивания металлов Клонирование исчезающих и вымерших видов животных


Методы очистки сточных вод Механические (отстаивание, фильтрация)Механические Химические (воздействие реагентами)Химические Физико- химические Биологические (биохимическое самоочищение))Биологические Важнейшая проблема биотехнологии – очистка сточных вод





Аэротенки работают в комплексе с усреднителем, отстойниками, регенератором ила и уплотнителем ила (пресс). Аэротенк Аэротенк (от аэро и англ. tank бак, цистерна) отстойник усреднитель АЭРОТЕНК регенератор ила пресс очищенные сточные воды активный ил сточные воды метантенк


Метантенк Метантенк (от метан и англ. tank – бак, цистерна) Группы бактерий Исходные вещества Продукты ГИДРОЛИТИЧЕСКИЕ АЦЕТОГЕННЫЕ Органические загрязнители Высшие жирные кислоты ВОДОРОДОПРОДУЦИ- РУЮЩИЕ Высшие жирные кислоты Н 2,СО 2, СН 3 СООН МЕТАНОБРАЗУЮЩИЕ Н 2,СО 2, СН 3 СООН СН 4, СО 2


Фазы метанового брожения 1 биогидролиз полимеров и ацидогенез (органические вещества переходят в высшие жирные кислоты, ацетат и водород) 2 ацетогенез и дегидрогенизация (из высших жирных кислот образуется ацетат и водород) 3 Метаногенез (из ацетата образуется метан, водород и углекислый газ)


I фаза. ЦЕЛЛЮЛОЗОРАЗРУШАЮЩИЕ (Bacterioides ruminicola, Butyrivibrio fibriosolvens) ПРОТЕОЛИТИЧЕСКИЕ ПРОТЕОЛИТИЧЕСКИЕ (Clostridium, Petrococcus) II фаза. АЦЕТОГЕННЫЕ (Syntrophobacter wolinii) III фаза. МЕТАНООБРАЗУЮЩИЕ (Metanobacterium thermoautotrophicum, Metanococcus vannielii) Примеры микроорганизмов



БИОРЕМЕДИАЦИЯ В основе метода лежит способность микроорганизмов утилизировать сложные органические вещества с разложением их до простых «биологически безопасных» веществ Молекулярная биология и генетика Экология Инженерные науки Микро- биологияБИОРЕМЕДИАЦИЯ




Биоремедиация. Подходы. Использование активности природных «диких» микроорганизмов Использование активности природных «диких» микроорганизмов (требуется интенсификатор, например О 2) Использование активных штаммов, внесенных в виде биопрепаратов в места интенсивных загрязнений


Изучение биоразнообразия загрязненных территорий Выделение микрофлоры, способной к деструкции удаляемых загрязнителей Активизация местной микрофлоры (биостимуляция). Интродукция в загрязненные участки специальных микроорганизмов- деструкторов (биоремедиация) Биоремедиация. Этапы.


ЗАГРЯЗНЕНИЯ Химический анализ Инженерные технологии Биостимуляция (Природные микробные сообщества)Биостимуляция Биоремедиация (Искусственные микробные биопрепараты)Биоремедиация Мониторинг биоремедиации Биофиторемедиация (Сообщества растений и микроорганизмов)Биофиторемедиация


Конструирования трансгенных растений, устойчивых против насекомых вредителей 1. СИНТЕЗ СПЕЦИФИЧЕСКИХ ТОКСИНОВ 2. СИНТЕЗ ГИДРОЛИТИЧЕСКИХ ФЕРМЕНТОВ, ДЕЙСТВУЩИХ НА КЛЕТОЧНЫЕ СТЕНКИ ЛИЧИНОК НАСЕКОМЫХ И ДРУГИХ ВРЕДИТЕЛЕЙ И ПАТОГЕНОВ /ХИТИНАЗА, -1,3- ГЛЮКОНАЗЫ, РR-БЕЛКИ/ 3. СИНТЕЗ ИНГИБИТОРОВ ПРОТЕИНАЗ И ИНГИБИТОРОВ ФЕРМЕНТОВ, РАСЩЕПЛЯЮЩИХ ПОЛИСАХАРИДЫ РАСТЕНИЯ 4. МОДИФИКАЦИЯ ВТОРИЧНОГО МЕТАБОЛИЗМА РАСТЕНИЙ ДЛЯ: А) ЛИМИТИРОВАНИЯ НЕОБХОДИМЫХ ВЕЩЕСТВ Б) СИНТЕЗА НОВЫХ РЕПЕЛЛЕНТОВ И ТОКСИНОВ 5. РЕГУЛЯЦИЯ ЗАЩИТНОГО ОТВЕТА: А) ТКАНЕСПЕЦИФИЧЕСКАЯ ЭКСПРЕССИЯ ГЕНОВ Б) РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНОВ РАЗЛИЧНЫМИ ЕСТЕСТВЕННЫМИ И ИСКУССТВЕННЫМИ ФАКТОРАМИ Повышенная устойчивость трансгенных растенийк грибному патогену Phomopsis helianhi Повышенная устойчивость трансгенных растений к грибному патогену Phomopsis helianhi А B А - нетрансгенное растение В - трансгенное растение А - нетрансгенное растение В - трансгенное растение


Примерный список тем, входящий в тест на зачете 1. История биотехнологии. Характеристика исторических периодов. Наиболее значимые открытия, сыгравшие важную роль в становлении науки. 2. Общие понятия биотехнологии: биотехнологическая система, биотехнологический процесс, биотехнологический объект. 3. Биотехнологические объекты, определение, характеристика места биообъекта в биотехнологической системе, классификация, примеры практического применения. 4. Микроорганизмы как биообъекты. Примеры, практическое использование в биотехнологиях. 5. Культуры клеток и тканей как биообъекты. Примеры, практическое использование в биотехнологиях. 6. Биотехнологический процесс. Этапы. Краткая характеристика этапов биотехнологического процесса. 7. Характеристика микроорганизмов как объектов селекции. Селекция микроорганизмов в биотехнологии. 8. Мутагенез: определение, формы мутагенеза, мутагенные факторы. 9. Отбор мутантных микроорганизмов созданных в процессе селекции на подготовительной стадии биотехнологического процесса. 10. Селекция биообъектов. Этапы, подходы, методы.


11. Генетическая инженерия: цель, техника, биообъекты, примеры практического применения, современные достижения. 12. Ферменты генетической инженерии. Классификация, характеристика катализируемых реакций. 13. Методы получения гена в генетической инженерии. Краткая характеристика, достоинства и недостатки методов. 14. Вектора в генетической инженерии. Определение, классификации, требования, краткая характеристика векторов. 15. Рекомбинантная ДНК. Определение, назначение, методы получения рекомбинантной ДНК в генетической инженерии. 16. Методы введения рекомбинантной ДНК в клетку-реципиент и отбор модифицированных клеток в генетической инженерии. 17. Трансгенез растений. Вектора. Основные стратегии. Методы введения трансгенов и отбора трансгенных организмов. 18. Трансгенез животных. Вектора. Основные стратегии. Методы введения трансгенов и отбора трансгенных организмов. 19. Клеточная инженерия: цель, техника, биообъекты, примеры практического применения, современные достижения. 20. Методы культивирования клеток и тканей растений. Условия культивирования, классификация и краткая характеристика культур растений в клеточной инженерии


21. Соматические гибриды растений. Техника получения, современные достижения, примеры практического применения. 22. Протопласты: определение, использование в клеточной инженерии, методы и условия выделения протопластов. 23. Культивирование и слияние протопластов в клеточной инженерии. Методы, условия, фьюзогены. 24. Практическое использование культур клеток и тканей растений. Биосинтез и биотрансформация, микроразмножение, примеры трансгенных растений с ценными свойствами. 25. Клеточная инженерия животных. Методы, объекты, техника, современные достижения, практическое применение. 26. Клеточные и тканевые культуры животных. Классификации культур, условия культивирования, среды, методы получения соматических гибридов, практическое применение. 27. Стволовые клетки. Характеристика. Классификация. Перспективы применения. 28. Клонирование. Характеристика метода. Классификация. Перспективы применения. 29. Биотехнологический процесс. Стадия культивирования. Основные этапы, характеристика сред для микроорганизмов, клеток растений и животных. Аппаратура. 30. Биотехнологический процесс. Стадия культивирования. Режимы культивирования биообъектов. Стадии роста культуры в биореакторе, синтез целевого продукта.


31. Биотехнологический процесс. Стадия получения продукта. Основные этапы и методы отделения и очистки биотехнологического продукта. Примеры биотехнологических продуктов. 32. Экологическая биотехнология: цель, методы, биообъекты, примеры практического применения, современные достижения. 33. Экологическая биотехнология. Проблема питьевой воды. Аэробные методы очистки сточных вод. 34. Экологическая биотехнология. Проблема питьевой воды. Анаэробные методы очистки сточных вод. 35. Экологическая биотехнология. Биоремедиация, биофиторемедиация. 36. Биотехнология: цель, предмет, задачи, основные направления биотехнологии. Современные достижения в области биотехнологии. 37. Инженерная энзимология. Цель, проблемы. Перспективы. Источники ферментов. 38. Иммобилизованные ферменты. Преимущества, методы иммобилизации. 39. Иммобилизованные ферменты. Носители для иммобилизации, практическое использование. 40. Белковая инженерия. Направления, методы, перспективы.

Белок в химическом отношении представляет собой однотипную молекулу, которая является полиаминокислотной цепочкой или полимером. Составлен он из аминокислотных последовательностей 20 типов. Узнав строение белков, люди задались вопросом: можно ли спроектировать абсолютно новые аминокислотные последовательности, чтобы они выполняли нужные человеку функции гораздо лучше, чем обычные белки? Для данной дерзкой идее лучше всего подошло название белковая инженерия .

О такой инженерии стали задумываться ещё в 50-е годы XX столетия. Случилось это сразу же после расшифровки первых белковых аминокислотных последовательностей. Во многих лабораториях мира начали делать попытки дублировать природу и синтезировать химическим путём заданные абсолютно произвольно полиаминокислотные последовательности.

Больше всех в этом преуспел химик Б. Меррифилд. Этому американцу удалось разработать чрезвычайно эффективный метод синтеза полиаминокислотных цепей. За это Меррифилду в 1984 году присудили Нобелевскую премию по химии.

Американец начал синтезировать короткие пептиды, включая гормоны. При этом построил автомат - «химического робота» - в задачу которого входило производит искусственные белки. Робот вызвал сенсацию в научных кругах. Однако скоро выяснилось, что его продукция не может конкурировать с тем, что производит природа.

Робот не мог в точности воспроизводить аминокислотные последовательности, то есть ошибался. Он синтезировал одну цепь с одной последовательностью, а другую уже с чуть-чуть другой. В клетке же все молекулы одного белка идеально похожи друг на друга, то есть их последовательности абсолютно одинаковые.

Была и ещё одна проблема. Даже те молекулы, которые робот синтезировал правильно, не принимали ту пространственную форму, которая необходима для функционирования фермента. Таким образом, попытка подменить природу обычными методами органической химии привела к весьма скромному успеху.

Учёным оставалось учиться у природы, выискивая нужные модификации белков. Тут дело в том, что в природе постоянно идут мутации, ведущие к изменению аминокислотных последовательностей белков.

Если отобрать мутантов с необходимыми свойствами, скажем более эффективно перерабатывающих тот или иной субстрат, то можно выделить из такого мутанта измененный фермент, благодаря которому клетка приобретает новые свойства. Но данный процесс занимает очень большой период времени.

Все изменилось тогда, когда появилась генная инженерия . Благодаря ей, стали создавать искусственные гены с любой последовательностью нуклеотидов. Эти гены встраивали в приготовленные молекулы-векторы и внедряли эти ДНК в бактерии или дрожжи. Там с искусственного гена снималась копия РНК. В результате этого вырабатывался нужный белок. Ошибки в его синтезе исключались. Главное, надо было подобрать нужную последовательность ДНК, а дальше уже ферментная система клетки сама безупречно делала своё дело.

Таким образом, можно заключить, что генная инженерия открыла путь белковой инженерии в самой радикальной форме. К примеру, мы выбрали белок и захотели заменить в нём один аминокислотный остаток на другой.

Прежде чем начать работу по замене, необходимо приготовить ДНК-вектор. Это вирусная или плазмидная ДНК со встроенным в неё геном того белка, который нас интересует. Нужно также знать нуклеотидную последовательность гена и аминокислотную последовательность кодируемого белка. Последняя определяется из первой при помощи таблицы генетического кода.

С помощью таблицы также легко установить, какие минимальные изменения следует произвести в составе гена, чтобы он начал кодировать не исходный, а изменённый по нашему желанию белок. Допустим, в середине гена нужно гуанин заменить на тимин.

Из-за такой мелочи не нужно заново синтезировать весь ген. Синтезируется лишь небольшой фрагмент нуклеотидов, комплементарный участку, в середине которого располагается выбранный для замены нуклеотид гуанин.

Полученный фрагмент смешиваем с ДНК-вектором (кольцевая ДНК), в которой содержится нужный нам ген. Кольцо ДНК и синтезированный фрагмент создают участок уотсон-криковской двойной спирали. В нём центральная пара «выпихивается» из двойной спирали, так как она образована взаимно некомплементарными нуклеотидами.

Добавляем в раствор четыре дНТФ и ДНК-полимеразу. Последняя, используя налипший на одиночное кольцо фрагмент, достраивает его до полного кольца в полном соответствии с принципом комплементарности.

В результате у нас получается почти нормальная векторная ДНК. Её можно ввести в дрожжевую или бактериальную клетку для размножения. Единственное, эта ДНК отличается от исходного вектора некомплементарной парой. Иными словами, спираль ДНК-вектора совершенна не полностью.

При первом же акте удвоения полученного вектора вместе с несущей его бактерией, каждая из дочерних молекул ДНК станет совершенной двойной спиралью на всём своём протяжении. Однако одна из дочерних молекул несёт в себе исходную нуклеотидную пару, а у другой в этом месте находится мутантный вектор, на основе которого и получается интересующий нас мутантный белок.

Таким образом, белковая инженерия создаёт смесь клеток. Одни из них несут исходный вектор с немутантным геном, а другие клетки несут мутантный ген. Остаётся отобрать из этой смеси именно те клетки, в которых находится мутантный ген .

Курсовая работа

по дисциплине: Сельскохозяйственная биотехнология

на тему: «Белковая инженерия»

Введение. Белковая инженерия

2 Стратегии белковой инженерии. Примеры инженерных белков. Применение белковой инженерии

1 Библиотеки пептидов и эпитопов

2 Белки-репортеры в гибридных белках

3 Некоторые достижения белковой инженерии.

Заключение

Список литературы

Реферат

Тема работы: Белковая инженерия.

Ключевые слова: биотехнология, генная инженерия, белок, генетический код, ген, ДНК, РНК, АТФ, пептиды, эпитоп.

Цель курсовой работы: изучение понятия «белковая инженерия» и потенциальных возможностей её использования.

Потенциальные возможности белковой инженерии:

Изменив прочность связывания преобразуемого вещества - субстрата - с ферментом, можно повысить общую каталитическую эффективность ферментативной реакции.

Повысив стабильность белка в широком диапазоне температур и кислотности среды, можно использовать его в условиях, при которых исходный белок денатурирует и теряет свою активность.

Создав белки, способные функционировать в безводных растворителях, можно осуществлять каталитические реакции в нефизиологических условиях.

Изменив каталитический центр фермента, можно повысить его специфичность и уменьшить число нежелательных побочных реакций

Повысив устойчивость белка к расщепляющим его ферментам, можно упростить процедуру его очистки.

Изменив белок таким образом, чтобы он мог функционировать без обычного для него не аминокислотного компонента (витамина, атома металла и т.п.), можно использовать его в некоторых непрерывных технологических процессах.

Изменив структуру регуляторных участков фермента, можно уменьшить степень его торможения продуктом ферментативной реакции по типу отрицательной обратной связи и тем самым увеличить выход продукта.

Можно создать гибридный белок, обладающий функциями двух и более белков.

Можно создать гибридный белок, один из участков которого облегчает выход гибридного белка из культивируемой клетки или извлечение его из смеси.

Введение

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду .

Объектами биотехнологии являются многочисленные представители групп живых организмов - микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.).

Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем - непосредственно белки и незаменимые аминокислоты, употребляемые в пищу. Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород - самое экологически чистое топливо будущего, электроэнергию, превращать в аммиак атмосферный азот при обычных условиях .

Физические и химические свойства природных белков часто не удовлетворяют условиям, в которых эти белки будут использоваться человеком. Требуется изменение его первичной структуры, которое обеспечит формирование белка с иной, чем прежде, пространственной структурой и новыми физико-химическими свойствами, позволяющими и в иных условиях выполнять присущие природному белку функции. Конструированием белков занимается белковая инженерия .

Еще одной областью применения белковой инженерии является создание белков, способных нейтрализовать вещества и микроорганизмы, которые могут быть использованы для химических и биологических атак. Например, ферменты гидролазы способны обезвреживать как нервнопаралитические газы, так и используемые в сельском хозяйстве пестициды. При этом производство, хранение и использование ферментов не опасно для окружающей среды и здоровья людей.

Для получения измененного белка используют методы комбинаторной химии и осуществляют направленный мутагенез - внесение специфических изменений в кодирующие последовательности ДНК, приводящие к определенным изменениям в аминокислотных последовательностях. Для эффективного конструирования белка с заданными свойствами необходимо знать закономерности формирования пространственной структуры белка, от которой зависят его физико-химические свойства и функции, то есть необходимо знать, как первичная структура белка, каждый его аминокислотный остаток влияет на свойства и функции белка. К сожалению, для большинства белков неизвестна третичная структура, не всегда бывает известно, какую именно аминокислоту или последовательность аминокислот нужно изменить, чтобы получить белок с нужными свойствами. Уже сейчас ученые с помощью компьютерного анализа могут предсказывать свойства многих белков, исходя из последовательности их аминокислотных остатков. Подобный анализ значительно упростит процедуру создания нужных белков. Пока же для того, чтобы получить измененный белок с нужными свойствами, идут в основном иным путем: получают несколько мутантных генов и находят тот белковый продукт одного из них, который обладает нужными свойствами.

Для направленного мутагенеза используют разные экспериментальные подходы. Получив измененный ген, его встраивают в генетическую конструкцию и вводят ее в прокариотические или эукариотические клетки, осуществляющие синтез белка, кодируемого этой генетической конструкцией .

I. Белковая инженерия

.1 Понятие белковой инженерии. История развития

Белковая инженерия (англ. Protein engineering) - раздел биотехнологии, который занимается разработкой полезных или ценных белков. Это относительно новая дисциплина, которая направлена на исследование фолдинга белков и принципов модификации и создания белков.

Существуют две основные стратегии для белковой инженерии: направленная модификация белка и направленная эволюция. Эти методы не являются взаимоисключающими; исследователи часто применяют оба. В будущем, более детальное знание структуры и функции белков, а также достижения в области высоких технологий, может значительно расширить возможности белковой инженерии. В итоге, даже неприродные аминокислоты могут быть включены благодаря новому методу, который позволяет включать новые аминокислоты в генетический код .

Белковая инженерия зародилась на стыке физики и химии белка и генетической инженерии. Она решает задачу создания модифицированных или гибридных молекул белков с заданными характеристиками. Естественным путем реализации такой задачи является предсказание структуры гена, кодирующего измененный белок, осуществление его синтеза, клонирования и экспрессии в реципиентных клетках .

Первая контролируемая модификация белка была проведена в середине 60-х годов Кошландом и Бендером. Для замены гидроксильной группы на сульфгидрильную в активном центре протеазы - субтилизина они применили метод химической модификации. Однако, как выяснилось, такой тиолсубтилизин не сохраняет протеазную активность.

Белок в химическом отношении представляет собой однотипную молекулу, которая является полиаминокислотной цепочкой или полимером. Составлен он из аминокислотных последовательностей 20 типов. Узнав строение белков, люди задались вопросом: можно ли спроектировать абсолютно новые аминокислотные последовательности, чтобы они выполняли нужные человеку функции гораздо лучше, чем обычные белки? Для данной идеи подошло название Белковая инженерия .

О такой инженерии стали задумываться ещё в 50-е годы XX столетия. Случилось это сразу же после расшифровки первых белковых аминокислотных последовательностей. Во многих лабораториях мира начали делать попытки дублировать природу и синтезировать химическим путём заданные абсолютно произвольно полиаминокислотные последовательности.

Больше всех в этом преуспел химик Б. Меррифилд. Этому американцу удалось разработать чрезвычайно эффективный метод синтеза полиаминокислотных цепей. За это Меррифилду в 1984 году присудили Нобелевскую премию по химии.

Рисунок 1. Схема функционирования белковой инженерии

Американец начал синтезировать короткие пептиды, включая гормоны. При этом построил автомат - «химического робота» - в задачу которого входило производит искусственные белки. Робот вызвал сенсацию в научных кругах. Однако скоро выяснилось, что его продукция не может конкурировать с тем, что производит природа.

Робот не мог в точности воспроизводить аминокислотные последовательности, то есть ошибался. Он синтезировал одну цепь с одной последовательностью, а другую уже с немного изменённой. В клетке же все молекулы одного белка идеально похожи друг на друга, то есть их последовательности абсолютно одинаковые.

Была и другая проблема. Даже те молекулы, которые робот синтезировал правильно, не принимали ту пространственную форму, которая необходима для функционирования фермента. Таким образом, попытка подменить природу обычными методами органической химии привела к весьма скромному успеху.

Учёным оставалось учиться у природы, выискивая нужные модификации белков. Тут дело в том, что в природе постоянно идут мутации, ведущие к изменению аминокислотных последовательностей белков. Если отобрать мутантов с необходимыми свойствами, более эффективно перерабатывающих тот или иной субстрат, то можно выделить из такого мутанта измененный фермент, благодаря которому клетка приобретает новые свойства. Но данный процесс занимает очень большой период времени.

Все изменилось тогда, когда появилась генная инженерия. Благодаря ей, стали создавать искусственные гены с любой последовательностью нуклеотидов. Эти гены встраивали в приготовленные молекулы-векторы и внедряли эти ДНК в бактерии или дрожжи. Там с искусственного гена снималась копия РНК. В результате этого вырабатывался нужный белок. Ошибки в его синтезе исключались. Главное, надо было подобрать нужную последовательность ДНК, а дальше уже ферментная система клетки сама безупречно делала своё дело. Таким образом, можно заключить, что генная инженерия открыла путь белковой инженерии в самой радикальной форме .

1.2 Стратегии белковой инженерии

Направленная модификация белка. При направленной модификации белка ученый использует детальное знание структуры и функции белка, чтобы внести нужные изменения. Как правило, этот метод имеет то преимущество, что он недорогой и технически несложный, так как техника сайт-направленного мутагенеза хорошо развита. Однако, его основным недостатком является то, что сведения о подробной структуре белка часто отсутствуют, и даже когда структура известна, может быть очень трудно предсказать влияние различных мутаций.

Программные алгоритмы модификации белка стремятся к выявлению новых аминокислотных последовательностей, которые требуют мало энергии для формирования предопределенной целевой структуры. В то время как последовательность, которая должно быть найдена, велика, наиболее сложным требованием для модификации белка является быстрый, но точный, способ для выявления и определения оптимальной последовательности, в отличие ее от аналогичных субоптимальных последовательностей .

Направленная эволюция. В направленной эволюции случайный мутагенез применяется к белку и селекция идет так, чтобы выбрать варианты, которые имеют определенные качества. Далее применяются еще раунды мутации и селекции. Этот метод имитирует естественную эволюцию и в целом позволяет получить превосходные результаты для направленной модификации.

Дополнительный метод, известный как ДНК-перетасовки, смешивает и выявляет части удачных вариантов для получения лучших результатов. Этот процесс имитирует рекомбинации, которые происходят естественно во время полового размножения. Преимуществом направленной эволюции является то, что она не требует предварительных знаний о структуре белка, да и не нужно, чтобы иметь возможность прогнозировать, какое влияние данная мутация будет иметь. В самом деле, результаты экспериментов направленной эволюции удивляют, поскольку желаемые изменения часто бывают вызваны мутациями, которые не должны были иметь такой эффект. Недостатком является то, что этот метод требует высокой пропускной способности, который не представляется возможным для всех белков. Большое количество рекомбинантной ДНК должно быть мутированным и необходимо провести скрининг продуктов на выявление желаемого качества. Огромное количество вариантов часто требует покупки робототехники для автоматизации процесса. Кроме того, не всегда легко провести скрининг на выявление всех интересующих качеств .

II. Примеры инженерных белков

Белковая инженерия может быть основана на химической модификации готового белка или на методах генетической инженерии, позволяющих получать модифицированные варианты природных белков .

Конструирование определенного биологического катализатора ведется с учетом как специфичности белка, так и каталитической активности металлоорганического комплекса. Вот примеры такой модификации, проведенной для получения «полусинтетических биоорганических комплексов». Миоглобин кашалота способен связывать кислород, но не обладает биокаталитической активностью. В результате объединения этой биомолекулы с тремя электрон-переносящими комплексами, содержащими рутений, которые связываются с остатками гистидина на поверхности молекул белка, образуется комплекс, способный восстанавливать кислород при одновременном окислении ряда органических субстратов, например аскорбата, со скоростью почти такой же, как для природной аскорбатоксидазы. В принципе белки можно модифицировать и другими способами. Рассмотрим, например, папаин. Он относится к числу хорошо изученных протеолитических ферментов, для которого определена трехмерная структура. Поблизости от остатка цистеина-25 на поверхности белковой молекулы располагается протяженный желобок, в котором протекает реакция протеолиза. Этот участок может быть алкилирован производным флавина без изменения доступности участка связывания потенциальных субстратов. Такие модифицированные флавопапаины использовались для окисления М-алкил-1,4-дигидроникотинамидов, и каталитическая активность некоторых из этих модифицированных белков была существенно выше, чем у природных флавопротеин-NADH-дегидрогеназ. Таким образом удалось создать очень эффективный полусинтетический фермент. Использование флавинов с высокоактивными, находящимися в определенном положении электрон-оттягивающими заместителями, возможно, позволит разработать эффективные катализаторы для восстановления никотин-амида.

Крупные успехи, достигнутые за последнее время в химическом синтезе ДНК, открыли перед белковой инженерией принципиально новые возможности: конструирование уникальных, не встречающихся в природе белков. Для этого необходимо и дальнейшее развитие технологии, так чтобы изменение генов методами генетической инженерии приводило к предсказуемым изменениям белков, к улучшению вполне определенных функциональных их характеристик: числа оборотов, Км для конкретного субстрата, термостабильности, температурного оптимума, стабильности и активности в неводных растворителях, субстратной и реакционной специфичности, потребности в кофакторах, оптимуме рН, устойчивости к протеазам, аллостерической регуляции, молекулярной массы и субъединичного строения. Обычно такого улучшения достигали с помощью мутагенеза и отбора, а в последнее время - путем химической модификации и иммобилизации. Для успешного конструирования конкретного типа молекул белка необходимо выявить ряд основополагающих закономерностей, связывающих структурные особенности белков и их желаемые свойства. Так, зная точную кристаллическую структуру молекулы изучаемого белка, можно идентифицировать те ее участки, которые следует направленно модифицировать для увеличения его каталитической активности. Такая модификация может состоять в изменении аминокислотной последовательности белка .

Ещё одним примером может служить осуществление сайт-специфического мутагенеза. Он происходит следующим образом. Клонируют ген того белка, который интересует исследователя, и встраивают его в подходящий генетический носитель. Затем синтезируют олигонуклеотидную затравку с желаемой мутацией, последовательность которой из десяти - пятнадцати нуклеотидов в достаточной степени гомологична определенному участку природного гена и поэтому способна образовывать с ним гибридную структуру. Эта синтетическая затравка используется полимеразами для начала синтеза комплементарной копии вектора, которую затем отделяют от оригинала и используют для контролируемого синтеза мутантного белка. Альтернативный подход основан на расщеплении цепи, удалении подлежащего изменению сайта и замещении его синтетическим аналогом с желаемой последовательностью нуклеотидов.

Тирозил-тРНК-синтетаза катализирует реакцию аминоацилирования тирозиновой тРНК, которая включает активирование тирозина с помощью АТР с образованием тирозиладенилата. Ген этого фермента, выделенный из Bacillus stearothermophilus, был встроен в бактериофаг М13. Затем каталитические свойства фермента, особенно его способность связывать субстрат, были изменены путем сайт-специфической модификации. Так, треонин-51 был заменен на аланин. Это привело к двукратному увеличению связывания субстрата, видимо, из-за невозможности образования водородной связи между этим остатком и тирозил-аденилатом. При замене аланина пролином нарушается конфигурация молекулы фермента, но способность к связыванию субстрата увеличивается в сто раз, так как облегчается его взаимодействие с гистидином-48. Сходные сайт-специфичные изменения, были получены в р-лактамазе, и обычно они сопровождались инактивацией фермента. Замена серина-70 на цистеин приводит к образованию р-тиоллактамазы, константа связывания у которой не отличается от таковой для природного фермента, но активность по отношению к пенициллину составляет всего 1-2%. Тем не менее активность этого мутантного фермента в отношении некоторых активированных цефалоспоринов не меньше исходной активности или даже превышает ее; эти белки также более устойчивы к действию протеаз.

Мутации, вызываемые путем сайт-специфичного воздействия, используют сегодня для проверки адекватности результатов структурных исследований. В некоторых случаях с их помощью удалось показать, что структурная стабильность белка и его каталитическая активность могут быть разобщены. Накопилось достаточное количество информации о взаимосвязи между стабильностью структуры белка и его функцией, мы, возможно, сумеем осуществлять тонкую регуляцию активности биологических катализаторов и создавать полностью синтетические их аналоги. Недавно появилась работа, в которой сообщалось о клонировании первого синтетического гена фермента, кодирующего активный фрагмент молекулы рибонуклеазы .

III. Применение белковой инженерии

Технология белковой инженерии используется (часто - в сочетании с методом рекомбинантных ДНК) для улучшения свойств существующих белков (ферментов, антител, клеточных рецепторов) и создания новых, не существующих в природе протеинов. Такие белки применяются для создания лекарственных препаратов, при обработке пищевых продуктов и в промышленном производстве .

Однако некоторые характеристики биокатализаторов делают их использование в ряде случаев неприемлемым. Например, большинство ферментов распадается при повышении температуры. Ученые пытаются преодолеть подобные препятствия и увеличить стабильность ферментов в суровых условиях производства с помощью методов белковой инженерии .

Кроме промышленного применения, белковая инженерия нашла себе достойное место и в медицинских разработках. Исследователи синтезируют белки, способные связываться с вирусами и мутантными генами, вызывающими опухоли, и обезвреживать их; создают высокоэффективные вакцины и изучают белки-рецепторы клеточной поверхности, которые часто являются мишенями для фармацевтических препаратов. Ученые, занимающиеся усовершенствованием продуктов питания, используют белковую инженерию для улучшения качеств белков, обеспечивающих сохранность продуктов растительного происхождения, а также желирующих веществ или загустителей.

Еще одной областью применения белковой инженерии является создание белков, способных нейтрализовать вещества и микроорганизмы, которые могут быть использованы для химических и биологических атак. Например, ферменты гидролазы способны обезвреживать как нервнопаралитические газы, так и используемые в сельском хозяйстве пестициды. При этом производство, хранение и использование ферментов не опасно для окружающей среды и здоровья людей .

3.1 Библиотеки пептидов и эпитопов

В живом организме большинство биологических процессов управляется посредством специфических белок-белковых или белково-нуклеиновых взаимодействий. К таким процессам относятся, например регуляция транскрипции генов под действием различных белковых факторов, взаимодействие белковых лигандов с рецепторами на поверхности клеток, а также специфическое связывание антигенов соответствующими антителами. Понимание молекулярных механизмов взаимодействия белковых лигандов с рецепторами имеет большое фундаментальное и прикладное значение. В частности, разработка новых лекарственных препаратов белковой природы обычно начинается с идентификации исходной последовательности аминокислот, обладающей требуемой биологической активностью (так называемая "основная" (lead) последовательность). Однако пептиды с основной последовательностью аминокислот могут обладать и нежелательными биологическими свойствами: низкой активностью, токсичностью, малой стабильностью в организме и т.п.

До появления библиотек пептидов улучшение их биологических свойств осуществляли путем последовательного синтеза большого числа аналогов и проверкой их биологической активности, что требовало больших затрат времени и средств. В последние годы появилась возможность с помощью автоматических синтезаторов создавать за короткое время тысячи различных пептидов. Разработанные методы направленного мутагенеза также позволили резко расширить число белков, получаемых одновременно и последовательно тестируемых на биологическую активность. Однако только недавно разработанные подходы к созданию библиотек пептидов привели к получению миллионов последовательностей аминокислот, требуемых для проведения эффективного скрининга с целью выявления среди них пептидов, максимально удовлетворяющих предъявляемым критериям. Такие библиотеки используются для исследования взаимодействия антител с антигенами, получения новых ингибиторов ферментов и антимикробных агентов, конструирования молекул, обладающих требуемой биологической активностью, или придания новых свойств белкам, например антителам .

По способам получения библиотеки пептидов разделяются на три группы. К первой группе можно отнести библиотеки, полученные с использованием химического синтеза пептидов, в которых индивидуальные пептиды иммобилизованы на микроносителях. При таком подходе после присоединения очередных аминокислот в индивидуальных реакционных смесях к пептидам, иммобилизованным на микроносителях, содержимое всех реакционных смесей объединяют и разделяют на новые порции, которые используют на следующей стадии присоединения новых аминокислотных остатков. После проведения ряда таких этапов оказываются синтезированными пептиды, содержащие последовательности использованных в синтезе аминокислот во всевозможных случайных сочетаниях.

Библиотеки пептидов, иммобилизованных на микроносителях, обладают существенным недостатком: они требуют при скрининге использования очищенных рецепторов, находящихся в растворимой форме. В то же время в большинстве случаев при биологических испытаниях, проводящихся для фундаментальных и фармакологических исследований, чаще всего находят применение рецепторы, ассоциированные с мембранами. По второму способу библиотеки пептидов получают с помощью твердофазного синтеза пептидов, при котором на каждой стадии химического присоединения очередной аминокислоты к растущим пептидным цепям используют эквимолярные смеси всех или некоторых аминокислот-предшественников. На конечной стадии синтеза проводят отделение пептидов от носителя, т.е. перевод их в растворимую форму. Третий подход к конструированию библиотек пептидов, к описанию которого мы сейчас переходим, стал реальным именно благодаря развитию методов генной инженерии. Он прекрасно иллюстрирует возможности таких методов и, несомненно, является крупным достижением в их применении. В этой связи рассмотрим более подробно результаты использования библиотек пептидов в исследовании эпитопов (антигенных детерминант) белков .

Генно-инженерная технология получения гибридных белков позволила разработать эффективный метод наработки коротких пептидов для анализа их биологической активности. Как и в случае клонотек генов, библиотеки пептидов, полученные генно-инженерными методами, представляют собой большой (часто исчерпывающий) набор коротких пептидов. Два недавно сделанных наблюдения позволяют рассматривать библиотеку пептидов одновременно и в качестве библиотеки эпитопов белков. Во-первых, короткие пептиды могут включать все основные остатки аминокислот, играющие главную роль во взаимодействии с антителами, и они в состоянии имитировать крупные антигенные детерминанты белков. Во-вторых, в большинстве случаев нековалентные связи, образуемые между немногими наиболее важными остатками аминокислот белковых лигандов и их рецепторами, вносят основной вклад в общую энергию взаимодействия лиганд-рецептор. С учетом этого любой пептид можно рассматривать как потенциальный лиганд, гаптен или часть антигенной детерминанты более крупных полипептидов, а любую библиотеку пептидов - как библиотеку эпитопов белков или потенциальных лигандов для соответствующих белковых рецепторов.

Библиотека пептидов, полученная в результате реализации третьего подхода, в современном виде представляет собой набор десятков или даже сотен миллионов коротких различающихся последовательностей аминокислот, которые экспрессированы на поверхности вирионов бактериофагов в составе их собственных структурных белков. Это становится возможным благодаря введению методами генной инженерии в геном бактериофагов гибридных рекомбинантных генов, кодирующих измененные структурные белки его вирионов. (Данный метод известен под названием фагового дисплея.) В результате экспрессии таких генов образуются гибридные белки, на N- или С-концах которых присутствуют дополнительные последовательности аминокислот.

Библиотеки пептидов и эпитопов найдут свое применение и в исследованиях механизмов гуморального иммунного ответа, а также заболеваний иммунной системы. В частности, большинство аутоиммунных заболеваний сопровождается образованием аутоантител против антигенов собственного организма. Эти антитела во многих случаях служат специфическими маркерами того или иного аутоиммунного заболевания. С использованием библиотеки эпитопов, в принципе, можно получить пептидные маркеры, с помощью которых было бы возможно следить за специфичностью аутоантител во время развития патологического процесса как в индивидуальном организме, так и в группе пациентов и, кроме того, определять специфичность аутоантител при заболеваниях неизвестной этиологии.

Библиотеки пептидов и эпитопов потенциально могут быть использованы также для скрининга иммунных сывороток с целью выявления пептидов, специфически взаимодействующих с защитными антителами. Такие пептиды будут имитировать антигенные детерминанты патогенных организмов и служить мишенями для защитных антител организма. Это позволит использовать подобные пептиды для вакцинации пациентов, у которых отсутствуют антитела против соответствующих патогенов. Изучение эпитопов с помощью библиотек пептидов является частным случаем одного из многочисленных направлений их использования в прикладных и фундаментальных исследованиях взаимодействия лигандов и рецепторов. Дальнейшее усовершенствование этого подхода должно способствовать созданию новых лекарственных препаратов на основе коротких пептидов и быть полезным в фундаментальных исследованиях механизмов белок-белковых взаимодействий .

3.2 Белки-репортеры в гибридных белках

В другом случае гибридные белки применяют для получения высокого уровня экспрессии коротких пептидов в бактериальных клетках благодаря стабилизации этих пептидов в составе гибридных белков. Часто гибридные белки используют для идентификации и очистки трудноопределяемых рекомбинантных белков. Например, присоединив к С-концу исследуемого белка в качестве белка-репортера галактозидазу, можно производить очистку рекомбинантного белка по активности галактозидазы, определяя ее антигенные детерминанты иммунохимическими методами. Соединяя фрагменты ДНК, содержащие открытые рамки считывания (ОРС), с генами белков-репортеров, можно очистить такие гибридные белки по активности белка-репортера и использовать их для иммунизации лабораторных животных. Полученные антитела далее применяют для очистки нативного белка, в состав которого входит рекомбинантный полипептид, кодируемый ОРС, и тем самым идентифицируют клонированный фрагмент гена .

С помощью гибридных белков решают и обратную задачу клонирования неизвестного гена, к белковому продукту которого имеются антитела. В таком случае конструируют клонотеку последовательностей нуклеотидов, представляющих ОРС неизвестных генов, в векторах, которые позволяют соединять клонируемую ОРС в одной рамке считывания с геном-репортером. Образующиеся в результате экспрессии этих рекомбинантных генов гибридные белки идентифицируются с помощью антител иммуноферментными методами. Гибридные гены, объединяющие секретируемые белки и белки-репортеры, дают возможность по-новому исследовать механизмы секреции, а также локализацию и перемещение в тканях секретируемых белков .

3.3 Некоторые достижения белковой инженерии

Заменив несколько аминокислотных остатков лизоцима бактериофага Т4 на цистеин получен фермент с большим числом дисульфидных связей, благодаря чему этот фермент сохранил свою активность при более высокой температуре.

Замена остатка цистеина на остаток серина в молекуле р-интерферона человека, синтезируемого кишечной палочкой, предотвращала образование межмолекулярных комплексов, при котором примерно в 10 раз уменьшалась противовирусная активность этого лекарственного средства.

Замена остатка треонина на остаток пролина в молекуле фермента тирозил-тРНК-синтетазы повысило каталитическую активность этого фермента в десятки раз: он стал быстрее присоединять тирозин к тРНК, переносящей эту аминокислоту в рибосому в ходе трансляции.

Субтилизины - богатые серином ферменты, расщепляющие белки. Они секретируются многими бактериями и широко используются человеком для биодеградации. Они прочно связывают атомы кальция, повышающие их стабильность. Однако в промышленных процессах присутствуют химические соединения, которые связывают кальций, после чего субтилизины теряют свою активность. Изменив ген, ученые удалили из фермента аминокислоты, участвующие в связывании кальция, и заменили одну аминокислоту на другую с целью повышения стабильности субтилизина. Измененный фермент оказался стабильным и функционально активным в условиях, близких к промышленным.

Была показана возможность создания фермента, функционирующего по типу рестриктаз, расщепляющих ДНК в строго определенных местах. Ученые создали гибридный белок, один фрагмент которого узнавал определенную последовательность нуклеотидных остатков в молекуле ДНК, а другой расщеплял ДНК в этом участке.

Активатор тканевого плазминогена - фермент, который используют в клинике для растворения сгустков крови. К сожалению, он быстро выводится из системы кровообращения и его приходится вводить повторно или в больших дозах, что приводит к побочным эффектам. Внеся три направленные мутации в ген этого фермента, получили долгоживущий фермент, обладающий повышенным сродством к разрушаемому фибрину и с такой же фибринолитической активностью, как у исходного фермента.

Произведя замену одной аминокислоты в молекуле инсулина, ученые добились того, что при подкожном введении этого гормона больным, страдающим диабетом, изменение концентрации этого гормона в крови было близко к физиологическому, возникающему после приема пищи.

Существует три класса интерферонов, обладающих противовирусной и противораковой активностью, но проявляющих разную специфичность. Заманчиво было создать гибридный интерферон, обладающий свойствами интерферонов трех типов. Были созданы гибридные гены, включающие в себя фрагменты природных генов интерферонов нескольких типов. Часть этих генов, будучи встроенными в бактериальные клетки, обеспечивали синтез гибридных интерферонов с большей, чем у родительских молекул, противораковой активностью.

Природный гормон роста человека связывается не только с рецептором этого гормона, но и с рецептором другого гормона - пролактина. Для того, чтобы избежать нежелательных побочных эффектов в процессе лечения, ученые решили устранить возможность присоединения гормона роста к пролактиновому рецептору. Они добились этого, заменив некоторые аминокислоты в первичной структуре гормона роста с помощью генетической инженерии.

Разрабатывая средства против ВИЧ-инфекции, ученые получили гибридный белок, один фрагмент которого обеспечивал специфическое связывание этого белка только с пораженными вирусом лимфоцитами, другой фрагмент осуществлял проникновение гибридного белка внутрь пораженной клетки, а еще один фрагмент нарушал синтез белка в пораженной клетке, что приводило к ее гибели.

Белки являются основной мишенью для лекарственных средств. Сейчас известно около 500 мишеней для действия лекарств. В ближайшие годы их число возрастет до 10 000, что позволит создать новые, более эффективные и безопасные лекарства. В последнее время разрабатываются принципиально новые подходы поиска лекарственных средств: в качестве мишеней рассматриваются не одиночные белки, а их комплексы, белок -белковые взаимодействия и фолдинг белков .

Заключение

Технология белковой инженерии используется (часто - в сочетании с методом рекомбинантных ДНК) для улучшения свойств существующих белков (ферментов, антител, клеточных рецепторов) и создания новых, не существующих в природе протеинов. Такие белки применяются для создания лекарственных препаратов, при обработке пищевых продуктов и в промышленном производстве.

В настоящее время наиболее популярной областью применения белковой инженерии является изменение каталитических свойств ферментов для разработки «экологически дружественных» промышленных процессов. С точки зрения охраны окружающей среды ферменты являются наиболее приемлемыми из всех катализаторов, используемых в промышленности. Это обеспечивается способностью биокатализаторов растворяться в воде и полноценно функционировать в среде с нейтральным рН и при сравнительно низких температурах. Кроме того, благодаря их высокой специфичности, в результате применения биокатализаторов образуется совсем немного нежелательных побочных продуктов производства. Экологически чистые и энергосберегающие промышленные процессы, использующие биокатализаторы, уже давно активно внедряются химической, текстильной, фармацевтической, целлюлозно-бумажной, пищевой, энергетической и других областях современной промышленности.

Однако некоторые характеристики биокатализаторов делают их использование в ряде случаев неприемлемым. Например, большинство ферментов распадается при повышении температуры. Ученые пытаются преодолеть подобные препятствия и увеличить стабильность ферментов в суровых условиях производства с помощью методов белковой инженерии.

Кроме промышленного применения, белковая инженерия нашла себе достойное место и в медицинских разработках. Исследователи синтезируют белки, способные связываться с вирусами и мутантными генами, вызывающими опухоли, и обезвреживать их; создают высокоэффективные вакцины и изучают белки-рецепторы клеточной поверхности, которые часто являются мишенями для фармацевтических препаратов. Ученые, занимающиеся усовершенствованием продуктов питания, используют белковую инженерию для улучшения качеств белков, обеспечивающих сохранность продуктов растительного происхождения, а также желирующих веществ или загустителей.

Еще одной областью применения белковой инженерии является создание белков, способных нейтрализовать вещества и микроорганизмы, которые могут быть использованы для химических и биологических атак. Например, ферменты гидролазы способны обезвреживать как нервнопаралитические газы, так и используемые в сельском хозяйстве пестициды. При этом производство, хранение и использование ферментов не опасно для окружающей среды и здоровья людей .

белок инженерия мутагенез модифицированный

Список литературы

1. Белковая инженерия.

2. Белковая инженерия. Загадки генетики. /Вячеслав Маркин // Тайны, загадки, факты.

Белковая инженерия. // Большая Российская энциклопедия.

Белковая инженерия. // Справочник химика 21.

Белковая инженерия и эффективность лекарств.

Белковая инженерия. / А.И. Корнелюк // Biopolymers and Cell.

Белковая инженерия повысит эффективность лекарств. // Популярная механика.

Белковая инженерия. Получение инсулина. // Биофайл - научно-информационный журнал.

Биотехнология. Основные направления и достижения. // Биология для абитуриентов и учителей.

Богданов А.А., Медников Б.М. Власть над геном / А. А. Богданов, Б.М. Медников - М.: Просвещение, 1989 - с.208

Генная инженерия. // Здравие.

Гены и химики. // Генетика.

13. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение / Б. Глик, Дж. Пастернак. - М.: Мир, 2002.

14. Другие области применения генной инженерии. / Л.В. Тимощенко, М.В. Чубик // Медицина - новости и технологии.

15. Егорова Т.А., Клунова С.М., Живухин Е.А. Основы биотехнологии. / Т.А. Егорова, С.М. Клунова, Е.А. Живухин - М., 2003.

16. Инженерия белка. // Химия и биотехнология.

17. Патрушев Л.И. Экспрессия генов/ Л.И. Патрушев - М.: Наука, 2000. - 496с.

Патрушев Л.И. Искусственные генетические системы. Т. 1: Генная и белковая инженерия. /Л.И. Патрушев - М.: Наука, 2004. - 526 с.

Рыбчин В.Н. Основы генетической инженерии: Учебник для вузов/В.Н. Рыбчин - СПб.: Изд-во СПбГТУ, 2002. - 522 с.

Степанов В.М. Молекулярная биология. Структуры и функции белков. / В.М. Степанов - М.: Высшая Школа, 1996.

Технологии биотехнологии: белковая инженерия, нанобиотехнология, биосенсоры и биочипы. / Евгения Рябцева // «Коммерческая биотехнология» - интернет-журнал.

Чернавский Д.С., Чернавская Н.М. Белок-машина. Биологические макромолекулярные конструкции. / Д.С. Чернавский, Н. М. Чернавская - М.: Изд-во МГУ, 1999.

Шульц Г.Е., Ширмер Р.Х. Принципы структурной организации белков. / Г.Е. Шульц, Р.Х. Ширмер - М.: Мир, 1982.

24. Brannigan J.А., Wilkinson А.J. Protein engineering 20 years on // Nature Reviews. Molecular Cell Biology. 2002. Vol. 3. № 12;

25. Protein engineering. // Wikipedia, the free encyclopedia.

Контрольные вопросы к главе 3

MAS-селекция (marker assistant selection, селекция с помощью маркеров).

Введение ДНК в клетки растений с помощью Ti- и Ri-плазмид.

A. tumefaciens вызывает образование опухолей стебля двудольных растений - так называемых корончатых галлов. Бактерии прикрепляются к клетками растения в местах повреждений. Сайтами связывания на поверхности бактерий, видимо, являются молекулы β-глюкана и О-антигенной цепи липополисахарида внешней мембраны.

Бактерии связываются с рецепторами высшего растения, состоящими из белка и пектина; лектины в данном случае не имеют значения. Бактериальные сайты связывания и рецепторы растений являются констуитивными, т.е. оба партнера обладают ими еще до момента взаимодействия. Первый шаг взаимодействия с растением - узнавание - следует рассматривать как специфическую адгезию растений. Как только бактерии прикрепились к поверхности клеток растения, они начинают образовывать целлюлозные фибриллы. Эти фибриллы можно увидеть в сканирующем электронном микроскопе уже через 90 минут после добавления бактерий к суспензии культуры клеток ткани моркови. К 10 часам инкубации фибриллы формируют сеть, покрывающую поверхность растительных клеток. Фибриллы служат более прочному закреплению бактерий на поверхности хозяина. За целлюлозные фибриллы могут зацепиться свободно плавающие клетки бактерий. Фиксируя их у поверхности растения, фибриллы увеличивают множественность заражения. В результате размножения образуются скопления бактерий на поверхности растения.

Клеточная стенка растения повреждается вследствие выделения бактериями пектолитических ферментов, что обеспечивает плотный контакт бактерий с плазмалеммой растительной клетки. Этот контакт необходим для передачи ДНК от бактерий в растительную клетку. Передача ДНК происходит без нарушения целостности мембраны растительной клетки, но требует определенного её состояния - компетентности.

Способность A. tumefaciens индуцировать у растений образование опухолей типа "корончатого галла" коррелирует с наличием у них Ti-плазмиды. Опухолевая трансформация проявляется в гипертрофии возникающей после проникновения агробактерий в пораненные участки (сайты) растений (рис. 13). Трансформация является результатом стабильного ковалентного включения (инсерции или интеграции) сегмента («transferred» или Т-ДНК) большой плазмиды (pTi - tumor inducing или pRi - root inducing) бактерий в ядерную ДНК растительной клетки.

Рисунок 10. - Генетическая колонизация растения A. tumefaciens: 1- агробактерии существуют в ризосфере; 2 - строение A. tumefaciens; 3 – встраивание Т-ДНК в геном; 4 – образование опухоли



Другой вид агробактерий – A. rhizogenes, - вызывает заболевание, именуемое "бородатый корень", при котором в зоне повреждения корня образуется масса новых корешков. A. rubi обычно индуцируют неорганизованные опухоли (тератомы), штаммы A. radiobacter авирулентны.

В отличие от большинства тканей взятых из нормальных растений, трансформированные ткани в культуре in vitro в асептических (стерильных) условиях способны неограниченно расти в отсутствие экзогенно добавленных ауксинов и цитокининов. Кроме того, трансформированные ткани часто синтезируют одну или более групп соединений, названных опинами, которые обычно не обнаруживаются в нетрансформированных растительных тканях. Наиболее подробно изучены опухоли - корончатые галлы, индуцируемые Agrobacterium tumefaciens. Они представляют собой истинно злокачественные опухоли, которые могут расти в культуральной среде в отсутствие стимуляторов роста - фитогормонов, необходимых для роста нормальных тканей.

Опухоли можно поддерживать в течение многих лет in vitro, и при их использовании они способны вызывать опухоли у здоровых растений. В природных условиях корончатые галлы образуются в месте соединения корня со стеблем (у корневой шейки), откуда и произошло их название корончатый галл. Однако корончатые галлы могут развиваться и на подземных частях растения, например на корнях плодовых деревьев, и на надземных, например на стебле винограда.

В лаборатории эти заболевания можно вызвать у здоровых растений экспериментально, путем инфицирования их бактериями. Растения перед инокуляцией должны быть поранены, при этом опухоли возникают в поврежденных сайтах растения, обычно на стебле или листьях растения. Кроме целых растений в качестве тест-объектов используются экспланты, например ломтики моркови и кусочки других органов растений.

Ткани корончатых галлов содержат более высокие уровни ауксина и цитокининов. Выявлено еще одно наследуемое изменение в клетках корончатых галлов - это синтез опинов. Необычное для растений соединение, производное аргинина, обнаруженное лишь в определенных опухолевых линиях, было названо октопином. Затем было показано, что другими опухолевыми линиями синтезируется еще одно соединение - нопалин, также производное аргинина. В зависимости от типа индуцируемого в опухоли опина штаммы A. tumefaciens и находящиеся в них Ti-плазмиды получили соответствующее обозначение - октопиновые или нопалиновые.

Агробактерии, индуцирующие опухоли, в которых не обнаруживается ни нопалин, ни октопин, ранее обозначались как штаммы нулевого типа. Позднее было показано, что в опухолях нулевого типа синтезируются опины третьего класса - агропины. Обнаружены также и другие типы опинов. Поскольку все опины обнаруживаются только в опухолевых клетках и отсутствуют в клетках нормальных растений или клетках растительных опухолей других типов, то опины могут рассматриваться как специфические биохимические маркеры для клеток корончатых галлов.

Опухоли, развивающиеся из одной или нескольких клеток, быстро разрастаются в крупные образования, диаметр которых на определенных видах деревьев может достигать одного метра. Типичная неорганизованная опухоль представляет собой более или менее округлую дедифференцированную массу клеток (каллус), которая может иметь гладкую или шероховатую поверхность, быть паренхиматозной или одревесневшей. Иногда на периферии таких опухолей формируются листовидные структуры (тератомы), иногда - придаточные корни. Нередко на зараженных растениях наблюдаются вторичные опухоли, значительно удаленные от первичных. Обычно они обнаруживаются выше первичной опухоли, что предполагает движение бактерий или трансформирующего агента в направлении транспирации.

Распространение Agrobacterium и других фитопатогенных бактерий по межклетникам и ксилеме является хорошо доказанным фактом. Агробактерии могут передвигаться на большие дистанции со значительной скоростью. Очевидно, это не является единственной причиной индукции вторичных опухолей. Организацию опухолей, а именно форму, величину и характер развития, определяют три фактора:

Штамм агробактерий,

Генотип растения-хозяина,

Физиологическое состояние инфицируемых растительных клеток.

Agrobacterium имеет очень широкий круг растений-хозяев и может инфицировать практически все двудольные растения. Долгое время считалось, что однодольные растения не чувствительны к агробактериальной инфекции. В настоящее время показано, что при соблюдении определенных условий агробактерии могут инфицировать однодольные растения, в частности представителей таких семейств, как Amaryllidaceae, Liliaceae, Gramineae, Iridaceae и некоторых других. Однако существуют определенные вариации круга хозяев для различных штаммов Agrobacterium: некоторые штаммы способны вызывать галлообразование на отдельных видах растений, но не инфицируют другие. Различные сорта одного и того же растения также могут иметь различную чувствительность к данному бактериальному штамму.

Невозможность заражения в природе обуславливается отсутствием соответствующих рецепторов, необходимых для взаимодействия с бактериями. Другим фактором, препятствующим инфицированию однодольных агробактериями, возможно, является отсутствие в клетках растений низкомолекулярных индукторов вирулентности Agrobacterium, например ацетосирингона, которые обычно присутствуют в клеточном соке при поранении двудольных растений.

Подробная информация о структуре плазмид Agrobacterium получена путем их рестрикционного или физического картирования. В результате исследований обнаружено четыре основных области гомологии между октопиновой и нопалиновой плазмидами. Две консервативные (области А и D) вовлечены в онкогенность, еще одна (В) соответствует области контроля репликации плазмиды, в то время как последняя (С) кодирует функции конъюгативного переноса (рис. 14).

Таким образом, кроме Т-ДНК в плазмидах имеются область, кодирующая функцию конъюгации (Tra), область репликации (Ori V) и область вирулентности (Vir). Последовательности Ti-плазмиды, фланкирующие Т-ДНК (пограничные или концевые области), играют важную роль в интеграции в растительный геном и содержат несовершенные прямые повторы по 24-25 п. н. Делеция левой границы Т-ДНК не влияет на опухолеобразование, но удаление правой пограничной области приводит практически к полной утрате вирулентности. Показано, что делеция правого повтора или его части приводит к потере способности Т-ДНК включаться в растительную ДНК. Учитывая важную роль концов Т-области в переносе Т-ДНК, можно предположить, что любой сегмент ДНК, встроенный между этими концами, может быть перенесен в растения как часть Т-ДНК. Плазмиды модифицируют таким образом, чтобы удалить все онкогенные последовательности, так как они не принимают участие ни в переносе, ни в интеграции в геном клетки-хозяина. На место этих генов можно встроить чужеродную ДНК, а плазмида теряет свои онкогенные свойства. Неонкогенные Т-ДНК, присутствующие в растениях - регенерантах, передаются согласно законам Менделя. Разработаны два метода для введения Ti-плазмидных последовательностей, содержащих нужный ген, в растение.

Рисунок 11. - Структура Тi-плазмид нопалинового и октопинового типа

Первый метод - метод «промежуточных векторов» (коинтегративных векторов) - основан на использовании плазмиды кишечной палочки pBR 322 (рис. 15). Т-ДНК вырезают из Ti-плазмиды с помощью рестриктаз и встраивают в плазмиду pBR 322 для клонирования в Е. соli. Бактерии, содержащие плазмиду с Т-ДНК, размножают, после чего эту плазмиду выделяют. Затем в клонированную Т-ДНК с использованием рестриктаз встраивают нужный ген. Эту рекомбинантную молекулу, содержащую Т-ДНК со встроенным в нее геном, снова размножают в большом количестве, то есть клонируют в кишечной палочке. Затем с помощью конъюгации вводят в клетки агробактерии, несущие полную Ti-плазмиду.

Между Т-сегментами нативной Ti-плазмиды и промежуточного вектора происходит гомологичная рекомбинация. В результате этого Т-ДНК со встроенным геном включается в нативную Ti-плазмиду, замещая нормальную ДНК. Получаются клетки А. tumefaciens, несущие Ti-плазмиды со встроенными в Т-сегмент нужными генами. Далее их перенос в клетки растения осуществляется обычным способом, характерным для агробактерий.

Рисунок 12. - Создание коинтегративного вектора на основе Тi-плазмиды: Рр - расщепление рестриктазой

Второй метод основан на создании системы бинарных (двойных) векторов.

Последние исследования показали, что для заражения и трансформации не нужна целая Ti-плазмида, а достаточны только пограничные области Т-ДНК и один участок Ti-плазмиды, ответственный за вирулентность. Причем эти два участка ДНК не обязательно должны находиться в одной и той же плазмиде. Если клетки агробактерий содержат Ti-плазмиду с сегментом vir и другую плазмиду с Т-ДНК, эти бактерии могут трансформировать клетки растений. При этом Т-ДНК с любыми встроенными в нее генами интегрирует с геномом растения, для этого не нужна гомологичная рекомбинация в бактериальных клетках. Для осуществления экспрессии чужеродных генов, нужен специфический промотор из Т-ДНК, например, промотор нопалинсинтетазы.

Показано, что он функционирует в клетках растений и может быть легко соединен с кодирующей последовательностью чужеродного гена в широко распространенных субклонах Ti-плазмид. Другое преимущество данного промотора заключается в том, что он функционирует в каллусах и в большинстве органов растений. Эффективность трансформации с помощью модифицированной Т-ДНК агробактерий превосходит на сегодняшний день все другие способы переноса генов в растение.

О механизмах, с помощью которых агробактерия переносит Т-ДНК ядра растений, известно очень мало: Т-сегменты ДНК октопиновых и нопалиновых плазмид встраиваются в разные, по-видимому случайные, точки хромосом хозяина, но при этом они никогда не интегрируют с ДНК митохондрий и хлоропластов.

Для введения сконструированных Ti-плазмид в растительную клетку может быть использовано несколько методов. Наиболее простой из них природный способ - это инокуляция сконструированных штаммов в поврежденные (пораненные) области растения.

Другой метод состоит в трансформации протопластов путем кокультивирования их с агробактериями Методика кокультивации может рассматриваться как индукция опухолей в искусственных условиях: вирулентные агробактерии временно совместно культивируются с протопластами. Если агробактерии добавляются к свежевыделенным или однодневным протопластам, не наблюдается ни присоединения бактерий, ни трансформации. Существенным условием для трансформации является наличие вновь образуемых клеточных стенок у 3-дневных протопластов. Это подтверждается применением ингибиторов образования клеточной стенки, которые ингибируют и присоединение бактерий. После периода кокультивации (более суток), в течение которого наступает агрегация протопластов с бактериями, свободные бактерии удаляются повторным отмыванием. Далее растительные клетки культивируются на среде с добавлением гормонов, а через 3-4 недели небольшие колонии высеваются на безгормональную среду. На этой среде выживают только колонии трансформированных клеток.

Так были получены трансформированные растения-регенеранты табака и петунии. Этот метод дает возможность существенно расширить круг хозяев агробактерий, включая виды семейства злаковых. Эффективность кокультивирования может быть повышена применением индукторов слияния клеток (ПЭГ, кальций и др.).

Трансформация протопластов может быть проведена также кокультивированием их непосредственно с Ti-плазмидами, такие опыты были проведены с протопластами петунии, табака. Очень низкая эффективность включения Т-ДНК в протопласты, наблюдавшаяся в первых экспериментах, была затем увеличена благодаря химической стимуляции (ПЭГ). Из трансформированных клеток были получены трансгенные растения. Преимуществом этого метода является то, что отпадает необходимость в промежуточных векторах. Достижения генной инженерии растений

Первые трансгенные растения (растения табака со встроенными генами из микроорганизмов) были получены в 1983 г. Первые успешные полевые испытания трансгенных растений (устойчивые к вирусной инфекции растения табака) были проведены в США уже в 1986 г.

После прохождения всех необходимых тестов на токсичность, аллергенность, мутагенность и т.д. первые трансгенные продукты появились в продаже в США в 1994 г. Это были томаты Flavr Savr с замедленным созреванием, созданные фирмой "Calgen", а также гербицид-устойчивая соя компании "Monsanto". Уже через 1-2 года биотехнологические фирмы поставили на рынок целый ряд генетически измененных растений: томатов, кукурузы, картофеля, табака, сои, рапса, кабачков, редиса, хлопчатника.

В астоящее время получением и испытанием генетически модифицированных растений занимаются сотни коммерческих фирм во всем мире с совокупным капиталом более ста миллиардов долларов. В 1999 г. трансгенные растения были высажены на общей площади порядка 40 млн. га, что превышает размеры такой страны, как Великобритания. В США генетически модифицированные растения (GM Crops) составляют сейчас около 50% посевов кукурузы и сои и более 30-40% посевов хлопчатника. Это говорит о том, что генно-инженерная биотехнология растений уже стала важной отраслью производства продовольствия и других полезных продуктов, привлекающей значительные людские ресурсы и финансовые потоки. В ближайшие годы ожидается дальнейшее быстрое увеличение площадей, занятых трансгенными формами культурных растений.

Первая волна трансгенных растений, допущенных для практического применения, содержала дополнительные гены устойчивости (к болезням, гербицидам, вредителям, порче при хранении, стрессам).

Нынешний этап развития генетической инженерии растений получил название "метаболическая инженерия". При этом ставится задача не столько улучшить те или иные имеющиеся качества растения, как при традиционной селекции, сколько научить растение производить совершенно новые соединения, используемые в медицине, химическом производстве и других областях. Этими соединениями могут быть, например, особые жирные кислоты, полезные белки с высоким содержанием незаменимых аминокислот, модифицированные полисахариды, съедобные вакцины, антитела, интерфероны и другие "лекарственные" белки, новые полимеры, не засоряющие окружающую среду и многое, многое другое. Использование трансгенных растений позволяет наладить масштабное и дешевое производство таких веществ и тем самым сделать их более доступными для широкого потребления.

Улучшение качества запасных белков

Запасные белки основных культурных видов кодируются семейством близкородственных генов. Накопление запасных белков семян – сложный биосинтетический процесс. Первая генноинженерная попытка улучшения свойства одного растения путем введения гена запасного белка от другого была, проведена Д. Кемпом и Т. Холлом в 1983 г. в США. Ген фазеолина бобов с помощью Ti-плазмиды был перенесен в геном подсолнечника. Результатом этого опыта было лишь химерное растение, получившее название санбин. В клетках подсолнечника были обнаружены иммунологически родственные фазеолиновые полипептиды, что подтверждало факт переноса гена между растениями, относящимися к различным семействам

Позднее ген фазеолина был передан клеткам табака: в растениях-регенерантах ген экспрессировался во всех тканях, хотя и в малых количествах. Неспецифическая экспрессия фазеолинового гена, так же как и в случае переноса его в клетки подсолнечника, сильно отличается от экспрессии этого гена в зрелых семядолях бобов где фазеолин составлял 25-50% от общего белка. Этот факт указывает на необходимость сохранения и других регуляторных сигналов этого гена при конструировании химерных растений и на важность контроля экспрессии генов в процессе онтогенеза растений.

Ген, кодирующий запасной белок кукурузы – зеин, после интеграции его в Т-ДНК был перенесен в геном подсолнечника следующим образом. Штаммы агробактерий, содержащие Ti-плазмиды с геном зеина, использовали для индукции опухолей в стеблях подсолнечника. Некоторые из полученных опухолей содержали мРНК, синтезируемые с генов кукурузы, что дает основание рассматривать эти результаты как первое доказательство транскрипции гена однодольного растения в двудольном. Однако присутствие зеинового белка в тканях подсолнечника не обнаружилось.

Более реальной задачей для генетической инженерии считается улучшение аминокислотного состава белков. Как известно, в запасном белке большинства злаковых наблюдается дефицит лизина, треонина, триптофана, у бобовых - метионина и цистеина. Введение в эти белки дополнительных количеств дефицитных аминокислот могло бы ликвидировать аминокислотный дисбаланс. Методами традиционной селекции удалось существенно повысить содержание лизина в запасных белках злаковых. Во всех этих случаях часть проламинов (спирторастворимые запасные белки злаковых) заменялась другими белками, содержащими много лизина. Однако у таких растении уменьшались размеры зерна и снижалась урожайность. По-видимому, проламины необходимы для формирования нормального зерна, и их замена другими белками отрицательно влияет на урожайность. Учитывая это обстоятельство, для улучшения качества запасного белка зерновых нужен такой белок, который не только отличался бы высоким содержанием лизина и треонина, но и мог полноценно заменить определенную часть проламинов при формировании зерна.

Растения могут производить и белки животного происхождения. Так, встраивание в геном растений Arabidopsis thaliana и Brassica napus химерного гена, состоящего из части гена запасного 25-белка арабидопсиса и кодирующей части для нейропептида - энкефалина, приводило к синтезу химерного белка до 200 нг на 1 г семени. Два структурных белковых домена были связаны последовательностью, узнаваемой трипсином, что давало возможность в дальнейшем легко изолировать чистый энкефалин.

В другом эксперименте удалось после скрещивания трансгенных растений, в одном из которых был встроен ген гамма-субъединицы, а во втором - ген каппа-субъединицы иммуноглобулина, получить у потомства экспрессию обеих цепей. В результате растение формировало антитела, составляющие до 1,3% суммарного белка листьев. Также было показано, что в растениях табака могут собираться полностью функциональные секреторные моноклональные иммуноглобулины. Секреторные иммуноглобулины обычно выделяются в ротовую полость и желудок человека и животных и служат первым барьером на пути кишечных инфекций. В упомянутой выше работе получили продукцию в растениях моноклональных антител, которые были специфичны для Streptococcus mutans - бактерий, вызывающих зубной кариес. Предполагается, что на основе таких моноклональных антител, продуцируемых трансгенными растениями, удастся создать действительно антикариесную зубную пасту. Из других белков животного происхождения, которые представляют интерес для медицины, показана продукция в растениях человеческого β-интерферона.

Разработаны также подходы, позволяющие получать бактериальные антигены в растениях и использовать их в качестве вакцин. Получен картофель, экспрессирующий олигомеры нетоксичной субъединицы β-токсина холеры. Эти трансгенные растения могут быть использованы для получения дешевой вакцины от холеры.

Жиры

Важнейшим сырьем для получения разного рода химических веществ являются жирные кислоты - основной компонент растительного масла. По своей структуре это углеродные цепи, которые обладают различными физико-химическими свойствами в зависимости от своей длины и степени насыщения углеродных связей. В 1995 году была закончена экспериментальная проверка и получено разрешение от федеральных властей США на выращивание и коммерческое использование трансгенных растений рапса с измененным составом растительного масла, включающего вместе с обычными 16- и 18-членными жирными кислотами также и до 45% 12-членной жирной кислоты - лаурата. Это вещество широко используется для производства стиральных порошков, шампуней, косметики.

Экспериментальная работа заключалась в том, что был клонирован ген специфической тиоэстеразы из растения Umbellularia califomica, где содержание лаурата в жире семян достигало 70%. Структурная часть гена этого фермента под контролем промотора-терминатора гена белка, специфического для ранней стадии семяобразования, была встроена в геном рапса и арабидопсиса, что и привело к увеличению содержания лаурата в масле этих растений.

Из других проектов, связанных с изменением состава жирных кислот, можно упомянуть работы, ставящие целью повышение или снижение содержания ненасыщенных жирных кислот в растительном масле. Интересными представляются эксперименты с петрозелиновой кислотой - изомером олеиновой кислоты, где двойная связь находится за шестым углеродным членом. Эта жирная кислота входит в состав масла кориандра и определяет его более высокую температуру плавления (33°С), в то время как при наличии олеиновой кислоты температура плавления составляет только 12°С. Предполагается, что после переноса генов, определяющих синтез петрозелиновой кислоты, в растения - продуценты растительного масла удастся производить диетический маргарин, содержащий ненасыщенную жирную кислоту. Кроме того, из петрозелиновой кислоты очень легко получать лаурат путем окисления озоном. Дальнейшее изучение специфики биохимического синтеза жирных кислот, по-видимому, приведет к возможности управлять этим синтезом с целью получения жирных кислот различной длины и различной степени насыщения, что позволит значительно изменить производство детергентов, косметики, кондитерских изделий, затвердителей, смазочных материалов, лекарств, полимеров, дизельного топлива и многого другого, что связано с использованием углеводородного сырья.

Полисахариды

Проводится работа по созданию трансгенных растений картофеля и других крахмалнакапливающих культур, в которых это вещество будет находиться в основном в виде амилопектина, то есть разветвленной форме крахмала, или же в основном только в виде амилозы, то есть линейных форм крахмала. Раствор амилопектина в воде более жидкий и прозрачный, чем у амилозы, которая при взаимодействии с водой образует ригидный гель. Так, например, крахмал, состоящий в основном из амилопектина, по-видимому, будет иметь спрос на рынке производителей различных питательных смесей, где сейчас в качестве наполнителя используется модифицированный крахмал. Генетической модификации могут подвергаться также геномы пластид и митохондрий. Такие системы позволяют значительно увеличить содержание продукта в трансгенном материале.

Создание гербицидоустойчивых растений

В новых, интенсивных сельскохозяйственных технологиях гербициды применяются очень широко. Это связано с тем. что на смену прежним экологически опасным гербицидам широкого спектра действия, обладающим токсичностью для млекопитающих и длительно сохраняющимся во внешней среде, приходят новые, более совершенные и безопасные соединения. Однако они обладают недостатком - подавляют рост не только сорняков, но и культурных растений Такие высокоэффективные гербициды, как, глифосат, атразины интенсивно изучаются на предмет выявления механизма толерантности к ним некоторых сорняков. Так, на полях, где широко используют атразин, довольно часто появляются атразинустойчивые биотипы у многих видов растении.

Изучение механизма устойчивости к гербицидам с целью получения методами генетической инженерии культурных растений, обладающих этим признаком, включает следующие этапы: выявление биохимических мишеней действия гербицидов в растительной клетке: отбор устойчивых к данному гербициду организмов в качестве источников генов устойчивости: клонирование этих генов: введение их в культурные растения и изучение их функционирования

Существуют четыре принципиально различных механизма, которые могут обеспечивать устойчивость к тем или иным химическим соединениям, включая гербициды: транспортный, элиминирующий, регуляционный и контактный. Транспортный механизм устойчивости заключается в невозможности проникновения гербицида в клетку. При действии элиминирующего механизма устойчивости вещества, попавшие внутрь клетки, могут разрушаться с помощью индуцируемых клеточных факторов, чаще всего деградирующих ферментов, а также подвергаться тому или иному виду модификации, образуя неактивные безвредные для клетки продукты. При регуляционной резистентности белок или фермент клетки, инактивирующийся под действием гербицида, начинает усиленно синтезироваться, ликвидируя таким образом дефицит нужного метаболита в клетке. Контактный механизм устойчивости обеспечивается изменением структуры мишени (белок или фермент), взаимодействием с которым связано повреждающее действие гербицида

Установлено, что признак гербицидоустойчивости является моногенным, то есть признак детерминируется чаще всего одним-единственным геном. Это очень облегчает возможность использования технологии рекомбинантной ДНК для передачи этого признака. Гены, кодирующие те или иные ферменты деструкции и модификации гербицидов, могут быть с успехом использованы для создания гербицидоустойчивых растении методами генетической инженерии.

Традиционные методы селекции создания сортов, устойчивых к гербицидам, очень, длительны и малорезультативны. Наиболее широко применяемый за рубежом гербицид глифосат (коммерческое название Roundup) подавляет синтез важнейших ароматических аминокислот, воздействуя на фермент 5-енолпирувилшикимат-З-фосфатсинтазу (ЕПШФ-синтаза). Известные случаи устойчивости к этому гербициду связаны либо с повышением уровня синтеза этого фермента (регуляционный механизм), либо с возникновением мутантного фермента, нечувствительного к глифосфату (контактный механизм). Из устойчивых к глифосфату растений был выделен ген ЕПШФ-синтазы и поставлен под промотор вируса мозаики цветной капусты. С помощью Ti-плазмиды эта генетическая конструкция была введена в клетки петунии. При наличии одной копии гена в регенерированных из трансформированных клеток растениях синтезировалось фермента в 20 - 40 раз больше, чем в исходных растениях, но устойчивость к глифосфату увеличилась только в 10 раз.

К числу наиболее распространенных гербицидов, используемых при обработке зерновых культур, относится атразин. Он подавляет фотосинтез, связываясь с одним из белков фотосистемы II и прекращая транспорт электронов. Устойчивость к гербициду возникает в результате точечных мутаций в этом пластохинон связывающем белке (замена серина на глицин), вследствие чего он теряет способность взаимодействовать с гербицидом. В ряде случаев удалось осуществить перенос гена мутантного белка в чувствительные к атразину растения с помощью Ti-плазмиды. Интегрированный в хромосому растений ген устойчивости был снабжен сигнальной последовательностью, которая обеспечивала транспорт синтезируемого белка в хлоропласты. Химерные растения проявляли значительную устойчивость к таким концентрациям атразина, которые вызывали гибель контрольных растений с геном белка дикого типа. Некоторые растения способны инактивировать атразин путем отщепления остатка хлора ферментом глутатион-S-трансфераза. Этот же фермент инактивирует и другие родственные гербициды триазинового ряда (пропазин, симазин и др.).

Существуют растения, естественная устойчивость которых к гербицидам основана на детоксикации. Так, устойчивость растений к хлорсульфурону может быть связана с дезактивацией молекулы гербицида путем его гидроксилирования и последующего гликозилирования введенной гидроксильной группы. Создание растений, устойчивых к патогенам и вредителям Устойчивость растений к тем или иным патогенам чаще всего является сложным мультигенным признаком.

Одновременная передача нескольких локусов трудна даже методами генной инженерии, не говоря о классических методах селекции. Более простым является другой путь. Известно, что у устойчивых растений при атаке патогенов изменяется метаболизм. Накапливаются такие соединения, как Н2О2, салициловая кислота, фитоаллексины. Повышенный уровень этих соединений способствует противостоянию растения в борьбе с патогенами.

Вот один из примеров, доказывающий роль салициловой кислоты в иммунном ответе растений. Трансгенные растения табака, которые содержат бактериальный ген, контролирующий синтез салицилат гидролазы (этот фермент разрушает салициловую кислоту), были неспособны к иммунному ответу. Поэтому изменение генно-инженерным путем уровня салициловой кислоты или выработки в растениях в ответ на патоген Н2О2 может быть перспективным для создания устойчивых трансгенных растений.

В фитовирусологии широко известен феномен индуцированной перекрестной устойчивости растений к вирусным инфекциям. Сущность этого явления состоит в том, что заражение растения одним штаммом вируса предотвращает последующую инфекцию этих растений другим вирусным штаммом. Молекулярный механизм подавления вирусной инфекции пока неясен. Показано, что для иммунизации растений достаточно введения отдельных вирусных генов, например генов капсидных белков. Так, ген белка оболочки вируса табачной мозаики перенесли в клетки табака и получили трансгенные растения, у которых 0,1% всех белков листьев был представлен вирусным белком. Значительная часть этих растений при инфицировании вирусом не проявляла никаких симптомов заболевания. Возможно, что синтезирующийся в клетках белок оболочки вируса мешает вирусной РНК нормально функционировать и формировать полноценные вирусные частицы. Установлено, что экспрессия капсидного белка вируса табачной мозаики, вируса мозаики люцерны, вируса огуречной мозаики, Х-вируса картофеля в соответствующих трансгенных растениях (табак, томаты, картофель, огурцы, перцы) обеспечивает высокий уровень их защиты от последующей вирусной инфекции. Причем у трансформированных растений не отмечалось снижения фертильности, нежелательного изменения ростовых и физиологических характеристик исходных экземпляров и их потомства. Полагают, что индуцированная устойчивость растений к вирусам обусловлена особым антивирусным белком, очень похожим на интерферон животных. Представляется возможным методом генетической инженерии усилить экспрессию гена, кодирующего этот белок, путем его амплификации или подстановки под более сильный промотор.

Следует отметить, что использование генетической инженерии для защиты растений от различных патогенных микроорганизмов в значительной мере сдерживается недостаточностью знаний о механизмах защитных реакций растений. Для борьбы с насекомыми-вредителями в растениеводстве используются химические средства - инсектициды. Однако они оказывают вредное влияние на млекопитающих, убивают и полезных насекомых, загрязняют окружающую среду, дороги, и кроме того, насекомые довольно скоро приспосабливаются к ним. Известно более 400 видов насекомых, устойчивых к используемым инсектицидам. Поэтому все большее внимание привлекают биологические средства борьбы, обеспечивающие строгую избирательность действия и отсутствие адаптации вредителей к применяемому биопестициду.

Уже довольно давно известна бактерия Bacillus thuringiensis, продуцирующая белок, являющийся очень токсичным для многих видов насекомых, в то же время безопасный для млекопитающих. Белок (дельта-эндотоксин, CRY-белок) продуцируется различными штаммами В. thuringiensis. Взаимодействие токсина с рецепторами строго специфично, что усложняет подбор комбинации токсин-насекомое. В природе найдено большое количество штаммов В. thuringiensis, чьи токсины действуют только на определенные виды насекомых. Препараты В. thuringiensis в течение десятилетий использовали для контроля насекомых на полях. Безопасность токсина и его составных белков для человека и других млекопитающих полностью доказана. Встраивание гена этого белка в геном растений дает возможность получить трансгенные растения, не поедаемые насекомыми.

Кроме видоспецифичности по действию на насекомых встраивание прокариотических генов дельта-токсинов в геном растений даже под контролем сильных эукариотических промоторов не привело к высокому уровню экспрессии. Предположительно такое явление возникло в связи с тем, что эти бактериальные гены содержат значительно больше адениновых и тиминовых нуклеотидных оснований, чем растительная ДНК. Эта проблема была решена путем создания модифицированных генов, где из природного гена вырезали и добавляли те или иные фрагменты с сохранением доменов, кодирующих активные части дельта-токсина. Так, например, с помощью таких подходов был получен картофель, устойчивый к колорадскому жуку. Получены трансгенные растения табака, способные синтезировать токсин. Такие растения были нечувствительны к гусеницам Manduca sexta. Последние погибали в течение 3 суток контакта с токсинпродуцирующими растениями. Токсинообразование и обусловленная им устойчивость к насекомым передавалась по наследству как доминантный признак.

В настоящее время так называемые Bt-растения (от В. thuringiensis) хлопка и кукурузы занимают основную долю в общем объеме генетически модифицированных растений этих культур, которые выращивают на полях США.

В связи с возможностями генной инженерии конструировать энтомопатогенные растения на основе токсина микробного происхождения еще больший интерес к себе вызывают токсины растительного происхождения. Фитотоксины являются ингибиторами белкового синтеза и осуществляют защитную функцию, направленную против насекомых-вредителей микроорганизмов и вирусов. Лучше всех среди них изучен рицин, синтезируемый в клещевине: его ген клонирован и установлена нуклеотидная последовательность. Однако высокая токсичность рицина для млекопитающих ограничивает генноинженерные работы с ним только техническими культурами, не используемыми в пищу человека и на корм животным. Токсин, вырабатываемый фитолаккой американской, эффективен против вирусов и безвреден для животных. Механизм его действия заключается в инактивации собственных рибосом при проникновении в клетки различного рода патогенов, в том числе фитовирусов. Пораженные клетки некротизируются, предотвращая размножение патогена и его распространение по растению. В настоящее время проводятся исследования по изучению гена этого белка и передаче его в другие растения.

Вирусные болезни широко распространены среди насекомых, поэтому для борьбы с насекомыми-вредителями можно использовать природные вирусы насекомых, препараты которых называют вирусными пестицидами. В отличие от ядохимикатов они обладают узким спектром действия, не убивают полезных насекомых, они быстро разрушаются во внешней среде и не опасны для растений и животных. Наряду с вирусами насекомых используются как биопестициды некоторые грибы, поражающие насекомых-вредителей. Применяемые сейчас биопестициды являются природными штаммами энтомопатогенных вирусов и грибов, однако не исключена возможность создания в будущем методами генетической инженерии новых эффективных биопестицидов.

Повышение устойчивости растений к стрессовым условиям

Растения очень часто подвергаются воздействию различных неблагоприятных факторов окружающей среды: высокие и низкие температуры, недостаток влаги, засоление почв и загазованность среды, недостаток или, напротив, избыток некоторых минеральных веществ и т. д. Этих факторов множество, поэтому и способы защиты от них многообразны - от физиологических свойств до структурных приспособлений, позволяющих преодолевать их пагубное действие.

Устойчивость растений к тому или иному стрессовому фактору является результатом воздействия множества разных генов, поэтому говорить о полной передаче признаков толерантности от одного вида растения другому генноинженерными методами не приходится. Тем не менее у генетической инженерии имеются определенные возможности для повышения устойчивости растений. Это касается работы с отдельными генами, контролирующими метаболические ответы растений на стрессовые условия, например сверхпродукцию пролина в ответ на осмотический шок, на действие засоления, синтез особых белков в ответ на тепловой шок и т. д. Дальнейшее углубленное изучение физиологической, биохимической и генетической основы ответной реакции растения на условия среды, несомненно, позволит применять методы генетической инженерии для конструирования устойчивых растений.

Пока можно отметить лишь косвенный подход для получения морозоустойчивых растений, основанный на генноинженерных манипуляциях с Pseudomonas syringae. Этот микроорганизм, сосуществующий с растениями, способствует их повреждению ранними заморозками Механизм явления связан с тем, что клетки микроорганизма синтезируют особый белок, локализующийся во внешней мембране и являющийся центром кристаллизации льда. Известно, что формирование льда в воде зависит от веществ, могущих служить центрами образования льда. Белок, вызывающий формирование кристаллов льда в различных частях растения (листья, стебли, корни), является одним из главных факторов, ответственных за повреждение тканей растений, чувствительных к ранним заморозкам. Многочисленные эксперименты в строго контролируемых условиях показали, что стерильные растения не повреждались заморозками вплоть до -6-8° С, тогда как у растений, имеющих соответствующую микрофлору, повреждения возникали уже при температурах -1,5-2° С. Мутанты этих бактерий, потерявшие способность синтезировать белок, вызывающий формирование кристаллов льда, не повышали температуру образования льда, и растения с такой микрофлорой были устойчивы к заморозкам. Штамм таких бактерий, распыленный над клубнями картофеля, конкурировал с обычными бактериями, что приводило к повышению морозоустойчивости растений. Возможно, такие бактерии, созданные с помощью методов генной инженерии и используемые в качестве компонента внешней среды, будут служить для борьбы с заморозками.

Повышение эффективности биологической азотфиксации

Хорошо изучен фермент ответственный за восстановление молекулярного азота до аммония. - нитрогеназа. Структура нитрогеназы одинакова у всех азотфиксирующих организмов. При фиксации азота непременным физиологическим условием является защита нитрогеназы от разрушения под действием кислорода. Лучше всех среди азотфиксаторов изучены ризобии, образующие симбиоз с бобовыми растениями, и свободноживущая бактерия Klebsiella pneumoniae. Установлено, что у этих бактерий за фиксацию азота ответственно 17 генов - так называемых nif-генов. Все эти гены сцеплены друг с другом и расположены в хромосоме между генами ферментов биосинтеза гистидина и генами, определяющими усвоение шикимовой кислоты. У быстрорастущей ризобии nif-гены существуют в форме мегаплазмиды, содержащей 200-300 тысяч пар нуклеотидов.

Среди генов азотфиксации выявлены гены, контролирующие структуру нитрогеназы, белковый фактор, принимающий участие в транспорте электронов, регуляторные гены. Регуляция генов азотфиксации довольно сложна, поэтому генноинженерный перенос азотфиксирующей функции от бактерий непосредственно высшим растениям в настоящее время уже не обсуждается. Как показали эксперименты, даже в самом простом эукариотическом организме - дрожжах не удалось добиться экспрессии nif-генов, хотя они и сохранялись в течение 50 генераций.

Эти опыты показали, что диазотрофность (азот-фиксация) свойственна исключительно прокариотическим организмам, и nif-гены не смогли преодолеть барьер, разделяющий прокариоты и эукариоты, из-за слишком сложной своей структуры и регуляции генами, расположенными вне nif-области. Возможно, более удачным окажется перенос nif-генов с помощью Ti-плазмид в хлоропласты, поскольку механизмы экспрессии генов в хлоропластах и в клетках прокариот близки. В любом случае нитрогеназа должна быть защищена от ингибирующего действия кислорода. Кроме того, фиксация атмосферного азота - очень энергоемкий процесс. Вряд ли растение под влиянием nif-генов может так кардинально изменить свой метаболизм, чтобы создать все эти условия. Хотя не исключено, что в будущем методами генетической инженерии можно будет создать более экономно работающий нитрогеназный комплекс.

Более реально использование генноинженерных методов для решения следующих задач: повышение способности ризобии колонизировать бобовые растения, повышение эффективности фиксации и ассимиляции азота путем воздействия на генетический механизм, создание новых азотфиксирующих микроорганизмов путем введения в них nif-генов, передача способности к симбиозу от бобовых растений к другим.

Первостепенной задачей генетической инженерии для повышения эффективности биологической фиксации азота является создание штаммов ризобии с усиленной азотфиксацией и колонизирующей способностью. Колонизация бобовых растений ризобиями протекает очень медленно, лишь единичные из них дают начало клубенькам. Это происходит потому, что местом инвазии ризобии является только одна небольшая область между точкой роста корня и ближайшим к ней корневым волоском, находящимся на стадии формирования. Все остальные части корня и развившиеся корневые волоски растения нечувствительны к колонизации. В ряде случаев сформировавшиеся клубеньки оказываются неспособными фиксировать азот, что зависит от многих растительных генов (выявлено не менее пяти), в частности от неблагоприятного сочетания двух рецессивных генов.

Традиционными методами генетики и селекции удалось получить лабораторные штаммы ризобий с более высокой колонизирующей способностью. Но они в полевых условиях испытывают конкуренцию со стороны местных штаммов. Повышение их конкурентоспособности, видимо, можно осуществить генноинженерными методами. Повышение эффективности процесса азотфиксации возможно применением генноинженерных приемов, основанных на увеличении копий гена, усилении транскрипции тех генов, продукты которых образуют «узкое» место в каскадном механизме азотфиксации, путем введения более сильных промоторов и т. п. Важно повышение коэффициента полезного действия самой нитро-геназной системы, осуществляющей непосредственное восстановление молекулярного азота в аммиак.

Повышение эффективности фотосинтеза

С4-растения характеризуются высокими темпами роста и скоростью фотосинтеза, у них практически отсутствует видимое фотодыхание. У большинства сельскохозяйственных культур, относящихся к С3-растениям, высокая интенсивность фотодыхания. Фотосинтез и фотодыхание - тесно связанные процессы, в основе которых лежит бифункциональная активность одного и того же ключевого фермента - рибулозобисфосфат-карбоксилазы (РуБФК). РуБФ-карбоксилаза может присоединять не только С02, но и 02, то есть осуществляет реакции карбоксилирования и оксигенирования. При оксигенировании РуБФ образуется фосфогликолат, который служит основным субстратом фотодыхания - процесса выброса С02 на свету, в результате чего теряется часть фотосинтетических продуктов. Низкое фотодыхание у С4-растений объясняется не отсутствием ферментов гликолатного пути, а ограничением оксигеназной реакции, а также реассимиляцией С02 фотодыхания.

Одной из задач, стоящих перед генетической инженерией, является исследование возможности создания РуБФК с преобладающей карбоксилазной активностью.

Получение растений с новыми свойствам

В последние годы ученые используют новый подход для получения трансгенных растений с "antisense RNA" (перевернутой или антисмысловой РНК), который позволяет управлять работой интересуемого гена. В этом случае при конструировании вектора копию ДНК (к-ДНК) встраиваемого гена переворачивают на 180°. В результате в трансгенном растении образуется нормальная молекула мРНК и перевернутая, которая в силу комплементарности нормальной мРНК образует с ней комплекс и закодированный белок не синтезируется.

Такой подход использован для получения трансгенных растений томатов с улучшенным качеством плодов. Вектор включал к-ДНК гена PG, контролирующего синтез полигалактуроназы - фермента, участвующего в разрушении пектина, основного компонента межклеточного пространства растительных тканей. Продукт гена PG синтезируется в период созревания плодов томатов, а увеличение его количества приводит к тому, что томаты становятся более мягкими, что значительно сокращает срок их хранения. Отключение этого гена в трансгенах позволило получить растения томатов с новыми свойствами плодов, которые не только значительно дольше сохранялись, но и сами растения были более устойчивы к грибным заболеваниям.

Такой же подход можно применить для регулирования сроков созревания томатов, а в качестве мишени в этом случае используют ген EFE (ethylene-forming enzyme), продуктом которого является фермент, участвующий в биосинтезе этилена. Этилен - это газообразный гормон, одной из функций которого является контроль за процессом созревания плодов.

Cтратегия антисмысловых конструкций широко применима для модификации экспрессии генов. Эта стратегия используется не только для получения растений с новыми качествами, но и для фундаментальных исследований в генетике растений. Следует упомянуть еще об одном направлении в генной инженерии растений, которое до недавнего времени в основном использовали в фундаментальных исследованиях - для изучения роли гормонов в развитии растений. Суть экспериментов заключалась в получении трансгенных растений с комбинацией определенных бактериальных гормональных генов, например только iaaM или ipt т.д. Эти эксперименты внесли существенный вклад в доказательство роли ауксинов и цитокининов в дифференцировке растений.

В последние годы этот подход стали использовать в практической селекции. Оказалось, что плоды трансгенных растений с геном iaaM, находящимся под промотором гена Def (ген, который экспрессируется только в плодах), являются партенокарпическими, то есть сформировавшимися без опыления. Партенокарпические плоды характеризуются либо полным отсутствием семян, либо очень небольшим их количеством, что позволяет решить проблему "лишних косточек", например в арбузе, цитрусовых и т.д. Уже получены трансгенные растения кабачков, которые в целом не отличаются от контрольных, но практически не содержат семян.

Обезоруженную, лишенную онкогенов Ti-плазмиду ученые активно используют для получения мутаций. Этот метод носит название Т-ДНК-инсерционного мутагенеза. Т-ДНК, встраиваясь в геном растения, выключает ген, в который она встроилась, а по утрате функции можно легко отбирать мутанты (явление сайлесинга – замолкания генов). Этот метод замечателен также тем, что позволяет сразу обнаружить и клонировать соответствующий ген. В настоящее время таким способом получено множество новых мутаций растений и соответствующие гены клонированы. М. А. Раменской на основе Т-ДНК мутагенеза получены растения томатов с неспецифической устойчивостью к фитофторозу. Не менее интере сен и другой аспект работ - получены трансгенные растения с измененными декоративными свойствами. Один из примеров - это получение растений петунии с разноцветными цветками. На очереди голубые розы с геном, контролирующим синтез голубого пигмента, клонированным из дельфиниума. Проблемы биобезопасности трансгенных растений

Одним из главных возражений против употребления "трансгенных" продуктов питания является наличие во многих из них генов устойчивости к антибиотику (в частности, к канамицину), которые содержались в исходной конструкции ДНК в качестве селективных.

Предполагается, что эти гены устойчивости могут при переваривании пищи передаваться эндогенной микрофлоре, в том числе патогенной, в результате чего микробы могут приобрести резистентность к данному антибиотику. Однако в реальности вероятность такого события ничтожно мала - многочисленные эксперименты и наблюдения в природе относительно подобного горизонтального переноса генов до сих пор давали только отрицательные результаты.

Не стоит забывать, что встраиваемые в растения гены устойчивости "настроены" для экспрессии лишь в эукариотических, но не бактериальных клетках. Надо учесть и то, что эти селективные гены взяты из природных популяций микроорганизмов, где они сейчас широко распространены в результате активного применения антибиотиков в медицинской практике. Поэтому вероятность попадания гена устойчивости к антибиотику в микрофлору человека из природного резервуара несравнимо реальнее, чем при употреблении трансгенных растений. Однако, учитывая настроения общественности, разрабатываются подходы, для исключения присутствия "подозрительных" генов в коммерциализированных трансгенных формах.

В большинстве случаев маркерные гены устойчивости к антибиотикам сейчас заменяют на гены устойчивости к гербицидам. Правда, применение "гербицидных" генов также встречает возражения, но уже защитников окружающей среды. Предложено несколько способов избирательной элиминации маркерного гена после получения желаемого трансгенного растения, когда он фактически уже не нужен.

Очень перспективным представляется замена селективных генов на репортерные при отборе трансгенных форм растений, либо использование альтернативных селективных генов, таких как гены синтеза фитогормонов или гидролиза особых форм полисахаридов при выращивании растений в культуральной среде. Таким образом, даже эта виртуальная опасность, связанная с генами устойчивости к антибиотику, в скором времени перестанет существовать.

Что касается возможной токсичности или аллергенности трансгенных растений, то здесь применяют те же жесткие стандарты, как и для полученных традиционным путем новых сортов культурных растений или новых видов продуктов питания. Никаких особых отличий трансгенных растений от обычных по этим параметрам ожидать не приходится (разве что в лучшую сторону при блокировании синтеза токсинов или аллергенов), да и действительно, как правило, не наблюдается на практике.

Проблема возможного ущерба для окружающей среды имеет несколько аспектов. Во-первых, существует опасение, что устойчивые к гербицидам культурные растения могут при межвидовом опылении передавать эти гены близкородственным сорнякам, которые могут превратиться в неистребимые суперсорняки (superweeds). Хотя вероятность такого нежелательного развития событий для большинства сельскохозяйственных культур очень мала, генные инженеры и ученые-аграрии активно разрабатывают подходы для исключения подобной опасности. Здесь, правда, надо отметить, что данный вопрос также не нов, так как в практике сельского хозяйства уже давно используется ряд устойчивых к гербицидам сортов, полученных путем обычной селекции. При этом никакой экологической катастрофы широкое использование таких устойчивых сортов до сих пор не вызвало.

Тем не менее и в этом случае, чтобы отвести любые возражения от трансгенных растений, пробуют, например, вводить в растения не один, а сразу несколько генов устойчивости к разным гербицидам. Передача нескольких генов сорнякам гораздо менее вероятна, чем одного гена. Кроме того, мультигербицидная устойчивость позволит чередовать разные гербициды при обработке посевов, что не даст возможности для распространения какого-либо определенного гена устойчивости в сорняках.

Предлагается также вводить гены устойчивости не в ядерный, а в хлоропластный геном. Это может предотвратить нежелательный дрейф генов с помощью пыльцы, так как хлоропласты наследуются только по материнской линии.

Еще один генно-инженерный путь борьбы с сорняками без использования генов резистентности к гербицидам вообще – биотрансгенный. Речь идет об использовании мелких животных, например, кроликов, для поедания сорняков на полях. При этом, чтобы оградить от поедания культурные растения, в них можно ввести какой-либо ген, делающий их непривлекательными (запах, вкус) для данного животного. Такой биотрансгенный подход сразу снял бы большинство выдвигаемых сейчас возражений против трансгенных культур.

Близкие по сути экологические возражения касаются трансгенных растений со встроенными "инсектицидными" генами, способных, как считают, спровоцировать у насекомых-вредителей возникновение массовой резистентности. Здесь также предложены действенные способы для уменьшения этой опасности, например, использование генов нескольких разных токсинов и/или индуцибельных промоторов, быстро активирующихся при нападении насекомых на растение. Данная проблема в общем не нова, так как многие из инсектицидов, используемых сейчас на "генном уровне", давно применяют в виде чистого вещества для опрыскивания посевов.

Еще одно нежелательное следствие использования трансгенных растений с генами инсектицидов заключается в том, что пыльца этих растений может быть токсичной и для полезных насекомых, которые данной пыльцой питаются. Некоторые экспериментальные данные говорят о том. что такая опасность действительно существует, хотя о ее возможных масштабах говорить пока трудно. Однако и здесь уже предложены и испытаны адекватные генно-инженерные решения, например, использование трансгеноза через хлоропластную ДНК, или промоторов, не работающих в пыльце.

Надежды, которые возлагаются на генетически модифицированные (ГМ) растения, можно подразделить на два основных направления:

1.Усовершенствование качественных характеристик продукции растениеводства.

2. Увеличение продуктивности и стабильности растениеводства путем повышения резистентности растений к неблагоприятным факторам.

Создание генетически модифицированных растений чаще всего выполняется для решения следующих конкретных задач:

1) В целях увеличения урожайности путем повышения:

а) резистентности к патогенам;

б)резистентности к гербицидам;

в) устойчивости к неблагоприятным температурам, невысокому качеству почв;

г) улучшения характеристики продуктивности (вкусовых и питательных качеств, оптимальный метаболизм).

2) В фармакологических целях:

а) получение продуцентов терапевтических агентов;

б) продуцентов антигенов, обеспечения пищевой «пассивной» иммунизации.

Основные задачи ДНК –технологии в создании ГМ – растений в современных условиях развития сельского хозяйства и общества довольно многообразны и заключаются в следующем:

1. Получение гибридов (совместимость, мужская стерильность).

2. Оптимизация роста и развития растений (изменение габитуса растений – например, высоты, формы листьев и корневой системы и др.; изменения в цветении – например, строении и окраске цветков, времени зацветания).

3. Оптимизация питания растений (фиксация атмосферного азота небобовыми растениями; улучшение поглощения элементов минерального питания; повышение эффективности фотосинтеза).

4. Улучшение качества продукции (изменение состава и/или количества жиров; изменение вкуса и запаха пищевых продуктов; получение новых видов лекарственного сырья; изменение свойств волокна для текстильного сырья; изменение качества и сроков созревания или хранения плодов).

5. Повышение устойчивости к абиотическим факторам стресса (устойчивость к засухе и засолению. Жаростойкость; устойчивость к затоплению; адаптация к холоду; устойчивость к гербицидам; устойчивость к кислотности почв и алюминию; устойчивость к тяжелым металлам).

6. Увеличение устойчивости к биотическим факторам стресса (устойчивость к вредителям4 устойчивость к бактериальным, вирусным и грибным болезням).

Среди генов, определяющих устойчивость к гербицидам, уже клонированы гены устойчивости к таким гербицидам, как глифосат (Раундап). Фосфинотрицин (Биалафос), глифосинат аммония (Баста), сульфонилмочевинные и имидозолиновые препараты. С использованием этих генов уже получены трансгенные соя, кукуруза, хлопчатник и т.д. В России также проходят испытания трансгенные культуры, устойчивые к гербицидам. В Центре «Биоинженерия» создан сорт картофеля, устойчивый к Басте, проходящий в настоящее время полевые испытания.

n Общая площадь выращивания генетически модифицированных (ГМ) трансгенных растений в 2004 г в мире составила 81 млн.га

n В основном, это ГМ, модифицированные в отношении устойчивости к патогенным агентам и гербицидам

Эти исследования способствуют развитию новых подходов в сельском хозяйстве – к диагностике болезней, идентификации генетических признаков пород и сортов для селекции животных и растений с новыми улучшенными свойствами на основе направленного изменения геномов. В современных ДНК технологиях у животных и растений можно выделить три основных направления:

1) ДНК – технологии для управления потоком генетического материала (селекция с помощью молекулярно- генетических маркеров-MAS, в этих целях – картирование, маркирование главных генов количественных признаков- QTL); сохранение биоразнообразия с использованием молекулярно- генетических маркеров; разработка генетически обоснованных программ разведения и подбора родительских форм организмов с учетом данных экологической генетики.

2) ДНК технологии для создания новых форм организмов в целях получения «биореакторов» (продуцентов терапевтически важных для человека белков), изучения генетических механизмов развития и предупреждения различных заболеваний, а также для фундаментальных исследований структурно- функциональной организации генетического материала, межгенных взаимодействий.

3) Днк технологии для направленного получения и размножения желательных генотипов – использование стволовых эмбриональных клеточных линий, направленная модификация определенных генов, получение однояйцевых близнецов и др.

ДНК экология. Ряд экологических и агроэкологических проблем в решении которых большие надежды возлагаются на ДНК технологии, носит комплексный характер. К ним относится проблема повышения плодородия почв. Использование для этих целей удобрений, главным образом, азотистых, не дает желаемого эффекта по двум причинам. Во-первых, химический синтез азотистых удобрений идет с помощью энергоёмкого и дорогостоящего процесса. Во-вторых, для создания в почве нужной концентрации удобрений их вносят в избытке и они в значительном количестве вымываются, что приводит к загрязнению водоёмов и к нежелательным экологическим сдвигам в окружающей среде. В связи с этим ДНК технологиям предстоит разработать способы использования биологической системы фиксации азота для обеспечения солями аммония сельскохозяйственных культур. Возможны несколько вариантов решения этой задачи: применение свободно живущих бактерий, фиксирующих азот, или изолированной модифицированной нитрогеназы (фермент, ведущий биологическую азотфиксацию) в промышленном производстве аммиака; повышение эффективности природных азотфиксирующих бактерий- симбионтов и разработка новых симбиотических ассоциаций; введение генов азотфиксации (nif-генов) в культурные растения.. и др.

1. Перспекивые развития генной инженерии.

2. Что такое рекомбинантные молекулы ДНК?

3. Что такое генетическая трансформация растении?

4. Перечислите основные методы генетической инженерии растений.

5. Охарактеризуйте пути повышения биологической фиксации атмосферного азота.

Литература:

1. Албертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. Т. 1 - 3. М.: Мир, 1994.

2. Анализ генома. Методы / Под ред. К. Дейвиса. М.: Мир, 1990. 246 с.

3. Атанасов А. Биотехнология в растениеводстве. Новосибирск: ИЦиГСО РАН, 1993. – 241 с.

4. Барановов В. С. Генная терапия – медицина XXI века // Соросовский образовательный журнал. № 3. 1999. С. 3 – 68.

5. Бекер М. Е., Лиепиньш Г.К., Райпулис Е.П. Биотехнология. М.: Агропромиздат, 1990. 334 с.

6. Борисюк Н.В. Молекулярно - генетическая конституция соматических гибридов // Биотехнология. Итоги науки и техники ВИНИТИ АН СССР. М., 1988. Т. 9. С. 73 -113.

7. Валиханова Г. Ж. Биотехнология растений. Алматы: Конжык, 1996. 272 с.

8. Глеба Ю. Ю. Биотехнология растений // Соросовский образовательный журнал. № 6. 1998. С. 3 – 8.

9. Глебов О. К. Генетическая трансформация соматических клеток // Методы культивирования клеток. Л.: Наука, 1988.

10. Гольдман И. Л., Разин С. В., Эрнст Л. К., Кадулин С. Г., Гращук М. А. Молекулярно-биологические аспекты проблемы позиционно-независимой экспрессии чужеродных генов в клетках трансгенных животных // Биотехнология. 1994. № 2.

11. Дыбан А. П., Городецкий С. И. Интродукция в геном млекопитающих чужеродных генов: пути и перспективы // Молекулярные и клеточные аспекты биотехнологии. Л.: Наука, 1986. С. 82 - 97.

12. Егоров Н. С., Самуилов В. Д. Современные методы создания промышленных штаммов микроорганизмов // Биотехнология. Кн. 2. М.: Высшая школа, 1988. 208 с.

13. Зверева С. Д., Романов Г. А. Репортерные гены для генетической инженерии растений: хара¬ктеристика и методы тестирования // Физиология растений. 2000. Т. 47, № 3. С. 479-488.

14. Лещинская И. Б. Генетическая инженерия // Соросовский образовательный журнал. 1996. №1. С. 33 - 39.

15. Ли А., Тинланд Б. Интеграция т-ДНК в геном растений: прототип и реальность // Физиология растений. 2000, том 47, № 3. С. 354-359

16. Лутова Л. А., Проворов Н. А., Тиходеев О. Н. и др. Генетика развития растений. СПб.: Наука, 200. 539 с.

17. Льюин Б. Гены. М.: Мир, 1987. 544 с.

18. Пирузян Э. С., Андрианов В. М. Плазмиды агробактерий и генная инженерия растений.М.: Наука, 1985. 280 с.

19. Пирузян Э. С. Генетическая инженерия растений.М.: Знание, 1988. 64 с.

20. Пирузян Э. С. Основы генетической инженерии растений.М.: Наука, 1988. 304 с.

21. Пирузян Э. С. Проблемы экспрессии чужеродных генов в растениях // Итоги науки и техники ВИНИТИ. Сер. Биотехнология. 1990. Т. 23. 176 с.

22. Попов Л. С., Языков А. А. Трансгенные животные как модели для изучения репродукции эмбрионального развития и заболеваний человека // Успехи современной биологии.1999. Т 119, № 1. С. 30-41.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей