Событие вероятность случайного события решения. Примеры решений задач на классическую вероятность

Классическое определение вероятности
Вероятностью события А Р(A) называется отношение числа благоприятствующих этому событию исходов m к общему числу всех единственно возможных и равновозможных элементарных исходов n, Р(A)=.

Задача1

Из 20 экзаменационных билетов 3 содержат простые вопросы. Пять студентов по очереди берут билеты. Найти вероятность того, что хотя бы одному из них достанется билет с простыми вопросами.

Решение:

Для начала найдем вероятность того, что ни одному из студентов не достанется билет с простыми вопросами.
Эта вероятность равна

Первая дробь показывает вероятность того, что первому студенту достался билет со сложными вопросами (их 17 из 20)
Вторая дробь показывает вероятность того, что второму студенту достался билет со сложными вопросами (их осталось 16 из 19)
Третья дробь показывает вероятность того, что третьему студенту достался билет со сложными вопросами (их осталось 15 из 18)
И так далее до пятого студента. Вероятности перемножаются т.к. по условию требуется одновременное выполнение этих условий.

Чтобы получить вероятность того, что хотя бы одному из студентов достанется билет с простыми вопросами надо вычесть полученную выше вероятность из единицы.

Ответ: 0,6009.

Задача2
Из множества всех последовательностей длины 10, состоящих из цифр 0; 1; 2; 3, наудачу выбирается одна. Какова вероятность того, что выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности. Решение

Вероятность события A – «Выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности», согласно классическому определению, равна P (A ) = , где n – полное число равновероятных исходов; m – число исходов, благоприятствующих событию A .

Число способов заполнить 10 позиций в последовательности цифрами 0; 1; 2; 3 составляет, с учетом возможности повторения цифр, n = 410 = 220 = 1048576.

Число способов разместить 5 нулей на 10 позициях в последовательности при условии, что нули обязательно находятся на первом и десятом месте в последовательности, равно числу способов разместить три нуля на восьми свободных позициях в последовательности и равно числу сочетаний из 8 элементов по 3: = = 56.

Оставшиеся 8 – 3 = 5 позиций в последовательности будут заполнены цифрами 1; 2; 3. Число способов осуществить это, с учетом возможности повторения, равно 35 = 243.

Т.о., число исходов, благоприятствующих событию A , равно m = ×35 = 56×243 = 13608.
Искомая вероятность события A равна:
P (A ) = = 0,013.
Ответ: P(A) = = 0,013.

Задача 3.
Имеется 100 одинаковых деталей, среди которых 3 бракованных. Найти вероятность того, что взятая наудачу деталь без брака.

Решение. В этой задаче производится испытание – извлекается одна деталь. Число всех исходов испытания равно 100, т. к. может быть взята любая деталь из 100. Эти исходы несовместны, равновозможны, единственно возможны. Таким образом, Событие - появилась деталь без брака. Всего в партии 97 деталей без брака, следовательно, число исходов, благоприятных появлению события А равно 97 . Итак, Тогда
Задача 4.
Код банковского сейфа состоит из 6 цифр. Найти вероятность того, что наудачу выбранный код содержит различные цифры? Решение. Так как на каждом из шести мест в шестизначном шифре может стоять любая из десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, то всех различных шестизначных номеров по правилу произведения будет . Номера, в которых все цифры различны, - это размещения из 10 элементов (10 цифр) по 6. Поэтому число благоприятствующих исходов . Искомая вероятность равна
Задача 5.
Между шестью фирмами (А, Б, В, Г, Д, Е), занимающимися продажей компьютерной техники, проводится жеребьевка на предмет очередности предъявления своей продукции на выставке потенциальным потребителям. Какова вероятность того, что очередь будет выстроена по порядку, т. е. А, Б, В, Г, Д, Е? Решение. Исход испытания - случайное расположение фирм в очереди. Число всех возможных исходов равно числу всех перестановок из шести элементов (фирм), т.е.Число исходов, благоприятствующих событию : m= 1, если очередь выстроена по порядку. Тогда
Задача 6.
В компании 10 акционеров, из них трое имеют привилегированные акции. На собрание акционеров явилось 6 человек. Найти вероятность того, что среди явившихся акционеров:
а) все трое акционеров с привилегированными акциями отсутствуют;
б) двое присутствуют и один не явился. Решение
а) испытанием является отбор 6 человек из 10 акционеров. Число всех исходов испытания равно числу сочетаний из 10 по 6, т. е.

Пусть событие - среди шести человек нет ни одного с привилегированными акциями. Исход, благоприятствующий событию ,- отбор шести человек среди семи акционеров, не имеющих привилегированных акций. Число всех исходов, благоприятствующих событию А , будет
Искомая вероятность

б) пусть событие - среди шести явившихся акционеров двое с привилегированными акциями, а остальные четыре – с общими акциями. Число всех исходов, Число способов выбора двух человек из необходимых трех Число способов выбора оставшихся четырех акционеров среди семи с общими акциями Тогда число всех способов отбора по правилу произведения
Искомая вероятность равна

Конспект урока

по теме: Случайные события и их вероятности

Цель урока: познакомить студентов с понятиями: события достоверные, невозможные, случайные, абсолютная частота, относительная частота, с классическим определением вероятности, формулой вычисления вероятности событий.

Задачи урока: формирование навыков решения задач на характеристику событий и классическое нахождение вероятности событий; развить у студента умения отличать равновероятные возможности от не равновероятных; воспитание воли, трудолюбия.

Оборудование: мультимедийная доска

Ход урока:

    Организационный момент

    Актуализация знаний учащихся

О теории вероятности

В повседневной жизни, в практической и научной деятельности часто наблюдаются те или иные явления, проводят определенные эксперименты. В процессе наблюдения или эксперимента приходится встречаться с некоторыми случайными событиями, то есть такими событиями, которые могут произойти или не произойти. Например, поражение мишени или промах при выстреле - случайные события. Выигрыш команды во встрече с соперником, проигрыш или ничейный результат - это тоже случайные события. Закономерности случайных событий изучает специальный раздел математики, который называется теорией вероятностей.

Каждый из нас не отделен от окружающего мира глухой стеной, да и в своей жизни мы ежедневно сталкиваемся с вероятностными ситуациями. Проблема выбора наилучшего из нескольких вариантов решения, оценка степени риска и шансов на успех, представление о справедливости и несправедливости в играх и в реальных жизненных ситуациях - все это, несомненно, находится в сфере реальных интересов личности. Подготовку человека к таким проблемам во всем мире осуществляет школьный курс математики, и в частности ее раздел ""математическая статистика"". Математическая статистика - это раздел математики, который изучает методы обработки и классификации статистических данных для получения научно - обоснованных выводов и принятия решений. В связи с тем, что статистические данные зависят от случайных факторов, математическая статистика тесно связана с теорией вероятностей, которая является ее теоретической основой.

Еще первобытный вождь понимал, что у десятка охотников вероятность поразить копьем зверя гораздо больше, чем у одного. Поэтому о охотились тогда коллективно. Необоснованно было бы думать. Что такие древние полководцы, как Александр Македонский или Дмитрий Донской, готовясь к сражению, уповали только на доблесть и искусство воинов. Несомненно, они на основании наблюдений и опыта военного руководства умели как-то оценить вероятность своего возвращения со щитом или на щите, знали, когда принимать бой, когда уклониться от него. Они не были рабами случая, но вместе с тем они были еще очень далеки от теории вероятностей. Позднее, с опытом, человек все чаще и чаще стал взвешивать события, классифицировать их исходы как невозможные, возможные и достоверные. Он заметил, что случайность не так уж редко управляют объективные закономерности.

Зарождение теории вероятностей произошло в поисках ответа на вопрос: как часто наступает то или иное событие в большей серии испытаний со случайными исходами, которые происходят в одинаковых условиях.

    Изучение нового материала

Событие называется случайным, если при одних и тех же условиях оно может как произойти, так и не произойти

Например, «При подбрасывании игрального кубика выпадет 6 очков»

Говоря о любом случайном событии, мы всегда имеем в виду наличие определенных условий, без которых об этом событии вообще не имеет смысла говорить. Этот комплекс условий называют случайным опытом или случайным экспериментом.

В дальнейшем мы будем называть случайным любое событие, связанное со случайным экспериментом.

Достоверное событие, которое происходят при каждом таком эксперименте.

Невозможное событие, которое никогда не могут произойти.

Предметом теории вероятности является изучение вероятных закономерностей массовых однородных случайных событий.

Рассмотрим несколько примеров случайных экспериментов:

Опыт 1. П одбрасывание монеты. В результате такого эксперимента монета может упасть на одну из двух сторон - «орел» или «решка».

Опыт 2. Подбрасывание кубика. Речь в нем идет об игральном кубике, на гранях которого выбиты точки, символизирующие количество очков от 1 до 6.

Опыт 3. Выбор перчаток. В коробке лежит 3 пары одинаковых перчаток, из нее, не глядя, вытаскивают две перчатки.

Кроме случайного события, с опытом связано еще одно важное понятие - элементарный исход. Исходом (или элементарным исходом, элементарным событием ) называется один из взаимоисключающих друг друга вариантов, которым может завершиться случайный эксперимент.

Определим число возможных исходов в каждом из опытов:

Опыт 1 - 2 исхода: «орел» и «решка»

Опыт 2 - 6 исходов: 1, 2, 3, 4, 5, 6

Сколько исходов в 3-м опыте? (2 исхода: «перчатки на одну рук» и «перчатки на разные руки»)

В опыте 3 можно предложить более детальное описание исходов: «обе перчатки на левую руку», «обе перчатки на правую руку», «перчатки на разные руки». А можно - перенумеровать все шесть перчаток и тогда число исходов возрастет до 15.

Неэлементарное событие будет состоять из некоторого множества исходов, которые называются благоприятными для этого события. Благоприятны они в том смысле, что приводят к наступлению данного события.

Определение: Абсолютной частотой случайного события А в серии из n случайных опытов называется число, которое показывает, сколько раз в этой серии произошло событие А

Провели испытания:

Бросили 100 раз игральный кубик. При бросании игрального куба на его верхней грани

кубика выпадает очки:

Исходы испытания: 1. Выпадает одно очко.

2. Выпадает два очка.

3. Выпадает три очка.

4. Выпадает четыре очка.

5. Выпадает пять очков.

6. Выпадает шесть очков.

Случайное событие: - выпадет шесть очков.

Частота события: - в данной серии экспериментов «шестёрка» выпала 17 раз

Относительной частотой - отношение частоты к общему числу испытаний. (в нашем случае )

Т. е. относительной частотой случайного события А в серии из n случайных опытов называется число, которое показывает, какая доля опытов в этой серии завершилась наступлением события А.

Рассмотрим событие В, которое означает выпадение на кубе числа очков, кратного 3. Это событие происходит лишь при двух исходах испытания: когда выпало 3 очка и когда выпало 6 очков, т.е. для события В благоприятными являются два исхода из шести равновозможных исходов.

Отношения числа благоприятных исходов к числу всех равновозможных исходов в рассматриваемом примере равно 2/6. Это отношение вероятностью события В и пишут Р(В) = 2/6.

Обозначение Р происходит от французского слова probabilite, что означает «вероятность».

Если все исходы какого-либо испытания равновозможные, то вероятность события в этом испытании равна отношению числа благоприятных для него исходов к числу всех равновозможных исходов.

Задача . Из 25 экзаменационных билетов по геометрии ученик успел подготовить 11 первых и 8 последних билетов. Какова вероятность того, что на экзамене ему достанется билет, который он не подготовил?

Решение. Общее число равновозможных исходов при выборе билетов на экзамене 25. пусть М - событие, заключающееся в том, что ученику достанется на экзамене билет, к которому он не подготовился. Число благоприятных для события М исходов равно 25 - (11 + 8), т. е. 6. Значит, .

Задача. Антон и Игорь бросают белый и черный игральные кубики и подсчитывают сумму выпавших очков. Они договорились, что если при очередном бросании в сумме выпадет 8 очков, то выигрывает Антон, а если в сумме выпадет 7 очков, то выигрывает Игорь. Можно ли считать, что шансы выиграть в этой игре у мальчиков одинаковы?

Решение. При бросании кубиков на белом кубике может выпасть 1, 2, 3, 4, 5 или 6 очков. Каждому числу очков, выпавших на белом кубике, соответствует шесть вариантов числа очков, выпавших на черном кубике. Все исходы этого испытания приведены в таблице:

(1; 1)

(2; 1)

(3; 1)

(4; 1)

(5; 1)

(6; 1)

(1; 2)

(2; 2)

(3; 2)

(4; 2)

(5; 2)

(6; 2)

(1; 3)

(2; 3)

(3; 3)

(4; 3)

(5; 3)

(6; 3)

(1; 4)

(2; 4)

(3; 4)

(4; 4)

(5; 4)

(6; 4)

(1; 5)

(2; 5)

(3; 5)

(4; 5)

(5; 5)

(6; 5)

(1; 6)

(2; 6)

(3; 6)

(4; 6)

(5; 6)

(6; 6)

В каждой паре на первом месте записано число очков, выпавших на белом кубике, а на втором месте - число очков, выпавших на черном кубике. Указанные исходы испытания равновозможны. Общее число равновозможных исходов равно 36. Пусть событие А означает, что при бросании кубиков в сумме выпало 8 очков, а событие В означает, что в сумме выпало 7 очков.

Для события А благоприятными являются 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2).

Для события В благоприятными являются 6 исходов:

(1; 6), (2; 5), (3; 4), (4; 3), (5; 2), (6; 1).

Отсюда , .

Поэтому шансов выиграть у Игоря больше, чем у Антона.

      1. Закрепление нового материала.

Решить следующие задачи:

      1. Для новогодней лотереи отпечатали 1500 билетов, из которых 120 выигрышных. Какова вероятность того, что купленный билет окажется выигрышным?

        Какова вероятность того, что при бросании игрального кубика выпадет 1 очко? более 3 очков?

      1. Ученик записал в тетради произвольно двузначное число. Какова вероятность того, что сумма цифр этого числа окажется равной 6?

        В коробке лежит 10 шаров, из них 5 черных, 2 белых, остальные – красные. Какова вероятность вытащить черный шар? вытащить не красный шар?

        Андрей и Олег договорились, что если при бросании двух игральных кубиков в сумме выпадет число очков кратное 5, то выигрывает Андрей, а если в сумме выпадет число очков, кратное 6, то выигрывает Олег. Справедлива ли эта игра? У кого из мальчиков больше шансов выиграть? Какова вероятность выигрыша каждого мальчика?

5. Итоги урока.

6. Домашнее задание.

Задача 1. В урне находятся 3 синих, 8 красных и 9 белых шаров одинакового размера и веса, неразличимых на ощупь. Шары тщательно перемешаны. Какова вероятность появления синего, красного и белого шаров при одном вынимании шара из урны?

Задача 2. Наташа купила лотерейный билет, который участвует в розыгрыше 100 призов на 50000 билетов, а Лена – билет, который участвует в розыгрыше трех призов на 70000. У кого больше шансов выиграть?

Случайное событие –

Два события несовместны,

Теория вероятностей

Алгебра случайных событий, диаграммы Вьенна-Эйлера.

Сумма событий А и В называется такое событие, которое происходит, когда происходит либо А, либо В, либо оба события.

Произведением А и В называется событие, которое происходит, если в опыте происходят оба события.

Событием Ā, противоположное событию А называется событие, которое происходит всякий раз, когда не наступает событие А.

A\B (дополнение А до В) – происходит А, но не происходит В

Классическое определение вероятности. Комбинаторика.

– классическое определение вероятности.

m общее число исходов

n – число исходов, благоприятствующих наступлению события А..

Комбинаторика – раздел математики, изучающий расположение объектов в соответствии со специальными правилами и подсчитывает количество способов таких расположений. Комбинаторика возникла в 18 веке. Рассматривается как раздел теории множеств.

Аксиоматическое построение теории вероятностей.

Аксиома 1. «аксиома неотрицательности» P(A)≥0

Аксиома 2. «аксиома нормированности» P(Ω)=1

Аксиома 3. «аксиома аддитивности» Если события А и В несовместны (АВ=Ø), то P(A+B)=P(A)+P(B)

Теорема о вероятности суммы событий.

Для любых событий Р(А+В) = Р(А) + Р(В) – Р(АВ) (док-во в лекции)

Условная вероятность. Зависимые и независимые события. Теоремы о вероятности произведения событий.

Р(А|В) – вероятность события А, если событие В уже произошло – условная вероятность.

Событие А называют независимым , от события В, если вероятность события А не меняется в зависимости от того, происходит или нет событие В.

Теорема умножения вероятностей: Р(АВ) = Р(А|В)·Р(В) = Р(В|А)·Р(А)

Теорема умножения вероятностей независимых событий: Р(АВ) = Р(А)·Р(В)

По определению условной вероятности,

Формула полной вероятности.

Есть события Н 1 , Н 2 ,….,Н n попарно несовместные и образуют полную группу. Такие события называют гипотезами . Пусть есть некоторое событие А. А=АН 1 +АН 2 +…+АН n (слагаемые этой суммы попарно несовместны).

Формула Байеса.

Н 1 , Н 2 ,….,Н n A

Схема Бернулли. Формула Бернулли. Наивероятнейшее число успехов.

Пусть проводится конечное число n последовательных испытаний, в каждом из которых некоторое событие А может либо наступить «успех», либо не наступить «неудача», причем эти испытания удовлетворяют следующим условиям:

· Каждое испытание случайно относительно события А.т.е. до проведения испытания нельзя сказать, появится А или нет;

· Испытания проводятся в одинаковых с вероятностной точки зрения условиях, т.е. вероятность успеха в каждом отдельно взятом испытании равна р и не меняется от испытания к испытанию;

· Испытания независимы, т.е. исход любого из них никак не влияет ни исходы других испытаний.

Такая последовательность испытаний называется схемой Бернулли или биноминальной схемой, а сами испытания – испытаниями Бернулли.

Для расчета вероятности Р n (к) того, что в серии из n испытаний Бернулли окажется ровно k успешных, применяется формула Бернулли: (k = 0,1,2,…n).

10. Понятие случайной величины. Дискретная случайная величина, способы ее задания: ряд распределения.

Случайной величиной называется величина, которая в каждом испытании (при каждом наблюдении) принимает одно из множества своих возможных значений, заранее не известно, какое.

Дискретная с.в. – с.в., множество возможных значений которой конечно или счетно.

Ряд распределения с.в. (ряд распределения вероятности). График ряда распределения задается многоугольником распределения – ломанная, которая соединяет точки с координатами (x i ,p i)

X x 1 x 2 x 3 x k
P p 1 p 2 p 3 p k

Закон распределения с.в.: p k =P({X=x k })

Случайные события, их классификация. Понятие вероятности.

Случайное событие – событие, которое в условиях опыта оно может произойти, а может и не произойти. Причем заранее неизвестно, произойдет оно или нет.

Два события несовместны, если появление одного из них исключает появление другого в том же опыте.

Теория вероятностей изучает закономерности, присущие массовым случайным явлениям. Основные понятия теории вероятностей были заложены в переписке Паскалем и Ферма. Эти понятия зародились в результате попыток математически описать азартные игры.

Событие

Определение 1

Событием будем называть любое утверждение, которое может как произойти, так и не произойти.

Обычно события обозначаются большими английскими буквами.

Пример: $A$ – выпадение числа $6$ на кости.

В связи с тем, что событие может иметь две вариации исхода («произошло» и «не произошло») мы сталкиваемся с понятие вероятности такого события.

Понятие вероятности события

Определение 2

Вероятностью события будем называть число, которое обозначает степень возможности, что такое событие произойдет.

Вероятность события обозначается как $P(A)$

Чтобы определить границы значения этого числа введем понятие достоверного и невозможного событий.

Определение 3

Достоверным событием будем называть такое, которое произойдет при любых обстоятельствах.

Примером такого события может быть следующее: Сумма «точек» на классической кости всегда равняется $21$.

Вероятность такого события мы будем принимать за единицу.

Определение 4

Невозможным событием будем называть такое, которое не может произойти ни при каком обстоятельстве.

Примером такого события может быть следующее: При игре в «очко» игрок набрал $1$ очко.

Вероятность такого события мы будем принимать за $0$.

То есть значение вероятности любого события содержится в отрезке $$.

В современной теории вероятности принято выделять четыре определения для вероятности: классической, геометрическое, статистическое и аксиоматическое определения. Рассмотрим их отдельно.

Классическое определение

Классическое определение связано с такими неопределяемыми понятиями как равновозможность и элементарность события. Интуитивно их можно понять на следующих примерах:

Равновозможность: При подбрасывании монеты она может упасть как аверсом, так и реверсом независимо от внешних условий. То есть можно сказать что вероятность выпадения одной или другой стороны по сути одинакова.

Элементарность события: Если на кости выпадет число $4$, то это означает, что числа $1, 2, 3, 5$ и $6$ уже не выпали.

Определение 5

Вероятностью события будем называть отношения числа n равновозможных элементарных событий исходного события $B$ ко всем элементарным событиям $N$.

Математически это выглядит следующим образом:

$P(B)=\frac{n}{N}$

Геометрическое определение

Геометрическое определение применяется для случая, когда количество равновозможных событий будет бесконечно. Здесь, для введения геометрического определения рассмотрим следующий пример. Для игры дартс берем круг площадью $S$ и разбиваем его на несколько кругов. Какова вероятность, что дротик попадет в центральный круг? (Исключим здесь случаи полного непопадания в поле). Очевидно что равновозможных событий здесь будет бесконечно (как и общих событий) так как круг содержит в себе бесконечное число точек. Пусть площадь центрального круга равняется $s$. Тогда мы сталкиваемся с геометрическим определением вероятности такого события:

$P(B)=\frac{s}{S}$

Статистическое (частотное) определение

Классическое определение довольно часто не учитывает всех возможностей. Рассматривая даже классический пример с бросанием кости мы пренебрегаем возможностью, что не выпадет никакого из шести чисел (кубик просто «остановится» на уголке). Поэтому вводят следующее определение вероятности, учитывающее все возможности. Рассматриваем $N$ наблюдений. Пусть нужное нам событие при этом выпало $n$ раз. Тогда

$P(B)=lim_{N→∞}\frac{n}{N}$

Аксиоматическое определение

Данное определение задается с помощью аксиоматики Колмогорова.

Пусть $X$ - пространство всех элементарных событий. Тогда

Определение 6

Вероятностью события $B$ будем называть такую функцию $P(B)$, которая удовлетворяет следующим условиям:

  1. Данная функция всегда неотрицательна,
  2. Вероятность того, что произойдет хотя бы одно из попарно несовместных событий равняется сумме их вероятностей.
  3. Функция всегда меньше или равна $1$, причем $P(X)=1$.

Изначально, будучи всего лишь собранием сведений и эмпирических наблюдений за игрой в кости, теория вероятности стала основательной наукой. Первыми, кто придал ей математический каркас, были Ферма и Паскаль.

От размышлений о вечном до теории вероятностей

Две личности, которым теория вероятностей обязана многими фундаментальными формулами, Блез Паскаль и Томас Байес, известны как глубоко верующие люди, последний был пресвитерианским священником. Видимо, стремление этих двух ученых доказать ошибочность мнения о некой Фортуне, дарующей удачу своим любимчикам, дало толчок к исследованиям в этой области. Ведь на самом деле любая азартная игра с ее выигрышами и проигрышами — это всего лишь симфония математических принципов.

Благодаря азарту кавалера де Мере, который в равной степени был игроком и человеком небезразличным к науке, Паскаль вынужден был найти способ расчета вероятности. Де Мере интересовал такой вопрос: "Сколько раз нужно выбрасывать попарно две кости, чтобы вероятность получить 12 очков превышала 50%?". Второй вопрос, крайне интересовавший кавалера: "Как разделить ставку между участниками незаконченной игры?" Разумеется, Паскаль успешно ответил на оба вопроса де Мере, который стал невольным зачинателем развития теории вероятностей. Интересно, что персона де Мере так и осталась известна в данной области, а не в литературе.

Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

Что такое случайность

Если рассматривать испытание, которое можно повторить бесконечное число раз, тогда можно дать определение случайному событию. Это один из вероятных исходов опыта.

Опытом является осуществление конкретных действий в неизменных условиях.

Чтобы можно было работать с результатами опыта, события обычно обозначают буквами А, B, C, D, Е…

Вероятность случайного события

Чтобы можно было приступить к математической части вероятности, нужно дать определения всем ее составляющим.

Вероятность события - это выраженная в числовой форме мера возможности появления некоторого события (А или B) в результате опыта. Обозначается вероятность как P(A) или P(B).

В теории вероятностей отличают:

  • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
  • невозможное событие никогда не может произойти Р(Ø) = 0;
  • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

Отношения между событиями

Рассматривают как одно, так и сумму событий А+В, когда событие засчитывается при осуществлении хотя бы одного из составляющих, А или В, или обоих - А и В.

По отношению друг к другу события могут быть:

  • Равновозможными.
  • Совместимыми.
  • Несовместимыми.
  • Противоположными (взаимоисключающими).
  • Зависимыми.

Если два события могут произойти с равной вероятностью, то они равновозможные .

Если появление события А не сводит к нулю вероятность появление события B, то они совместимые.

Если события А и В никогда не происходят одновременно в одном и том же опыте, то их называют несовместимыми . Бросание монеты - хороший пример: появление решки - это автоматически непоявление орла.

Вероятность для суммы таких несовместимых событий состоит из суммы вероятностей каждого из событий:

Р(А+В)=Р(А)+Р(В)

Если наступление одного события делает невозможным наступление другого, то их называют противоположными. Тогда одно из них обозначают как А, а другое - Ā (читается как «не А»). Появление события А означает, что Ā не произошло. Эти два события формируют полную группу с суммой вероятностей, равной 1.

Зависящие события имеют взаимное влияние, уменьшая или увеличивая вероятность друг друга.

Отношения между событиями. Примеры

На примерах гораздо проще понять принципы теории вероятностей и комбинации событий.

Опыт, который будет проводиться, заключается в вытаскивании шариков из ящика, а результата каждого опыта - элементарный исход.

Событие - это один из возможных исходов опыта - красный шар, синий шар, шар с номером шесть и т. д.

Испытание №1. Участвуют 6 шаров, три из которых окрашены в синий цвет, на них нанесены нечетные цифры, а три других - красные с четными цифрами.

Испытание №2. Участвуют 6 шаров синего цвета с цифрами от одного до шести.

Исходя из этого примера, можно назвать комбинации:

  • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» - случайное.
  • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
  • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
  • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости - это совместимые события.
  • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
  • Противоположные события. Наиболее яркий пример этого - подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей - это всегда 1 (полная группа).
  • Зависимые события . Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

Видно, что первое событие существенно влияет на вероятность второго (40% и 60%).

Формула вероятности события

Переход от гадательных размышлений к точным данным происходит посредством перевода темы в математическую плоскость. То есть суждения о случайном событии вроде "большая вероятность" или "минимальная вероятность" можно перевести к конкретным числовым данным. Такой материал уже допустимо оценивать, сравнивать и вводить в более сложные расчеты.

С точки зрения расчета, определение вероятности события - это отношение количества элементарных положительных исходов к количеству всех возможных исходов опыта относительно определенного события. Обозначается вероятность через Р(А), где Р означает слово «probabilite», что с французского переводится как «вероятность».

Итак, формула вероятности события:

Где m - количество благоприятных исходов для события А, n - сумма всех исходов, возможных для этого опыта. При этом вероятность события всегда лежит между 0 и 1:

0 ≤ Р(А)≤ 1.

Расчет вероятности события. Пример

Возьмем исп. №1 с шарами, которое описано ранее: 3 синих шара с цифрами 1/3/5 и 3 красных с цифрами 2/4/6.

На основании этого испытания можно рассматривать несколько разных задач:

  • A - выпадение красного шара. Красных шаров 3, а всего вариантов 6. Это простейший пример, в котором вероятность события равна Р(А)=3/6=0,5.
  • B - выпадение четного числа. Всего четных чисел 3 (2,4,6), а общее количество возможных числовых вариантов - 6. Вероятность этого события равна Р(B)=3/6=0,5.
  • C - выпадение числа, большего, чем 2. Всего таких вариантов 4 (3,4,5,6) из общего количества возможных исходов 6. Вероятность события С равна Р(С)=4/6=0,67.

Как видно из расчетов, событие С имеет большую вероятность, поскольку количество вероятных положительных исходов выше, чем в А и В.

Несовместные события

Такие события не могут одновременно появиться в одном и том же опыте. Как в исп. №1 невозможно одновременно достать синий и красный шар. То есть можно достать либо синий, либо красный шар. Точно так же в игральной кости не могут одновременно появиться четное и нечетное число.

Вероятность двух событий рассматривается как вероятность их суммы или произведения. Суммой таких событий А+В считается такое событие, которое состоит в появлении события А или В, а произведение их АВ - в появлении обоих. Например, появление двух шестерок сразу на гранях двух кубиков в одном броске.

Сумма нескольких событий являет собой событие, предполагающее появление, по крайней мере, одного из них. Произведение нескольких событий - это совместное появление их всех.

В теории вероятности, как правило, употребление союза "и" обозначает сумму, союза "или" - умножение. Формулы с примерами помогут понять логику сложения и умножения в теории вероятностей.

Вероятность суммы несовместных событий

Если рассматривается вероятность несовместных событий, то вероятность суммы событий равна сложению их вероятностей:

Р(А+В)=Р(А)+Р(В)

Например: вычислим вероятность того, что в исп. №1 с синими и красными шарами выпадет число между 1 и 4. Рассчитаем не в одно действие, а суммой вероятностей элементарных составляющих. Итак, в таком опыте всего 6 шаров или 6 всех возможных исходов. Цифры, которые удовлетворяют условие, - 2 и 3. Вероятность выпадения цифры 2 составляет 1/6, вероятность цифра 3 также 1/6. Вероятность того, что выпадет цифра между 1 и 4 равна:

Вероятность суммы несовместимых событий полной группы равна 1.

Так, если в опыте с кубиком сложить вероятности выпадения всех цифр, то в результате получим единицу.

Также это справедливо для противоположных событий, например в опыте с монетой, где одна ее сторона - это событие А, а другая - противоположное событие Ā, как известно,

Р(А) + Р(Ā) = 1

Вероятность произведения несовместных событий

Умножение вероятностей применяют, когда рассматривают появление двух и более несовместных событий в одном наблюдении. Вероятность того, что в нем появятся события A и B одновременно, равна произведению их вероятностей, или:

Р(А*В)=Р(А)*Р(В)

Например, вероятность того, что в исп. №1 в результате двух попыток два раза появится синий шар, равна

То есть вероятность наступления события, когда в результате двух попыток с извлечением шаров будет извлечены только синие шары, равна 25%. Очень легко проделать практические эксперименты этой задачи и увидеть, так ли это на самом деле.

Совместные события

События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга - могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

Вероятность совместных событий рассматривают как вероятность их суммы.

Вероятность суммы совместных событий. Пример

Вероятность суммы событий А и В, которые по отношению к друг другу совместные, равняется сумме вероятностей события за вычетом вероятности их произведения (то есть их совместного осуществления):

Р совместн. (А+В)=Р(А)+Р(В)- Р(АВ)

Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А - попадание в мишень в первой попытке, В - во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

0,4+0,4-0,4*0,4=0,64

Ответ на вопрос следующий: "Вероятность попасть в цель с двух выстрелов равна 64%".

Эта формула вероятности события может быть применима и к несовместным событиям, где вероятность совместно появления события Р(АВ) = 0. Это значит, что вероятность суммы несовместных событий можно считать частным случаем предложенной формулы.

Геометрия вероятности для наглядности

Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения - не редкость в теории вероятностей.

Определение вероятности суммы множества (больше двух) совместных событий довольно громоздкое. Чтобы вычислить ее, нужно воспользоваться формулами, которые предусмотрены для этих случаев.

Зависимые события

Зависимыми события называются в случае, если наступление одного (А) из них влияет на вероятность наступления другого (В). Причем учитывается влияние как появления события А, так и его непоявление. Хотя события и называются зависимыми по определению, но зависимо лишь одно из них (В). Обычная вероятность обозначалась как Р(В) или вероятность независимых событий. В случае с зависимыми вводится новое понятие - условная вероятность Р A (В) , которая является вероятностью зависимого события В при условии произошедшего события А (гипотезы), от которого оно зависит.

Но ведь событие А тоже случайно, поэтому у него также есть вероятность, которую нужно и можно учитывать в осуществляемых расчетах. Далее на примере будет показано, как работать с зависимыми событиями и гипотезой.

Пример расчета вероятности зависимых событий

Хорошим примером для расчета зависимых событий может стать стандартная колода карт.

На примере колоды в 36 карт рассмотрим зависимые события. Нужно определить вероятность того, что вторая карта, извлеченная из колоды, будет бубновой масти, если первая извлеченная:

  1. Бубновая.
  2. Другой масти.

Очевидно, что вероятность второго события В зависит от первого А. Так, если справедлив первый вариант, что в колоде стало на 1 карту (35) и на 1 бубну (8) меньше, вероятность события В:

Р A (В) =8/35=0,23

Если же справедлив второй вариант, то в колоде стало 35 карт, и по-прежнему сохранилось полное число бубен (9), тогда вероятность следующего события В:

Р A (В) =9/35=0,26.

Видно, что если событие А условлено в том, что первая карта - бубна, то вероятность события В уменьшается, и наоборот.

Умножение зависимых событий

Руководствуясь предыдущей главой, мы принимаем первое событие (А) как факт, но если говорить по сути, оно имеет случайный характер. Вероятность этого события, а именно извлечение бубны из колоды карт, равна:

Р(А) = 9/36=1/4

Поскольку теория не существует сама по себе, а призвана служить в практических целях, то справедливо отметить, что чаще всего нужна вероятность произведения зависимых событий.

Согласно теореме о произведении вероятностей зависимых событий, вероятность появления совместно зависимых событий А и В равна вероятности одного события А, умноженная на условную вероятность события В (зависимого от А):

Р(АВ) = Р (А) *Р A (В)

Тогда в примере с колодой вероятность извлечения двух карт с мастью бубны равна:

9/36*8/35=0,0571, или 5,7%

И вероятность извлечения вначале не бубны, а потом бубны, равна:

27/36*9/35=0,19, или 19%

Видно, что вероятность появления события В больше при условии, что первой извлекается карта масти, отличной от бубны. Такой результат вполне логичный и понятный.

Полная вероятность события

Когда задача с условными вероятностями становится многогранной, то обычными методами ее вычислить нельзя. Когда гипотез больше двух, а именно А1,А2,…,А n , ..образует полную группу событий при условии:

  • P(A i)>0, i=1,2,…
  • A i ∩ A j =Ø,i≠j.
  • Σ k A k =Ω.

Итак, формула полной вероятности для события В при полной группе случайных событий А1,А2,…,А n равна:

Взгляд в будущее

Вероятность случайного события крайне необходима во многих сферах науки: эконометрике, статистике, в физике и т. д. Поскольку некоторые процессы невозможно описать детерминировано, так как они сами имеют вероятностный характер, необходимы особые методы работы. Теория вероятности события может быть использована в любой технологичной сфере как способ определить возможность ошибки или неисправности.

Можно сказать, что, узнавая вероятность, мы некоторым образом делаем теоретический шаг в будущее, разглядывая его через призму формул.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей