Строение, свойства и функции воды. Вода как составной компонент биомембран: структура, свойства, биологическая роль

Структура и свойства биологических мембран

Биологическими мембранами называют функциональные структуры клеток, толщина которых составляет несколько молекулярных слоев, ограничивающие цитоплазму и большинство внутриклеточных структур. Они образуют единую внутриклеточную структуру каналов, складок и замкнутых полостей. Толщина биологических мембран редко превышает 10,0 нм, но вследствие плотной упаковки в них основных молекулярных компонентов (белки и липиды), а также большой общей площади клеточных мембран они составляют обычно более половины массы сухих клеток.

Биологические мембраны построены в основном из белков, липидов и углеводов. Белки и липиды составляют основную часть сухой массы мембран. Доля углеводов 10-15 %, причем они связаны с молекулами белка (гликопротеины), либо с молекулами липидов (гликолипиды). В мембранах различного происхождения содержание липидов составляет 25-75 % по массе по отношению к белку.

В состав биомембран входят липиды, относящиеся к трем основным классам: глицерофосфатиды (фосфолипиды), сфинго- и гликолипиды. Редко в состав мембран входят стероиды.

Мембранные липиды имеют сравнительно небольшую полярную (заряженную) головку и длинные незаряженные (неполярные) углеводородные цепи. Полярные головки глицерофосфитидов – фосфатидилхолин, фосфатидилэтаноламин и сфингомиелин. Они несут положительный и отрицательный заряд и при нейтральных значениях рН электронейтральны. Жирные кислоты, входящие в состав липидов, содержат 12-22 углеродных атома. Углеводородные цепи могут быть полностью насыщенными или содержать 1-6 двойных связей. В природных фосфолипидах жирные кислоты, имеющие ненасыщенные связи, обнаруживаются обычно во втором положении глицеринового остатка.

Белковый состав мембран также разнообразен. Большинство мембран содержат разнообразные белки, молекулярная масса которых составляет от 10 000 до 240 000. В зависимости от степени гидрофобности аминокислотных остатков, белки либо частично, либо целиком погружены в липидный слой мембран или пронизывают его насквозь. Наиболее слабо связаны с мембраной периферические белки, которые удерживаются за счет слабых электростатических взаимодействий. Белки, сильно связанные с липидами мембран и глубоко погруженные в них называют интегральными . Они составляют основную массу мембранных белков. В функциональном отношении мембранные белки подразделяются на группы: ферментативные, транспортные и регуляторные . Выделяют также структурные белки, которые выполняют опорно-строительные функции.

Важным структурным компонентом мембран является вода . Воду, входящую в состав мембран, подразделяют на группы: связанную, свободную и захваченную воду . Наименьшей подвижностью обладает связанная вода, присутствующая в виде одиночных молекул в углеводородной зоне мембран. Основная часть связанной воды – это вода гидратных оболочек макромолекул. Гидратные оболочки образуются главным образом вокруг полярных частей молекул липидов и белков. Гидратные оболочки основных структурообразующих липидов состоят обычно из 10-12 молекул воды. Эта вода осмотически неактивна и неспособна растворять какие-либо вещества.


Иногда в составе связанной воды выделяют слабосвязанную воду. Слабосвязанная вода по подвижности и некоторым другим свойствам занимает промежуточное положение между водой гидратных оболочек и жидкой свободной водой.

Свободная вода входит в состав мембран в виде самостоятельной фазы и обладает подвижностью, как и у жидкой воды.

Захваченная вода обнаружена в центральной части мембран между липидными бислоями. По параметрам подвижности она соответствует жидкой свободной воде, но медленно обменивается с внешней средой из-за физической разобщенности.

Функции биомембран:

1.Барьерная – обеспечивает селективный, регулируемый, пассивный и активный обмен веществом с окружающей средой.

2.Матричная – обеспечивает определенное взаимное расположение и ориентацию мембранных белков, их оптимальное взаимодействие.

3.Механическая – обеспечивает прочность и автономность клетки, внутриклеточных структур.

4.Энергетическая – синтез АТФ на внутренних мембранах митохондрий и фотосинтез в мембранах хлоропластов.















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: сформировать представление о целостной картине мира на примере вещества воды, осуществив интеграцию знаний учащихся, полученных в курсах физики, химии и биологии.

Задачи урока:

  1. Образовательные: усвоение всеми учащимися стандартного минимума фактических сведений о строении и функциях воды на всех уровнях организации живого.
  2. Развивающие: совершенствование надпредметных умений сравнивать и анализировать, устанавливать причинно-следственные связи; переводить информацию в графический вид (таблицу), постановки и решения проблем; оперировать понятиями и связывать с ранее полученными знаниями в курсах ботаники, зоологии, анатомии; рассуждать по аналогии, развивать память, произвольное внимание.
  3. Воспитательные: развивать интерес к окружающим явлениям, умение работать в парах и в коллективе, вести диалог, слушать товарищей, оценивать себя и других, формировать культуру речи.

Планируемые результаты: умение характеризовать функции вещества на основе строения и свойств; обобщение полученных знаний о функциях воды на разных уровнях организации живого в форме таблицы.

Тип урока: изучение нового материала и первичное закрепление знаний.

Методы обучения : беседа, рассказ учителя, показ иллюстраций, презентации, индивидуальная работа с текстом, контроль знаний.

Формы организации учебной деятельности : работа в парах (составление обобщающей таблицы), индивидуальная, фронтальная, эксперимент.

Оборудование: фотографии, компьютер, мультимедийный проектор, на столах учащихся раздаточный материал для урока, демонстрационные опыты.

Ход урока

Организационный момент (2 мин.): поздороваться, представиться детям.

Введение (5 мин.):

Вода – самое распространенное и удивительное на Земле вещество (например, расширяется при охлаждении, замерзает уже при 0 0 С, кипит при 100 0 С, выполняет множество функций и даже может хранить информацию). Ею заполнены океаны, моря, озера и реки; пары воды входят и в состав воздуха. Вода содержится в клетках всех живых организмов (животных, растений, грибов, бактерий) в значительных количествах: организме млекопитающих массовая доля воды составляет примерно 70%, а в огурцах и арбузах ее около 90%, в костях человека – 45 %, а в мозге до 90 %.

Цели урока: почему воды больше всего в составе живых организмов? Почему вода покрывает большую часть суши? Как вода сохраняет информацию? На эти вопросы нам с вами предстоит ответить в конце урока.

Как будем работать: беседуем, я рассказываю, показываю иллюстрации и схемы (Презентация), в процессе объяснения заполняем пропущенные слова в распечатках (Приложение 1). В конце урока я проконтролирую, как вы меня поняли. Мы заполним обобщающую таблицу, а я оценю ваши старания.

Демонстрационные опыты:

Опыт № 1:

Цель опыта: доказать растворимость веществ в воде.

Ход опыта: насыпать в колбу с водой соль или сахар. Размешать.

Результат: соль (сахар) полностью растворились.

Вывод: вода – хороший растворитель.

Опыт № 2

Цель опыта: доказать способность воды передвигаться по сосудам стебля за счет корневого давления и присасывающей силы испарения.

Ход опыта: поставить на сутки укоренившийся побег бальзамина в раствор чернил.

Результат: стебель и некоторые листья бальзамина окрасились в синий цвет.

Вывод: вода передвигается по сосудам стебля за счет сил сцепления между молекулами при помощи корневого давления и присасывающей силы испарения..

Опыт № 3:

Цель опыта: доказать способность воды двигаться в область меньшей концентрации растворителя.

Ход опыта: в две чашки Петри поместить одинаковые кусочки картофеля. В одну чашку налить воду, в другую – концентрированный раствор соли.

Результат: картофель в простой воде набух, а в концентрированном растворе соли сморщился.

Вывод: молекулы воды двигаются в область меньшей концентрации растворителя.

Объяснение нового материала (20 мин.):

Проводится в форме беседы. Изучаем вещества по определенному плану (пишу на доске): строение – свойства – функции на системных уровнях организации живого.

Строение молекулы и межмолекулярные связи

Свойства

Молекула воды имеет угловую форму: атомы водорода по отношению к кислороду образуют угол, равный примерно 105 0. Поэтому молекула воды – диполь: та часть молекулы, где находится водород, заряжена положительно, а часть, где находится кислород – отрицательно.

Вода – хороший растворитель. Растворы образуются путем взаимодействия растворенного вещества с частицами растворителя. Процесс растворения твердых веществ в жидкостях можно представить так: под влиянием растворителя от поверхности твердого вещества постепенно отрываются отдельные ионы или молекулы и равномерно распределяются по всему объему растворителя.
Опыты № 1 и № 3

Вода – реагент в реакциях гидролиза (разрушение сложных химических веществ под действием воды до более простых с новыми свойствами) и ряде других реакций
ферменты
крахмал + вода → глюкоза

Водородные связи между молекулами воды

Растворы ряда веществ образуются за счет водородных связей между веществом и молекулами растворителя (сахара, газы)

Водородных связей много, поэтому необходимо много энергии для их разрыва.

Вода обладает хорошей теплопроводностью и большой теплоемкостью . Вода медленно нагревается и медленно остывает.

Водородные связи слабые

Молекулы воды подвижны относительно друг друга

Силы межмолекулярного сцепления образуют пространства между молекулами

Вода практически не сжимается

Образование водородных связей между молекулами воды и других веществ

Вода характеризуется оптимальным для биологических систем значением силы поверхностного натяжения , текучесть воды Опыт № 2

Вода замерзает при 0 0С, при замерзании образуется много водородных связей, возникают пространства между молекулами
Схема строения льда: пространства
между молекулами

Максимальная плотность воды при 4 С° равна 1 г/см3, лед имеет меньшую плотность, и всплывает на ее поверхность.


Функции на системных уровнях организации живого

Вода обеспечивает диффузию - пассивный транспорт веществ в клетку и из нее в область меньшей концентрации (осмос) и пиноцитоз , а также транспорт веществ из клетки.
Когда вещество переходит в раствор, его молекулы или ионы могут двигаться более свободно, и, следовательно, реакционная способность вещества возрастает. Образовавшиеся в результате распада веществ ионы быстро вступают в химические реакции, поэтому вода – основная среда всех биохимических процессов в организме (реакциях обмена веществ).

  1. Обеспечивает подготовительный этап окисления полимеров: гидролиз крахмала до глюкозы, белков до аминокислот.
  2. Вода – источник кислорода, выделяемого при фотосинтезе, и водорода, который используется для восстановления продуктов ассимиляции углекислого газа.
  3. Эндогенная вода, образующаяся при окислении органических веществ.

Гидрофильные вещества проникают внутрь клетки.
Гидрофобные вещества (белки, липиды) могут образовывать с водой поверхности раздела, на которых протекают многие химические реакции. Из гидрофобных веществ состоит клеточная мембрана, которая сохраняет целостность клетки, но избирательно пропускает вещества; жироподобными веществами из копчиковой железы птицы смазывают перья.
Растворяя газы, вода обеспечивает возможность дыхания и фотосинтеза организмов водных экосистем. А сероводород, образующийся при разложении остатков организмов, делает водоем безжизненным.

Вода – терморегулятор.
1) Вода обеспечивает равномерное распределение тепла по всему организму. При изменении температуры окружающей среды, внутри клетки температура оказывается неизменной или ее колебания оказываются значительно меньшими, чем в окружающей среде, поэтому вода обеспечивает сохранение структуры клетки (чем активнее клетка, тем больше в ней воды).
2) Охлаждение организма (потоиспарение, испарение воды растениями) происходит при участии воды.
3) Вода – благоприятная среда обитания для многих живых организмов (непосредственно водная и полости, заполненные водой, в почве).
4) Водные бассейны регулируют температуру на нашей планете. Большая теплоемкость определяет климатическую роль океанов. Поэтому морской климат мягче континентального, погода подвержена меньшим колебаниям температуры

«Смазочный материал» в суставах, плевральной полости и околосердечной сумке.

  1. Создается тургорное давление, которое определяет объем и упругость клеток и тканей.
  2. Гидростатический скелет поддерживает форму у круглых червей, медуз и других организмов.
  3. Околоплодный пузырь с жидкостью поддерживает и защищает плод млекопитающих.

Капиллярный кровоток, движение веществ в капиллярах почвы, восходящий и нисходящий ток растворов в растениях.
Поверхностное натяжение воды образует пленку – часть среды обитания некоторых животных (клоп-водомерка, личинки комаров).

Лед защищает водоемы от промерзания.
Обитатели водных экосистем остаются активными в зимний период.

Вода может хранить информацию (Приложение 2).

Закрепление (13 мин.):

Биологические задачи:

  1. Показать синюю или зеленую хризантему. Как создают такие растения? Являются ли они результатом селекционной работы?
  2. Почему кожа на пальцах при длительном купании сморщивается?
  3. Почему сморщивается яблоко, лежащее в тепле?

Разделить класс на три группы (по рядам). Первая группа выписывает в тетрадь функции воды на уровне живой клетки. Вторая группа – на уровне живого организма. Третья группа – на уровне экосистем и биосферы. В конце работы оценить себя по количеству найденных функций. Работа ведется по парам.

Функции воды

В живой клетке В живом организме В экосистемах и биосфере

1. Транспорт веществ в клетке.

1. Охлаждение организмов.

1. Дыхание и фотосинтез водных организмов.

2. Основная среда всех биохимических процессов.

2. «Смазочный материал» в суставе, плевральной полости, околосердечной сумке, глазном яблоке.

2. Регуляция температуры на планете.

3. Участвует в ряде химических реакций.

3. Гидростатический скелет.

3. Благоприятная среда обитания для живых организмов.

4. Сохранение структуры клетки.

4. Защита плода млекопитающих.

4. Защита водоемов от промерзания.

5. Тургорное давление.

5. Капиллярный кровоток, нисходящий и восходящий ток в растениях.

5. Часть среды обитания животных.

6. Подъем почвенных растворов по капиллярам почвы.

Подведение итогов урока, оценка работы (2 мин.)

Без воды жизнь на нашей планете не могла бы существовать. Вода важна для живых организмов по двум причинам. Во-первых, она является необходимым компонентом живых клеток, и, во-вторых, для многих организмов она служит еще и средой обитания. Именно поэтому следует сказать несколько слов о ее химических и физических свойствах.

Свойства эти довольно необычны и обусловлены главным образом малыми размерами молекул воды , их полярностью и способностью соединяться друг с другом водородными связями. Под полярностью подразумевают неравномерное распределение зарядов в молекуле. У воды один конец молекулы («полюс») несет небольшой положительный заряд, а другой - отрицательный. Такую молекулу называют диполем. У атома кислорода способность притягивать электроны выражена сильнее, чем у водородных атомов, поэтому атом кислорода в молекуле воды стремится оттянуть к себе электроны двух водородных атомов. Электроны заряжены отрицательно, в связи с чем атом кислорода приобретает небольшой отрицательный заряд, а водородные атомы - положительный.

В результате между молекулами воды возникает слабое электростатическое взаимодействие и, поскольку противоположные заряды притягиваются, молекулы как бы «склеиваются». Эти взаимодействия, более слабые, чем обычные ионные или ковалентные связи, называются водородными связями. Водородные связи постоянно образуются, распадаются и вновь возникают в толще воды. И хотя это слабые связи, но их совокупный эффект обусловливает многие необычные физические свойства воды. Учитывая данную особенность воды, мы можем теперь перейти к рассмотрению тех ее свойств, которые важны с биологической точки зрения.

Водородные связи между молекулами воды. А. Две молекулы воды, соединенные водородной связью-6+ - очень маленький положительный заряд; 6~ - очень маленький отрицательный заряд. Б. Сеть из молекул воды, удерживаемых вместе водородными связями. Такие структуры постоянно образуются, распадаются и вновь возникают в воде, находящейся в жидком состоянии.

Биологическое значение воды

Вода как растворитель .Вода - превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, содержащие заряженные частицы (ионы), и некоторые неионные соединения, например сахара, в молекуле которых присутствуют полярные (слабо заряженные) группы (у Сахаров это несущая небольшой отрицательный заряд гидроксильная группа, -ОН). Когда вещество растворяется в воде, молекулы воды окружают ионы и полярные группы, отделяя ионы или молекулы друг от друга.

В растворе молекулы или ионы получают возможность двигаться более свободно, так что реакционная способность вещества возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах . Неполярные вещества, например липиды, отталкиваются водой и в ее присутствии обычно притягиваются друг к другу, иными словами, неполярные вещества гидрофобны (гидрофобный - водоотталкивающий). Подобные гидрофобные взаимодействия играют важную роль в формировании мембран, а также в определении трехмерной структуры многих белковых молекул, нуклеиновых кислот и других клеточных компонентов.

Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различныхвеществ . Эту роль она выполняет в крови, в лимфатической и экскреторной системах, в пищеварительном тракте и во флоэме и ксилеме растений.

Введение

Организм человека почти на 70% состоит из воды. Вода - прежде всего растворитель, в среде которого протекают все элементарные акты жизнедеятельности. К тому же вода - продукт и субстрат энергетического метаболизма в живой клетке. Образно говоря, вода - это арена, на которой разыгрывается действие жизни и участник основных биохимических превращений.

Известно что вода присутствует во всех частях нашего организма, хотя например в коре мозга её 85%, в коже 72%, в зубной эмали всего лишь3%. Это свидетельствует о том, что в наиболее интенсивно работающих органах содержится большее число воды.

Некоторая часть воды в организме может более или менее прочно связываться с растворёнными в ней веществами и с поверхностью биополимерных макромолекул с помощью как водородных связей, так и сил ион-дипольного взаимодействия. Это может приводить к заметному изменению конфигурации, эффективных размеров и весов тех или иных частиц, участвующих в реакции, и в некоторых случаях к существенной модификации их свойств. Например, оказывается, что натриевые каналы нервных клеток, имеющие диаметр около 0,5 нм, практически недоступны для прохождения по ним ионов калия, хотя диаметр самого иона K+ равен 0,26 нм. В действительности ион K+ гидратирован и, следовательно, для расчёта его эффективных размеров к диаметру K+ следует прибавить диаметр молекулы воды 0,28 нм. В итоге комплексный ион + диаметром почти 0,6 нм сквозь натриевый канал пройти не может, тогда как гидратированный ион + диаметром около 0,47 нм свободно диффундирует через этот канал.

Другим примером изменения размеров биологического субстрата может быть молекула ДНК. В частности известно, что на каждый нуклеотид макромолекулы приходится около 50 молекул воды, связанных с ДНК. В общей сложности водная плёнка ДНК увеличивает эффективный диаметр цилиндрической макромолекулы ДНК с 2 нм в безводном состоянии до 2,9 нм в водном растворе, что чрезвычайно важно, например, при считывании с неё информации.

Строение воды

Вода - уникальное вещество и все её аномальные свойства: высокая температура кипения, значительная растворяющая и диссоциирующая способность, малая теплопроводность, высокая теплота испарения и другие обусловлены строением её молекулы и пространственной структурой.

У отдельно взятой молекулы воды есть качество, которое проявляется только в присутствии других молекул: способность образовывать водородные мостики между атомами кислорода двух оказавшихся рядом молекул, так, что атом водорода располагается на отрезке, соединяющем атомы кислорода. Свойство образовывать такие мостики обусловлено наличием особого межмолекулярного взаимодействия, в котором существенную роль играет атом водорода. Это взаимодействие называется водородной связью.

Каждая из присоединённых к данной молекул воды сама способна к присоединению дальнейших молекул. Этот процесс можно называть "полимеризацией". Если только одна из двух возможных связей участвует в присоединении следующей молекулы, а другая остаётся вакантной, то "полимеризация" приведёт к образованию либо зигзагообразной цепи, либо замкнутого кольца. Наименьшее кольцо, по-видимому, может состоять из четырёх молекул, но величина угла 90° делает водородные связи крайне напряжёнными. Практически ненапряжёнными должны быть пятизвенные кольца (угол 108°), а шестизвенные (угол 120°), также как и семизвенные - напряжённые.

Рассмотрение реальных структур гидратов показывает, что, действительно, наиболее устойчиво шестизвенное кольцо, находимое в структурах льдов. Плоские кольца являются привилегией клатратных гидратов, причём во всех известных структурах чаще всего встречаются плоские пятизвенные кольца из молекул воды. Они, как правило, чередуются во всех структурах клатратных гидратов с шестизвенными кольцами, очень редко с четырёхзвенными, а в одном случае - с плоским семизвенным.

В целом структура воды представляется как смесь всевозможных гидратных структур, которые могут в ней образоваться.

В прикладном аспекте это, например, имеет важное значение для понимания действия лекарственных веществ. Как было показано Л. Полингом структурированная клатратная форма воды в межсинаптических образованиях мозга обеспечивает, с одной стороны, передачу импульсов с нейрона на нейрон, а, с другой стороны при попадании в эти участки наркозного вещества такая передача нарушается, то есть наблюдается явление наркоза. Гидратация некоторых структур мозга является одной из основ реализации действия наркотических анальгетиков (морфина).

Биологическое значение воды

Вода как растворитель . Вода - превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, у которых заряженные частицы (ионы) диссоцииируют в воде, когда вещество растворяется, а также некоторые неионные соединения, например сахара и простые спирты, в молекуле которых присутствуют заряженные (полярные) группы (-OH).

Результаты многочисленных исследований строения растворов электролитов свидетельствуют, что при гидратации ионов в водных растворах основную роль играет ближняя гидратация - взаимодействие ионов с ближайшими к ним молекулами воды. Большой интерес представляет выяснение индивидуальных характеристик ближней гидратации различных ионов, как степени связывания молекул воды в гидратных оболочках, так и степени искажения в этих оболочках тетраэдрической льдоподобной структуры чистой воды - связи в молекуле изменяются на неполный угол. Величина угла зависит от иона.

Когда вещество растворяется, его молекулы или ионы получают возможность двигаться более свободно и, соответственно, его реакционная способность возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах. Неполярные вещества, например липиды, не смешиваются с водой и потому могут разделять водные растворы на отдельные компартаменты, подобно тому, как их разделяют мембраны. Неполярные части молекул отталкиваются водой и в её присутствии притягиваются друг к другу, как это бывает, например, когда капельки масла сливаются в более крупные капли; иначе говоря, неполярные молекулы гидрофобны. Подобные гидрофобные взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеиновых кислот и других субклеточных структур.

Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различных веществ. Эту роль она выполняет в крови, в лимфатической и экскреторных системах, в пищеварительном тракте и во флоэме и ксилеме растений.

Большая теплоёмкость . Удельной теплоёмкостью воды называют количество теплоты в джоулях, которое необходимо, чтобы поднять температуру 1 кг воды на 1° C. Вода обладает большой теплоёмкостью (4,184 Дж/г). Это значит, что существенное увеличение тепловой энергии вызывает лишь сравнительно небольшое повышение её температуры. Объясняется такое явление тем, что значительная часть этой энергии расходуется на разрыв водородных связей, ограничивающих подвижность молекул воды.

Большая теплоёмкость воды сводит к минимуму происходящие в ней температурные изменения. Благодаря этому биохимические процессы протекают в меньшем интервале температур, с более постоянной скоростью и опасность нарушения этих процессов от резких отклонений температуры грозит им не столь сильно. Вода служит для многих клеток и организмов средой обитания, для которой характерно довольно значительное постоянство условий.

Большая теплота испарения . Скрытая теплота испарения есть мера количества тепловой энергии, которую необходимо сообщить жидкости для её перехода в пар, то есть для преодоления сил молекулярного сцепления в жидкости. Испарение воды требует довольно значительных количеств энергии (2494 Дж/г). Это объясняется существованием водородных связей между молекулами воды. Именно в силу этого температура кипения воды - вещества со столь малыми молекулами - необычно высока.

Энергия, необходимая молекулам воды для испарения, черпается из их окружения. Таким образом, испарение сопровождается охлаждением. Это явление используется у животных при потоотделении, при тепловой одышке у млекопитающих или у некоторых рептилий (например, у крокодилов), которые на солнцепёке сидят с открытым ртом; возможно, оно играет заметную роль и в охлаждении транспирирующих листьев.

Большая теплота плавления . Скрытая теплота плавления есть мера тепловой энергии, необходимой для расплавления твёрдого вещества (льда). Воде для плавления (таяния) необходимо сравнительно большое количество энергии. Справедливо и обратное: при замерзании вода должна отдать большое количество тепловой энергии. Это уменьшает вероятность замерзания содержимого клеток и окружающей их жидкости. Кристаллы льда особенно губительны для живого, когда они образуются внутри клеток.

Плотность и поведение воды вблизи точки замерзания . Плотность воды (максимальна при +4° С) от +4 до 0° С понижается, поэтому лёд легче воды и в воде не тонет. Вода - единственное вещество, обладающее в жидком состоянии большей плотностью, чем в твёрдом, так как структура льда более рыхлая, чем структура жидкой воды.

Поскольку лёд плавает в воде, он образуется при замерзании сначала на её поверхности и лишь под конец в придонных слоях. Если бы замерзание прудов шло в обратном порядке, снизу вверх, то в областях с умеренным или холодным климатом жизнь в пресноводных водоёмах вообще не могла бы существовать. То обстоятельство, что слои воды, температура которых упала ниже 4° С, поднимаются вверх, обусловливает перемешивание воды в больших водоёмах. Вместе с водой циркулируют и находящиеся в ней питательные вещества, благодаря чему водоёмы заселяются живыми организмами на большую глубину.

После проведения ряда экспериментов было установлено, что связанная вода при температуре ниже точки замерзания не переходит в кристаллическую решётку льда. Это энергетически невыгодно, так как вода достаточно прочно связана с гидрофильными участками растворённых молекул. Это находит применение в криомедицине.

Большое поверхностное натяжение и когезия . Когезия - это сцепление молекул физического тела друг с другом под действием сил притяжения. На поверхности жидкости существует поверхностное натяжение - результат действующих между молекулами сил когезии, направленных внутрь. Благодаря поверхностному натяжению жидкость стремится принять такую форму, чтобы площадь её поверхности была минимальной (в идеале - форму шара). Из всех жидкостей самое большое поверхностное натяжение у воды (7,6 · 10-4 Н/м). Значительная когезия, характерная для молекул воды, играет важную роль в живых клетках, а также при движении воды по сосудам ксилемы в растениях. Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: оно позволяет им удерживаться на воде или скользить по её поверхности.

Вода как реагент . Биологическое значение воды определяется и тем, что она представляет собой один из необходимых метаболитов, то есть участвует в метаболических реакциях. Вода используется, например, в качестве источника водорода в процессе фотосинтеза, а также участвует в реакциях гидролиза.

Особенности талой воды

Уже небольшое нагревание (до 50-60° С) приводит к денатурации белков и прекращает функционирование живых систем. Между тем охлаждение до полного замерзания и даже до абсолютного нуля не приводит к денатурации и не нарушает конфигурацию системы биомолекул, так что жизненная функция после оттаивания сохраняется. Это положение очень важно для консервирования органов и тканей предназначенных для пересадки. Как указывалось выше, вода в твёрдом состоянии имеет другую упорядоченность молекул, чем в жидком и после замерзания и оттаивания приобретает несколько иные биологические свойства, что послужило причиной применения талой воды с лечебной целью. После оттаивания вода имеет более упорядоченную структуру, с зародышами клатратов льда что позволяет ей взаимодействовать с биологическими компонентами и растворёнными веществами, например с другой скоростью. При употреблении талой воды в оганизм попадают мелкие центры льдоподобной структуры, которые в дальнейшем могут разрастись и перевести воду во льдоподобное состояние и тем самым произвести оздоравливающее действие.

Информационная роль воды

При взаимодействии молекул воды со структурными компонентами клетки могут образовываться не только вышеописанные пяти-, шести- и т. д. компонентные структуры, но и трёхмерные образования могут образовываться додекаэдральные формы, которые могут обладать способностью к образованию цепочечных структур, связанных общими пятиугольными сторонами. Подобные цепочки могут существовать и в виде спиралей, что делает возможным реализацию механизма протонной проводимости по этому универсальному токопроводу. Следует также учесть данные С. В. Зенина (1997 г.), что молекулы воды в таких образованиях могут взаимодействовать между собой по принципу зарядовой комплементарности, то есть посредством дальнего кулоновского взаимодействия без образования водородных связей между гранями элементов, что позволяет рассматривать структурированное состояние воды в виде исходной информационной матрицы. Такая объёмная структура имеет возможность переориентироваться, в результате чего происходит явление "памяти воды", так как в новом состоянии отражено кодирующее действие введённых веществ или других возмущающих факторов. Известно, что такие структуры существуют непродолжительное время, но в случае нахождения внутри додекаэдра кислорода или радикалов происходит стабилизация таких структур.

В прикладном аспекте возможности "памяти воды" и передачи информации посредством структурированной воды объясняют действие гомеопатических средств и акупунктурных воздействий.

Как уже говорилось, все вещества при растворении в воде образуют гидратные оболочки и поэтому каждой частице растворённого вещества соответствует конкретная структура гидратной оболочки. Встряхивание такого раствора приводит к схлопыванию микропузырьков с диссоциацией молекул воды и образованию протонов, стабилизирующих такую воду, которая приобретает излучательные свойства и свойства памяти, присущие растворённому веществу. При дальнейшем разведении этого раствора и встряхивании образуются всё более длинные цепи - спирали и в 12-сотенном разведении уже нет самого вещества, но сохраняется память о нём. Введение этой воды в организм передаёт эту информацию в структурированные компоненты воды биологических жидкостей, которая передаётся структурным компонентам клеток. Таким образом, гомеопатический препарат действует прежде всего информационно. Добавление спирта в процессе приготовления гомеопатического средства удлиняет устойчивость во времени структурированной воды.

Не исключено, что спиралеобразные цепи структурированной воды являются возможными компонентами переноса информации из биологически активных точек (точек акупунктуры) на структурные компоненты клеток определённых органов.

Список литературы

  1. Садовничая Л. П. с соавт. Биофизическая химия, К.: Вища школа, 1986. - 271 с.
  2. Габуда С. П. Связанная вода. Факты и гипотезы, Новосибирск: Наука, 1982. - 159 с.
  3. Сб. Структура и роль воды в живом организме, Л.: Изд. ЛГУ, 1966. - 208 с.
  4. Бышевский А. Ш., Терсенов О. А. Биохимия для врача, Екатеринбург: изд. "Уральский рабочий", 1994. - 378 с.
  5. Грин Н., Стаут У., Тейлор Д. Биология, т. 1.: Пер. с англ. - М.: Мир, 1993. - 368 с.
  6. Чанг Р. Физическая химия с приложениями к биологическим системам М.: Мир, 1980. - 662 с.
  7. Зенин С. В. Водная среда как информационная матрица биологических процессов. В кн. Тезисы докладов 1 Международного симпозиума, Пущино, 1997, с. 12-13.
  8. Смит С. Электромагнитная биоинформация и вода. Вестник биофизической медицины, 1994 №1, с. 3-13.
  9. Антонченко В. Я., Ильин В. В. Проблемные вопросы физики воды и гомеопатии. Вестник биофизической медицины, 1992 №1, с.11-13.

Молекула воды состоит из одного атома кислорода и двух атомов водорода (H 2 O). Схематично строение молекулы воды можно изобразить так:

Молекула воды является так называемой полярной молекулой, потому что ее положительный и отрицательный заряды не распределены равномерно вокруг какого-то центра, а размещены асимметрично, образуя положительный и отрицательный полюсы. Рисунок показывает в чрезвычайно упрощенном виде, как присоединены два атома водорода к одному атому кислорода, образуя молекулу воды.

Угол отмеченный на рисунке и расстояние между атомами зависит от агрегатного состояния воды (подразумеваются равновесные параметры, т.к. имеют место постоянные колебания). Так в парообразном состоянии угол равен 104° 40", расстояние O-H - 0,096 нм; во льду угол - 109° 30", расстояние O-H - 0,099 нм. Различие параметром молекулы в парообразном (свободном) состоянии и во льду вызвано влиянием соседних молекул. Также влиянию подвержены и молекулы в жидкой фазе, в которой помимо влияния соседних молекул воды существует сильное влияние растворенных ионов других веществ.

История определения состава молекулы воды

Начиная с истоков химии учёные в продолжение довольно большого периода времени считали воду простым веществом, так как она не могла быть разложена в результате тех реакций, которые были известны в то время. Кроме того, постоянство свойств воды как бы подтверждало это положение.

Весной 1783 г., Канендиш в своей кембриджской лаборатории работал с недавно открытым "жизненным воздухом" - так в то время называли кислород, и "горючим воздухом" (так называли водород). Он смешивал один объем "жизненного воздуха" с двумя объемами "горючего воздуха" и пропускал через смесь электрический разряд. Смесь вспыхивала, и стенки колбы покрывались капельками жидкости. Исследуя жидкость, ученый пришел к выводу, что это чистая вода. Ранее подобное явление описал французский химик Пьер Макер: он ввел в пламя "горючего воздуха" фарфоровое блюдце, на котором образовались капельки жидкости. Каково же было удивление Макера, когда он исследовал образовавшуюся жидкость, и обнаружил что это вода. Получался какой-то парадокс: вода, гасящая огонь, сама образуется при горении. Как мы теперь понимаем, происходил синтез воды из кислорода и водорода:

H 2 + O 2 → 2H 2 O + 136,74 ккал.

В обычных условиях эта реакция не идет, и чтобы водород стал активен, нужно повысить температуру смеси например с помощью электрической искры, как в опытах Кавендиша. Генри Кавендиш располагал достаточными данными, чтобы установить, в каких пропорциях входит кислород и водород в состав воды. Но он этого не сделал. Возможно, ему помешала глубокая вера в теорию флогистона, в рамках которой он пытался интерпретировать свои эксперименты.

Весть об опытах Кавендиша достигла Парижа в июне того же года. Лавуазье сразу же повторил эти опыты, затем провел целую серию подобных экспериментов и через несколько месяцев 12 ноября 1783 г. в день святого Мартина доложил результаты исследований на традиционном собрании Французской академии наук. Любопытно название его доклада, характерное для всей той несуетливой педантичной эпохи великих открытий естествознания: "О природе воды и экспериментах, по-видимому, подтверждающих, что это вещество не является, строго говоря, элементом, а может быть разложено и образовано вновь". Доклад был встречен горячими возражениями - данные Лавуазье явно противоречили уважаемой и популярной в то время теории флогистона. Он сделал правильный вывод, что вода образуется при соединении "горючего газа" с кислородом и содержит (по массе) 15% первого и 85% второго (современные данные - 11,19% и 88,81%).

Через два года Лавуазье вновь вернулся к опытам с водой. Академия наук поставила перед Лавуазье практическую задачу - найти дешевый способ получения водорода как самого легкого газа для нужд нарождающегося воздухоплавания. Лавуазье привлек к работе военного инженера, математика и химика Жана Мёнье. В качестве исходного вещества они выбрали воду - вряд ли можно было отыскать сырье дешевле. Зная, что вода - это соединение водорода с кислородом, они пытались найти способ отнять от нее кислород. Для этой цели годились различные восстановители, наиболее же доступным было металлическое железо. Из реторты-кипятильника водяные пары поступали в раскаленный докрасна на жаровне ружейный ствол с железными опилками. При температуре красного каления (800 °С) железо вступает в реакцию с водяным паром, и выделяется водород:

3Fe + 4H 2 O → Fe 3 O 4 + 4H 2

Образовавшийся при этом водород собирался, а не прореагировавшие водяные пары конденсировались в холодильнике и отделялись в виде конденсата от водорода. Из каждых 100 гран воды получалось 15 гран водорода и 85 гран кислорода (1гран = 62,2мг). Эта работа имела и важное теоретическое значение. Она подтвердила ранее сделанные выводы (из опыта по сжиганию водорода в кислороде под колоколом), что вода содержит 15% водорода и 85% кислорода (современные данные - 11,19% и 88,81%).

Исходя из того, что "горючий воздух" участвует в образовании воды, французский химик Гитон де Морво в 1787 г. предложил назвать его hydrogene (от слов гидро- вода и геннао-рождаю). Русское слово "водород", т.е. "рождающий воду", является точным переводом латинского названия.

Жозеф Луи Гей-Люссак и Александр Гумбольдт, проведя совместные опыты в 1805 году, впервые установили, что для образования воды необходимы два объема водорода и один объем кислорода. Подобные мысли были высказаны и итальянским ученым Амедео Авогадро. В 1842 г. Жан Батист Дюма установил весовое соотношение водород и кислорода в воде как 2:16.

Однако в силу того что с атомными массами элементов в первой половине XIX века было много неразберихи и эта обстановка еще больше осложнилась в связи с введением понятия "эквивалентный вес", то долгое время формула воды записывалась в самых различных вариантах: то как HO, то как H 2 O и даже H 2 O 2 . Об этом писал Д.И. Менделеев: "В 50-х годах одни принимали O=8, другие O=16, если H=1. Вода для первых была HO, перекись водорода HO 2 , для вторых, как ныне, вода H 2 O, перекись водорода H 2 O 2 или HO. Смута, сбивчивость господствовали...".

После Международного конгресса химиков в Карлсруэ, состоявшегося в 1860 году, удалось внести ясность в некоторые вопросы, сыгравшие заметную роль в дальнейшем развитии атомно-молекулярной теории, а следовательно, и в правильном толковании атомарного состава воды. Была установлена единая химическая символика.

Экспериментальные исследования, выполненные в XIX веке весовыми и объемными методами, в конце концов убедительно показали, что вода как химическое соединение может быть выражена формулой H 2 O.

Как уже известно, молекула воды довольно "однобока" - оба атома водорода примыкают к кислороду с одной стороны. Интересно, что эта чрезвычайно важная особенность молекулы воды была установлена чисто умозрительно задолго до эпохи спектроскопических исследований английским профессором Д. Берналом. Он исходил из того, что вода обладает весьма сильным электрическим моментом (в то время, в 1932 г., это было известно). Проще всего, конечно, молекулу воды "сконструировать", расположив все входящие в нее атомы по прямой линия, т.е. H-O-H. "Однако, - пишет Бернал, - водяная молекула подобным образом построена быть не может, ибо при такой структуре молекула, содержащая два положительных атома водорода и отрицательный атом кислорода, была бы электрически нейтральной, не обладала бы определенной направленностью… электрический момент может быть только, если оба атома водорода примыкают к кислороду с одной и той же стороны".

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей