Условный экстремум фнп. Наибольшее и наименьшее значение функции в замкнутой области

Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Условный экстремум. Метод множителей Лагранжа. Нахождение наибольших и наименьших значений.

Лекция 5.

Определение 5.1. Точка М 0 (х 0 , у 0) называется точкой максимума функции z = f (x, y), если f (x o , y o) > f (x, y) для всех точек (х, у) М 0 .

Определение 5.2. Точка М 0 (х 0 , у 0) называется точкой минимума функции z = f (x, y), если f (x o , y o) < f (x, y) для всех точек (х, у) из некоторой окрестности точки М 0 .

Замечание 1. Точки максимума и минимума называются точками экстремума функции нескольких переменных.

Замечание 2. Аналогичным образом определяется точка экстремума для функции от любого количества переменных.

Теорема 5.1 (необходимые условия экстремума). Если М 0 (х 0 , у 0) – точка экстремума функции z = f (x, y), то в этой точке частные производные первого порядка данной функции равны нулю или не существуют.

Доказательство.

Зафиксируем значение переменной у , считая у = у 0 . Тогда функция f (x, y 0) будет функцией одной переменной х , для которой х = х 0 является точкой экстремума. Следовательно, по теореме Ферма или не существует. Аналогично доказывается такое же утверждение для .

Определение 5.3. Точки, принадлежащие области определения функции нескольких переменных, в которых частные производные функции равны нулю или не существуют, называются стационарными точками этой функции.

Замечание. Таким образом, экстремум может достигаться только в стационарных точках, но не обязательно он наблюдается в каждой из них.

Теорема 5.2 (достаточные условия экстремума). Пусть в некоторой окрестности точки М 0 (х 0 , у 0) , являющейся стационарной точкой функции z = f (x, y), эта функция имеет непрерывные частные производные до 3-го порядка включительно. Обозначим Тогда:

1) f (x, y) имеет в точке М 0 максимум, если AC – B ² > 0, A < 0;

2) f (x, y) имеет в точке М 0 минимум, если AC – B ² > 0, A > 0;

3) экстремум в критической точке отсутствует, если AC – B ² < 0;



4) если AC – B ² = 0, необходимо дополнительное исследование.

Доказательство.

Напишем формулу Тейлора второго порядка для функции f (x, y), помня о том, что в стационарной точке частные производные первого порядка равны нулю:

где Если угол между отрезком М 0 М , где М (х 0 + Δх, у 0 + Δу ), и осью Ох обозначить φ, то Δх = Δρ cosφ, Δy = Δρsinφ. При этом формула Тейлора примет вид: . Пусть Тогда можно разделить и умножить выражение в скобках на А . Получим:

Рассмотрим теперь четыре возможных случая:

1) AC-B ² > 0, A < 0. Тогда , и при достаточно малых Δρ. Следовательно, в некоторой окрестности М 0 f (x 0 + Δx, y 0 + Δy) < f (x 0 , y 0) , то есть М 0 – точка максимума.

2) Пусть AC – B ² > 0, A > 0. Тогда , и М 0 – точка минимума.

3) Пусть AC-B ² < 0, A > 0. Рассмотрим приращение аргументов вдоль луча φ = 0. Тогда из (5.1) следует, что , то есть при движении вдоль этого луча функция возрастает. Если же перемещаться вдоль луча такого, что tg φ 0 = -A/B, то , следовательно, при движении вдоль этого луча функция убывает. Значит, точка М 0 не является точкой экстремума.

3`) При AC – B ² < 0, A < 0 доказательство отсутствия экстремума проводится

аналогично предыдущему.

3``) Если AC – B ² < 0, A = 0, то . При этом . Тогда при достаточно малых φ выражение 2B cosφ + C sinφ близко к 2В , то есть сохраняет постоянный знак, а sinφ меняет знак в окрестности точки М 0 . Значит, приращение функции меняет знак в окрестности стационарной точки, которая поэтому не является точкой экстремума.

4) Если AC – B ² = 0, а , , то есть знак приращения определяется знаком 2α 0 . При этом для выяснения вопроса о существовании экстремума необходимо дальнейшее исследование.

Пример. Найдем точки экстремума функции z = x ² - 2xy + 2y ² + 2x. Для поиска стационарных точек решим систему . Итак, стационарная точка (-2,-1). При этом А = 2, В = -2, С = 4. Тогда AC – B ² = 4 > 0, следовательно, в стационарной точке достигается экстремум, а именно минимум (так как A > 0).

Определение 5.4. Если аргументы функции f (x 1 , x 2 ,…, x n) связаны дополнительными условиями в виде m уравнений (m < n) :

φ 1 (х 1 , х 2 ,…, х n) = 0, φ 2 (х 1 , х 2 ,…, х n) = 0, …, φ m (х 1 , х 2 ,…, х n) = 0, (5.2)

где функции φ i имеют непрерывные частные производные, то уравнения (5.2) называются уравнениями связи .

Определение 5.5. Экстремум функции f (x 1 , x 2 ,…, x n) при выполнении условий (5.2) называется условным экстремумом .

Замечание. Можно предложить следующее геометрическое истолкование условного экстремума функции двух переменных: пусть аргументы функции f(x,y) связаны уравнением φ(х,у) = 0, задающим некоторую кривую в плоскости Оху . Восставив из каждой точки этой кривой перпендикуляры к плоскости Оху до пересечения с поверхностью z = f (x,y), получим пространственную кривую, лежащую на поверхности над кривой φ(х,у) = 0. Задача состоит в поиске точек экстремума полученной кривой, которые, разумеется, в общем случае не совпадают с точками безусловного экстремума функции f(x,y).

Определим необходимые условия условного экстремума для функции двух переменных, введя предварительно следующее определение:

Определение 5.6. Функция L (x 1 , x 2 ,…, x n) = f (x 1 , x 2 ,…, x n) + λ 1 φ 1 (x 1 , x 2 ,…, x n) +

+ λ 2 φ 2 (x 1 , x 2 ,…, x n) +…+λ m φ m (x 1 , x 2 ,…, x n) , (5.3)

где λ i – некоторые постоянные, называется функцией Лагранжа , а числа λ i неопределенными множителями Лагранжа .

Теорема 5.3 (необходимые условия условного экстремума). Условный экстремум функции z = f (x, y) при наличии уравнения связи φ (х, у) = 0 может достигаться только в стационарных точках функции Лагранжа L (x, y) = f (x, y) + λφ (x, y).

Доказательство. Уравнение связи задает неявную зависимость у от х , поэтому будем считать, что у есть функция от х : у = у(х). Тогда z есть сложная функция от х , и ее критические точки определяются условием: . (5.4) Из уравнения связи следует, что . (5.5)

Умножим равенство (5.5) на некоторое число λ и сложим с (5.4). Получим:

, или .

Последнее равенство должно выполняться в стационарных точках, откуда следует:

(5.6)

Получена система трех уравнений относительно трех неизвестных: х, у и λ, причем первые два уравнения являются условиями стационарной точки функции Лагранжа. Исключая из системы (5.6) вспомогательное неизвестное λ, находим координаты точек, в которых исходная функция может иметь условный экстремум.

Замечание 1. Проверку наличия условного экстремума в найденной точке можно провести с помощью исследования частных производных второго порядка функции Лагранжа по аналогии с теоремой 5.2.

Замечание 2. Точки, в которых может достигаться условный экстремум функции f (x 1 , x 2 ,…, x n) при выполнении условий (5.2), можно определить как решения системы (5.7)

Пример. Найдем условный экстремум функции z = xy при условии х + у = 1. Составим функцию Лагранжа L(x, y) = xy + λ (x + y – 1). Система (5.6) при этом выглядит так:

Откуда -2λ=1, λ=-0,5, х = у = -λ = 0,5. При этом L (x, y) можно представить в виде L (x, y) = - 0,5 (x – y )² + 0,5 ≤ 0,5, поэтому в найденной стационарной точке L (x, y) имеет максимум, а z = xy – условный максимум.

Для начала рассмотрим случай функции двух переменных. Условным экстремумом функции $z=f(x,y)$ в точке $M_0(x_0;y_0)$ называется экстремум этой функции, достигнутый при условии, что переменные $x$ и $y$ в окрестности данной точки удовлетворяют уравнению связи $\varphi (x,y)=0$.

Название «условный» экстремум связано с тем, что на переменные наложено дополнительное условие $\varphi(x,y)=0$. Если из уравнения связи можно выразить одну переменную через другую, то задача определения условного экстремума сводится к задаче на обычный экстремум функции одной переменной. Например, если из уравнения связи следует $y=\psi(x)$, то подставив $y=\psi(x)$ в $z=f(x,y)$, получим функцию одной переменной $z=f\left(x,\psi(x)\right)$. В общем случае, однако, такой метод малопригоден, поэтому требуется введение нового алгоритма.

Метод множителей Лагранжа для функций двух переменных.

Метод множителей Лагранжа состоит в том, что для отыскания условного экстремума составляют функцию Лагранжа: $F(x,y)=f(x,y)+\lambda\varphi(x,y)$ (параметр $\lambda$ называют множителем Лагранжа). Необходимые условия экстремума задаются системой уравнений, из которой определяются стационарные точки:

$$ \left \{ \begin{aligned} & \frac{\partial F}{\partial x}=0;\\ & \frac{\partial F}{\partial y}=0;\\ & \varphi (x,y)=0. \end{aligned} \right. $$

Достаточным условием, из которого можно выяснить характер экстремума, служит знак $d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2$. Если в стационарной точке $d^2F > 0$, то функция $z=f(x,y)$ имеет в данной точке условный минимум, если же $d^2F < 0$, то условный максимум.

Есть и другой способ для определения характера экстремума. Из уравнения связи получаем: $\varphi_{x}^{"}dx+\varphi_{y}^{"}dy=0$, $dy=-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx$, поэтому в любой стационарной точке имеем:

$$d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=F_{xx}^{""}dx^2+2F_{xy}^{""}dx\left(-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx\right)+F_{yy}^{""}\left(-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx\right)^2=\\ =-\frac{dx^2}{\left(\varphi_{y}^{"} \right)^2}\cdot\left(-(\varphi_{y}^{"})^2 F_{xx}^{""}+2\varphi_{x}^{"}\varphi_{y}^{"}F_{xy}^{""}-(\varphi_{x}^{"})^2 F_{yy}^{""} \right)$$

Второй сомножитель (расположенный в скобке) можно представить в такой форме:

Красным цветом выделены элементы определителя $\left| \begin{array} {cc} F_{xx}^{""} & F_{xy}^{""} \\ F_{xy}^{""} & F_{yy}^{""} \end{array} \right|$, который является гессианом функции Лагранжа. Если $H > 0$, то $d^2F < 0$, что указывает на условный максимум. Аналогично, при $H < 0$ имеем $d^2F > 0$, т.е. имеем условный минимум функции $z=f(x,y)$.

Примечание относительно формы записи определителя $H$. показать\скрыть

$$ H=-\left|\begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right| $$

В этой ситуации сформулированное выше правило изменится следующим образом: если $H > 0$, то функция имеет условный минимум, а при $H < 0$ получим условный максимум функции $z=f(x,y)$. При решении задач следует учитывать такие нюансы.

Алгоритм исследования функции двух переменных на условный экстремум

  1. Составить функцию Лагранжа $F(x,y)=f(x,y)+\lambda\varphi(x,y)$
  2. Решить систему $ \left \{ \begin{aligned} & \frac{\partial F}{\partial x}=0;\\ & \frac{\partial F}{\partial y}=0;\\ & \varphi (x,y)=0. \end{aligned} \right.$
  3. Определить характер экстремума в каждой из найденных в предыдущем пункте стационарных точек. Для этого применить любой из указанных способов:
    • Составить определитель $H$ и выяснить его знак
    • С учетом уравнения связи вычислить знак $d^2F$

Метод множителей Лагранжа для функций n переменных

Допустим, мы имеем функцию $n$ переменных $z=f(x_1,x_2,\ldots,x_n)$ и $m$ уравнений связи ($n > m$):

$$\varphi_1(x_1,x_2,\ldots,x_n)=0; \; \varphi_2(x_1,x_2,\ldots,x_n)=0,\ldots,\varphi_m(x_1,x_2,\ldots,x_n)=0.$$

Обозначив множители Лагранжа как $\lambda_1,\lambda_2,\ldots,\lambda_m$, составим функцию Лагранжа:

$$F(x_1,x_2,\ldots,x_n,\lambda_1,\lambda_2,\ldots,\lambda_m)=f+\lambda_1\varphi_1+\lambda_2\varphi_2+\ldots+\lambda_m\varphi_m$$

Необходимые условия наличия условного экстремума задаются системой уравнений, из которой находятся координаты стационарных точек и значения множителей Лагранжа:

$$\left\{\begin{aligned} & \frac{\partial F}{\partial x_i}=0; (i=\overline{1,n})\\ & \varphi_j=0; (j=\overline{1,m}) \end{aligned} \right.$$

Выяснить, условный минимум или условный максимум имеет функция в найденной точке, можно, как и ранее, посредством знака $d^2F$. Если в найденной точке $d^2F > 0$, то функция имеет условный минимум, если же $d^2F < 0$, - то условный максимум. Можно пойти иным путем, рассмотрев следующую матрицу:

Определитель матрицы $\left| \begin{array} {ccccc} \frac{\partial^2F}{\partial x_{1}^{2}} & \frac{\partial^2F}{\partial x_{1}\partial x_{2}} & \frac{\partial^2F}{\partial x_{1}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{1}\partial x_{n}}\\ \frac{\partial^2F}{\partial x_{2}\partial x_1} & \frac{\partial^2F}{\partial x_{2}^{2}} & \frac{\partial^2F}{\partial x_{2}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{2}\partial x_{n}}\\ \frac{\partial^2F}{\partial x_{3} \partial x_{1}} & \frac{\partial^2F}{\partial x_{3}\partial x_{2}} & \frac{\partial^2F}{\partial x_{3}^{2}} &\ldots & \frac{\partial^2F}{\partial x_{3}\partial x_{n}}\\ \ldots & \ldots & \ldots &\ldots & \ldots\\ \frac{\partial^2F}{\partial x_{n}\partial x_{1}} & \frac{\partial^2F}{\partial x_{n}\partial x_{2}} & \frac{\partial^2F}{\partial x_{n}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{n}^{2}}\\ \end{array} \right|$, выделенной в матрице $L$ красным цветом, есть гессиан функции Лагранжа. Используем следующее правило:

  • Если знаки угловых миноров $H_{2m+1},\; H_{2m+2},\ldots,H_{m+n}$ матрицы $L$ совпадают с знаком $(-1)^m$, то исследуемая стационарная точка является точкой условного минимума функции $z=f(x_1,x_2,x_3,\ldots,x_n)$.
  • Если знаки угловых миноров $H_{2m+1},\; H_{2m+2},\ldots,H_{m+n}$ чередуются, причём знак минора $H_{2m+1}$ совпадает с знаком числа $(-1)^{m+1}$, то исследуемая стационарная точка является точкой условного максимума функции $z=f(x_1,x_2,x_3,\ldots,x_n)$.

Пример №1

Найти условный экстремум функции $z(x,y)=x+3y$ при условии $x^2+y^2=10$.

Геометрическая интерпретация данной задачи такова: требуется найти наибольшее и наименьшее значение аппликаты плоскости $z=x+3y$ для точек ее пересечения с цилиндром $x^2+y^2=10$.

Выразить одну переменную через другую из уравнения связи и подставить ее в функцию $z(x,y)=x+3y$ несколько затруднительно, поэтому будем использовать метод Лагранжа.

Обозначив $\varphi(x,y)=x^2+y^2-10$, составим функцию Лагранжа:

$$ F(x,y)=z(x,y)+\lambda \varphi(x,y)=x+3y+\lambda(x^2+y^2-10);\\ \frac{\partial F}{\partial x}=1+2\lambda x; \frac{\partial F}{\partial y}=3+2\lambda y. $$

Запишем систему уравнений для определения стационарных точек функции Лагранжа:

$$ \left \{ \begin{aligned} & 1+2\lambda x=0;\\ & 3+2\lambda y=0;\\ & x^2+y^2-10=0. \end{aligned} \right. $$

Если предположить $\lambda=0$, то первое уравнение станет таким: $1=0$. Полученное противоречие говорит о том, что $\lambda\neq 0$. При условии $\lambda\neq 0$ из первого и второго уравнений имеем: $x=-\frac{1}{2\lambda}$, $y=-\frac{3}{2\lambda}$. Подставляя полученные значения в третье уравнение, получим:

$$ \left(-\frac{1}{2\lambda} \right)^2+\left(-\frac{3}{2\lambda} \right)^2-10=0;\\ \frac{1}{4\lambda^2}+\frac{9}{4\lambda^2}=10; \lambda^2=\frac{1}{4}; \left[ \begin{aligned} & \lambda_1=-\frac{1}{2};\\ & \lambda_2=\frac{1}{2}. \end{aligned} \right.\\ \begin{aligned} & \lambda_1=-\frac{1}{2}; \; x_1=-\frac{1}{2\lambda_1}=1; \; y_1=-\frac{3}{2\lambda_1}=3;\\ & \lambda_2=\frac{1}{2}; \; x_2=-\frac{1}{2\lambda_2}=-1; \; y_2=-\frac{3}{2\lambda_2}=-3.\end{aligned} $$

Итак, система имеет два решения: $x_1=1;\; y_1=3;\; \lambda_1=-\frac{1}{2}$ и $x_2=-1;\; y_2=-3;\; \lambda_2=\frac{1}{2}$. Выясним характер экстремума в каждой стационарной точке: $M_1(1;3)$ и $M_2(-1;-3)$. Для этого вычислим определитель $H$ в каждой из точек.

$$ \varphi_{x}^{"}=2x;\; \varphi_{y}^{"}=2y;\; F_{xx}^{""}=2\lambda;\; F_{xy}^{""}=0;\; F_{yy}^{""}=2\lambda.\\ H=\left| \begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right|= \left| \begin{array} {ccc} 0 & 2x & 2y\\ 2x & 2\lambda & 0 \\ 2y & 0 & 2\lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right| $$

В точке $M_1(1;3)$ получим: $H=8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & 1 & 3\\ 1 & -1/2 & 0 \\ 3 & 0 & -1/2 \end{array} \right|=40 > 0$, поэтому в точке $M_1(1;3)$ функция $z(x,y)=x+3y$ имеет условный максимум, $z_{\max}=z(1;3)=10$.

Аналогично, в точке $M_2(-1;-3)$ найдем: $H=8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & -1 & -3\\ -1 & 1/2 & 0 \\ -3 & 0 & 1/2 \end{array} \right|=-40$. Так как $H < 0$, то в точке $M_2(-1;-3)$ имеем условный минимум функции $z(x,y)=x+3y$, а именно: $z_{\min}=z(-1;-3)=-10$.

Отмечу, что вместо вычисления значения определителя $H$ в каждой точке, гораздо удобнее раскрыть его в общем виде. Дабы не загромождать текст подробностями, этот способ скрою под примечание.

Запись определителя $H$ в общем виде. показать\скрыть

$$ H=8\cdot\left|\begin{array}{ccc}0&x&y\\x&\lambda&0\\y&0&\lambda\end{array}\right| =8\cdot\left(-\lambda{y^2}-\lambda{x^2}\right) =-8\lambda\cdot\left(y^2+x^2\right). $$

В принципе, уже очевидно, какой знак имеет $H$. Так как ни одна из точек $M_1$ или $M_2$ не совпадает с началом координат, то $y^2+x^2>0$. Следовательно, знак $H$ противоположен знаку $\lambda$. Можно и довести вычисления до конца:

$$ \begin{aligned} &H(M_1)=-8\cdot\left(-\frac{1}{2}\right)\cdot\left(3^2+1^2\right)=40;\\ &H(M_2)=-8\cdot\frac{1}{2}\cdot\left((-3)^2+(-1)^2\right)=-40. \end{aligned} $$

Вопрос о характере экстремума в стационарных точках $M_1(1;3)$ и $M_2(-1;-3)$ можно решить и без использования определителя $H$. Найдем знак $d^2F$ в каждой стационарной точке:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=2\lambda \left(dx^2+dy^2\right) $$

Отмечу, что запись $dx^2$ означает именно $dx$, возведённый в вторую степень, т.е. $\left(dx \right)^2$. Отсюда имеем: $dx^2+dy^2>0$, посему при $\lambda_1=-\frac{1}{2}$ получим $d^2F < 0$. Следовательно, функция имеет в точке $M_1(1;3)$ условный максимум. Аналогично, в точке $M_2(-1;-3)$ получим условный минимум функции $z(x,y)=x+3y$. Отметим, что для определения знака $d^2F$ не пришлось учитывать связь между $dx$ и $dy$, ибо знак $d^2F$ очевиден без дополнительных преобразований. В следующем примере для определения знака $d^2F$ уже будет необходимо учесть связь между $dx$ и $dy$.

Ответ : в точке $(-1;-3)$ функция имеет условный минимум, $z_{\min}=-10$. В точке $(1;3)$ функция имеет условный максимум, $z_{\max}=10$

Пример №2

Найти условный экстремум функции $z(x,y)=3y^3+4x^2-xy$ при условии $x+y=0$.

Первый способ (метод множителей Лагранжа)

Обозначив $\varphi(x,y)=x+y$ составим функцию Лагранжа: $F(x,y)=z(x,y)+\lambda \varphi(x,y)=3y^3+4x^2-xy+\lambda(x+y)$.

$$ \frac{\partial F}{\partial x}=8x-y+\lambda; \; \frac{\partial F}{\partial y}=9y^2-x+\lambda.\\ \left \{ \begin{aligned} & 8x-y+\lambda=0;\\ & 9y^2-x+\lambda=0; \\ & x+y=0. \end{aligned} \right. $$

Решив систему, получим: $x_1=0$, $y_1=0$, $\lambda_1=0$ и $x_2=\frac{10}{9}$, $y_2=-\frac{10}{9}$, $\lambda_2=-10$. Имеем две стационарные точки: $M_1(0;0)$ и $M_2 \left(\frac{10}{9};-\frac{10}{9} \right)$. Выясним характер экстремума в каждой стационарной точке с использованием определителя $H$.

$$ H=\left| \begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right|= \left| \begin{array} {ccc} 0 & 1 & 1\\ 1 & 8 & -1 \\ 1 & -1 & 18y \end{array} \right|=-10-18y $$

В точке $M_1(0;0)$ $H=-10-18\cdot 0=-10 < 0$, поэтому $M_1(0;0)$ есть точка условного минимума функции $z(x,y)=3y^3+4x^2-xy$, $z_{\min}=0$. В точке $M_2\left(\frac{10}{9};-\frac{10}{9}\right)$ $H=10 > 0$, посему в данной точке функция имеет условный максимум, $z_{\max}=\frac{500}{243}$.

Исследуем характер экстремума в каждой из точек иным методом, основываясь на знаке $d^2F$:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=8dx^2-2dxdy+18ydy^2 $$

Из уравнения связи $x+y=0$ имеем: $d(x+y)=0$, $dx+dy=0$, $dy=-dx$.

$$ d^2 F=8dx^2-2dxdy+18ydy^2=8dx^2-2dx(-dx)+18y(-dx)^2=(10+18y)dx^2 $$

Так как $ d^2F \Bigr|_{M_1}=10 dx^2 > 0$, то $M_1(0;0)$ является точкой условного минимума функции $z(x,y)=3y^3+4x^2-xy$. Аналогично, $d^2F \Bigr|_{M_2}=-10 dx^2 < 0$, т.е. $M_2\left(\frac{10}{9}; -\frac{10}{9} \right)$ - точка условного максимума.

Второй способ

Из уравнения связи $x+y=0$ получим: $y=-x$. Подставив $y=-x$ в функцию $z(x,y)=3y^3+4x^2-xy$, получим некоторую функцию переменной $x$. Обозначим эту функцию как $u(x)$:

$$ u(x)=z(x,-x)=3\cdot(-x)^3+4x^2-x\cdot(-x)=-3x^3+5x^2. $$

Таким образом задачу о нахождении условного экстремума функции двух переменных мы свели к задаче определения экстремума функции одной переменной.

$$ u_{x}^{"}=-9x^2+10x;\\ -9x^2+10x=0; \; x\cdot(-9x+10)=0;\\ x_1=0; \; y_1=-x_1=0;\\ x_2=\frac{10}{9}; \; y_2=-x_2=-\frac{10}{9}. $$

Получили точки $M_1(0;0)$ и $M_2\left(\frac{10}{9}; -\frac{10}{9}\right)$. Дальнейшее исследование известно из курса дифференциального исчисления функций одной переменой. Исследуя знак $u_{xx}^{""}$ в каждой стационарной точке или проверяя смену знака $u_{x}^{"}$ в найденных точках, получим те же выводы, что и при решении первым способом. Например, проверим знак $u_{xx}^{""}$:

$$u_{xx}^{""}=-18x+10;\\ u_{xx}^{""}(M_1)=10;\;u_{xx}^{""}(M_2)=-10.$$

Так как $u_{xx}^{""}(M_1)>0$, то $M_1$ - точка минимума функции $u(x)$, при этом $u_{\min}=u(0)=0$. Так как $u_{xx}^{""}(M_2)<0$, то $M_2$ - точка максимума функции $u(x)$, причём $u_{\max}=u\left(\frac{10}{9}\right)=\frac{500}{243}$.

Значения функции $u(x)$ при заданном условии связи совпадают с значениями функции $z(x,y)$, т.е. найденные экстремумы функции $u(x)$ и есть искомые условные экстремумы функции $z(x,y)$.

Ответ : в точке $(0;0)$ функция имеет условный минимум, $z_{\min}=0$. В точке $\left(\frac{10}{9}; -\frac{10}{9} \right)$ функция имеет условный максимум, $z_{\max}=\frac{500}{243}$.

Рассмотрим еще один пример, в котором характер экстремума выясним посредством определения знака $d^2F$.

Пример №3

Найти наибольшее и наименьшее значения функции $z=5xy-4$, если переменные $x$ и $y$ положительны и удовлетворяют уравнению связи $\frac{x^2}{8}+\frac{y^2}{2}-1=0$.

Составим функцию Лагранжа: $F=5xy-4+\lambda \left(\frac{x^2}{8}+\frac{y^2}{2}-1 \right)$. Найдем стационарные точки функции Лагранжа:

$$ F_{x}^{"}=5y+\frac{\lambda x}{4}; \; F_{y}^{"}=5x+\lambda y.\\ \left \{ \begin{aligned} & 5y+\frac{\lambda x}{4}=0;\\ & 5x+\lambda y=0;\\ & \frac{x^2}{8}+\frac{y^2}{2}-1=0;\\ & x > 0; \; y > 0. \end{aligned} \right. $$

Все дальнейшие преобразования осуществляются с учетом $x > 0; \; y > 0$ (это оговорено в условии задачи). Из второго уравнения выразим $\lambda=-\frac{5x}{y}$ и подставим найденное значение в первое уравнение: $5y-\frac{5x}{y}\cdot \frac{x}{4}=0$, $4y^2-x^2=0$, $x=2y$. Подставляя $x=2y$ в третье уравнение, получим: $\frac{4y^2}{8}+\frac{y^2}{2}-1=0$, $y^2=1$, $y=1$.

Так как $y=1$, то $x=2$, $\lambda=-10$. Характер экстремума в точке $(2;1)$ определим, исходя из знака $d^2F$.

$$ F_{xx}^{""}=\frac{\lambda}{4}; \; F_{xy}^{""}=5; \; F_{yy}^{""}=\lambda. $$

Так как $\frac{x^2}{8}+\frac{y^2}{2}-1=0$, то:

$$ d\left(\frac{x^2}{8}+\frac{y^2}{2}-1\right)=0; \; d\left(\frac{x^2}{8} \right)+d\left(\frac{y^2}{2} \right)=0; \; \frac{x}{4}dx+ydy=0; \; dy=-\frac{xdx}{4y}. $$

В принципе, здесь можно сразу подставить координаты стационарной точки $x=2$, $y=1$ и параметра $\lambda=-10$, получив при этом:

$$ F_{xx}^{""}=\frac{-5}{2}; \; F_{xy}^{""}=-10; \; dy=-\frac{dx}{2}.\\ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=-\frac{5}{2}dx^2+10dx\cdot \left(-\frac{dx}{2} \right)-10\cdot \left(-\frac{dx}{2} \right)^2=\\ =-\frac{5}{2}dx^2-5dx^2-\frac{5}{2}dx^2=-10dx^2. $$

Однако в других задачах на условный экстремум стационарных точек может быть несколько. В таких случаях лучше $d^2F$ представить в общем виде, а потом подставлять в полученное выражение координаты каждой из найденных стационарных точек:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=\frac{\lambda}{4}dx^2+10\cdot dx\cdot \frac{-xdx}{4y} +\lambda\cdot \left(-\frac{xdx}{4y} \right)^2=\\ =\frac{\lambda}{4}dx^2-\frac{5x}{2y}dx^2+\lambda \cdot \frac{x^2dx^2}{16y^2}=\left(\frac{\lambda}{4}-\frac{5x}{2y}+\frac{\lambda \cdot x^2}{16y^2} \right)\cdot dx^2 $$

Подставляя $x=2$, $y=1$, $\lambda=-10$, получим:

$$ d^2 F=\left(\frac{-10}{4}-\frac{10}{2}-\frac{10 \cdot 4}{16} \right)\cdot dx^2=-10dx^2. $$

Так как $d^2F=-10\cdot dx^2 < 0$, то точка $(2;1)$ есть точкой условного максимума функции $z=5xy-4$, причём $z_{\max}=10-4=6$.

Ответ : в точке $(2;1)$ функция имеет условный максимум, $z_{\max}=6$.

В следующей части рассмотрим применение метода Лагранжа для функций большего количества переменных.

Определение1 : Говорят, что функция имеет в точке локальный максимум, если существует такая окрестность точки, для которой для всякой точки M с координатами (x, y) выполняется неравенство: . При этом, т. е. приращение функции < 0.

Определение2 : Говорят, что функция имеет в точке локальный минимум, если существует такая окрестность точки, для которой для всякой точки M с координатами (x, y) выполняется неравенство: . При этом, т. е. приращение функции > 0.

Определение 3 : Точки локальных минимума и максимума называются точками экстремума .

Условные Экстремумы

При отыскании экстремумов функции многих переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных.

Пусть заданы функция и линия L на плоскости 0xy . Задача состоит в том, чтобы на линии L найти такую точку P(x, y), в которой значение функции является наибольшим или наименьшим по сравнению со значениями этой функции в точках линии L , находящихся вблизи точки P . Такие точки P называются точками условного экстремума функции на линии L . В отличие от обычной точки экстремума значение функции в точке условного экстремума сравнивается со значениями функции не во всех точках некоторой ее окрестности, а только в тех, которые лежат на линии L .

Совершенно ясно, что точка обычного экстремума (говорят также безусловного экстремума ) является и точкой условного экстремума для любой линии, проходящей через эту точку. Обратное же, разумеется, неверно: точка условного экстремума может и не быть точкой обычного экстремума. Поясню сказанное обычным примером. Графиком функции является верхняя полусфера (Приложение 3 (Рис 3)).

Эта функция имеет максимум в начале координат; ему соответствует вершина M полусферы. Если линия L есть прямая, проходящая через точки А и В (ее уравнение x+y-1=0 ), то геометрически ясно, что для точек этой линии наибольшее значение функции достигается в точке, лежащей посередине между точками А и В. Это и есть точка условного экстремума (максимума) функции на данной линии; ей соответствует точка M 1 на полусфере, и из рисунка видно, что ни о каком обычном экстремуме здесь не может быть речи.

Отметим, что в заключительной части задачи об отыскании наибольшего и наименьшего значений функции в замкнутой области нам приходится находить экстремальные значения функции на границе этой области, т.е. на какой-то линии, и тем самым решать задачу на условный экстремум.

Приступим теперь к практическому отысканию точек условного экстремума функции Z= f(x, y) при условии, что переменные x и y связаны уравнением (x, y) = 0. Это соотношение будем называть уравнение связи. Если из уравнения связи y можно выразить явно через х: y=(x), мы получим функцию одной переменной Z= f(x, (x)) = Ф(х).

Найдя значение х, при которых эта функция достигает экстремума, и определив затем из уравнения связи соответствующие им значения у, мы и получим искомые точки условного экстремума.

Так, в вышеприведенном примере из уравнения связи x+y-1=0 имеем y=1-х. Отсюда

Легко проверить, что z достигает максимума при х = 0,5; но тогда из уравнения связи y=0,5, и мы получаем как раз точку P, найденную из геометрических соображений.

Очень просто решается задача на условный экстремум и тогда, когда уравнение связи можно представить параметрическими уравнениями х=х(t), y=y(t). Подставляя выражения для х и у в данную функцию, снова приходим к задаче отыскания экстремума функции одной переменной.

Если уравнение связи имеет более сложный вид и нам не удается ни явно выразить одну переменную через другую, ни заменить его параметрическими уравнениями, то задача отыскания условного экстремума становится более трудной. Будем по-прежнему считать, что в выражении функции z= f(x, y) переменная (x, y) = 0. Полная производная от функции z= f(x, y) равна:

Где производная y`, найдена по правилу дифференцирования неявной функции. В точках условного экстремума найденная полная производная должна ровняться нулю; это дает одно уравнение, связывающее х и у. Так как они должны удовлетворять еще и уравнению связи, то мы получаем систему двух уравнений с двумя неизвестными

Преобразуем эту систему к гораздо более удобной, записав первое уравнение в виде пропорции и введя новую вспомогательную неизвестную:

(знак минус перед поставлен для удобства). От этих равенств легко перейти к следующей системе:

f` x =(x,y)+` x (x,y)=0, f` y (x,y)+` y (x,y)=0 (*),

которая вместе с уравнением связи (x, y) = 0 образует систему трех уравнений с неизвестными х, у и.

Эти уравнения (*) легче всего запомнить при помощи следующего правила: для того, чтобы найти точки, которые могут быть точками условного экстремума функции

Z= f(x, y) при уравнении связи (x, y) = 0, нужно образовать вспомогательную функцию

Ф(х,у)=f(x,y)+(x,y)

Где -некоторая постоянная, и составить уравнения для отыскания точек экстремума этой функции.

Указанная система уравнений доставляет, как правило, только необходимые условия, т.е. не всякая пара значений х и у, удовлетворяющая этой системе, обязательно является точкой условного экстремума. Достаточные условия для точек условного экстремума я приводить не стану; очень часто конкретное содержание задачи само подсказывает, чем является найденная точка. Описанный прием решения задач на условный экстремум называется методом множителей Лагранжа.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей