Самые сложные алгебраические уравнения. Виды алгебраических уравнений и способы их решения

Алгебраические уравнения – уравнения вида

где - многочлен от переменных . Эти переменные называют неизвестными. Упорядоченный набор чисел удовлетворяет этому уравнению, если при замене на , на и т.д. получается верное числовое равенство (например, упорядоченная тройка чисел (3, 4, 5) удовлетворяет уравнению , поскольку ). Число, удовлетворяющее алгебраическому уравнению с одним неизвестным, называют корнем этого уравнения. Множество всех наборов чисел, удовлетворяющих данному уравнению, есть множество решений этого уравнения. Два алгебраических уравнения, имеющих одно и то же множество решений, называются равносильными. Степень многочлена называется степенью уравнения . Например, - уравнение первой степени, - второй степени, а - четвертой степени. Уравнения первой степени называют также линейными (см. Линейные уравнения).

Алгебраическое уравнение с одним неизвестным имеет конечное число корней, а множество решений алгебраического уравнения с большим числом неизвестных может представлять собой бесконечное множество определенных наборов чисел. Поэтому обычно рассматривают не отдельные алгебраические уравнения с неизвестными, а системы уравнений и ищут наборы чисел, одновременно удовлетворяющие всем уравнениям данной системы. Совокупность всех этих наборов образует множество решений системы. Например, множество решений системы уравнений , таково: .

НИЛЬС ГЕНРИХ АБЕЛЬ
(1802-1829)

В Королевском парке в Осло стоит скульптура сказочного юноши, попирающего двух поверженных чудовищ: по цоколю идет надпись "ABEL".

Что же символизируют чудовища? Первое из них, несомненно – алгебраические уравнения 5-й степени. Еще в последних классах школы Абелю показалось, что он нашел формулу для их решения, подобную тем, которые существуют для уравнений степени, не превышающей четырех. Никто в провинциальной Норвегии не смог проверить доказательство. Абель сам нашел у себя ошибку, он уже знал, что не существует выражения для корней в радикалах. Тогда Абель не знал, что итальянский математик П. Руффини опубликовал доказательство этого утверждения, содержащее, однако, пробелы.

К тому времени Абель был уже студентом университета в Осло (тогда Христиании). Он был совершенно лишен средств к существованию, и первое время стипендию ему выплачивали профессора из собственных средств. Затем он получил государственную стипендию, которая позволила ему провести два года за границей. В Норвегии были люди, которые понимали, сколь одарен Абель, но не было таких, кто мог бы понять его работы. Будучи в Германии. Абель так и не решился посетить К. Гаусса.

Во Франции Абель с интересом собирает математические новости, пользуется каждой возможностью увидеть П. Лапласа или А. Лежандра, С. Пуассона или О. Коши, но серьезных научных контактов с великими математиками установить не удалось. Представленный в академию «Мемуар об одном очень общем классе трансцендентных функций» не был рассмотрен, рукопись Абеля была обнаружена через сто лет. (В скульптуре эту работу олицетворяло второе поверженное чудовище.) Речь шла о рассмотрении некоторого класса замечательных функций, получивших название эллиптических и сыгравших принципиальную роль в дальнейшем развитии математического анализа. Абель не знал, что 30 лет назад в этих вопросах далеко продвинулся Гаусс, но ничего не опубликовал.

В 1827 г. Абель возвращается на родину, и там выясняется, что для него нет работы. Он получает временную работу вместо профессора, уехавшего в длительную экспедицию в Сибирь. Долги становятся его вечным уделом, но работоспособность Абеля не уменьшается. Он продолжает развивать теорию эллиптических функций, близок к пониманию того, какие уравнения решаются в радикалах. Неожиданно появляется соперник К. Г. Якоби, который был на два года моложе Абеля. Якоби публикует замечательные результаты в области, которую Абель считал своей собственностью. И Абель работает еще интенсивнее и наконец сообщает: «Я нокаутировал Якоби».

К работам Абеля пришло признание, математики стали проявлять заботу о его судьбе. Французские академики-математики обращаются с посланием к шведскому королю, правившему Норвегией, с просьбой принять участие в судьбе Абеля. Тем временем у Абеля быстро прогрессирует туберкулез, и 6 апреля 1829 г. его не стало.

Алгебраические уравнения 1-й степени с одним неизвестным решали уже в Древнем Египте и Древнем Вавилоне. Вавилонские писцы умели решать и квадратные уравнения, а также простейшие системы линейных уравнений и уравнений 2-й степени. С помощью особых таблиц они решали и некоторые уравнения 3-й степени, например . В Древней Греции квадратные уравнения решали с помощью геометрических построений. Греческий математик Диофант (III в.) разработал методы решения алгебраических уравнений и систем таких уравнений со многими неизвестными в рациональных числах. Например, он решил в рациональных числах уравнение , систему уравнений , и т.д. (см. Диофантовы уравнения).

ЭВАРИСТ ГАЛУА
(1811-1832)

Он прожил двадцать лет, всего пять лет из них занимался математикой. Математические работы, обессмертившие его имя, занимают чуть более 60 страниц.

В 15 лет Галуа открыл для себя математику и с тех пор, по словам одного из преподавателей, «был одержим демоном математики». Юноша отличался страстностью, неукротимым темпераментом, что постоянно приводило его к конфликтам с окружающими, да и с самим собой.

Галуа не задержался на элементарной математике и мгновенно оказался на уровне современной науки. Ему было 17 лет, когда его учитель Ришар констатировал: «Галуа работает только в высших областях математики». Ему было неполных 18 лет, когда была опубликована его первая работа. И в те же годы Галуа два раза подряд не удается сдать экзамены в Политехническую школу, самое престижное учебное заведение того времени. В 1830 г. он был принят в привилегированную Высшую нормальную школу, готовившую преподавателей. За год учебы в этой школе Галуа написал несколько работ; одна из них, посвященная теории чисел, представляла исключительный интерес.

Бурные июльские дни 1830 г. застали Галуа в стенах Нормальной школы. Его все более захватывает новая страсть – политика. Галуа присоединяется к набиравшей силы республиканской партии - Обществу друзей народа, - недовольной политикой Луи-Филиппа. Возникает конфликт с директором школы, всеми силами противодействовавшим росту политических интересов у учащихся, и в январе 1831 г. Галуа исключают из школы. В январе 1831 г. Галуа передал в Парижскую академию наук рукопись своего исследования о решении уравнений в радикалах. Однако академия отвергла работу Галуа – слишком новы были изложенные там идеи. В это время Галуа находился в тюрьме. После освобождения уже в июле он вновь оказывается в тюрьме Сент-Пелажи после попытки организовать манифестацию 14 июля (в годовщину взятия Бастилии), на сей раз Галуа приговорен к 9 месяцам тюрьмы. За месяц до окончания срока заключения заболевшего Галуа переводят в больницу. В тюрьме он встретил свое двадцатилетие.

29 апреля он выходит на свободу, но ему было суждено прожить еще лишь только один месяц. 30 мая он был тяжело ранен на дуэли. На следующий день он умер. В день перед дуэлью Галуа написал своему другу Огюсту Шевалье письмо: «Публично обратись к Якоби или Гауссу с просьбой дать мнение не об истинности, а о значении тех теорем, развернутого доказательства которых я не даю, и тогда, надеюсь, кто-нибудь сочтет полезным разобраться во всей этой путанице». Работы Галуа содержали окончательное решение проблемы о разрешимости алгебраических уравнений в радикалах, то, что сегодня называется теорией Галуа и составляет одну из самых глубоких глав алгебры. Другое направление в его исследованиях связано с так называемыми абелевыми интегралами и сыграло важную роль в математическом анализе XIX в. Работы Галуа были опубликованы лишь в 1846 г. Ж. Лиувиллем, а признание к ним пришло еще позже, когда с 70-х гг. понятие группы постепенно становится одним из основных математических объектов.

Некоторые геометрические задачи: удвоение куба, трисекция угла (см. Классические задачи древности), построение правильного семиугольника – приводят к решению кубических уравнений. По ходу решения требовалось отыскать точки пересечения конических сечений (эллипсов, парабол и гипербол). Пользуясь геометрическими методами, математики средневекового Востока исследовали решения кубических уравнений. Однако им не удалось вывести формулу для их решения. Первым крупным открытием западноевропейской математики была полученная в XVI в. формула для решения кубического уравнения. Поскольку в то время отрицательные числа еще не получили распространения, пришлось отдельно разбирать такие типы уравнений, как , и т. д. Итальянский математик С. дель-Ферро (1465-1526) решил уравнение и сообщил решение своему зятю и ученику А.-М. Фиоре, который вызвал на математический турнир замечательного математика-самоучку Н. Тарталью (1499- 1557). За несколько дней до турнира Тарталья нашел общий метод решения кубических уравнений и победил, быстро решив все предложенные ему 30 задач. Однако найденная Тартальей формула для решения уравнения

Создание алгебраической символики и обобщение понятия числа вплоть до комплексных чисел позволили в XVII-XVIII вв. исследовать общие свойства алгебраических уравнений высших степеней, а также общие свойства многочленов от одного и нескольких переменных.

Одной из самых важных задач теории алгебраических уравнений в XVII-XVIII вв. было отыскание формулы для решения уравнения 5-й степени. После бесплодных поисков многих поколений алгебраистов усилиями французского ученого XVIII в. Ж. Лагранжа (1736-1813), итальянского ученого П. Руффини (1765-1822) и норвежского математика Н. Абеля в конце XVIII – начале XIX в. было доказано, что не существует формулы, с помощью которой можно выразить корни любого уравнения 5-й степени через коэффициенты уравнения, используя лишь арифметические операции и извлечение корней. Эти исследования были завершены работами Э. Галуа, теория которого позволяет для любого уравнения определить, выражаются ли его корни в радикалах. Еще до этого К.Ф. Гаусс решил проблему выражения в квадратных радикалах корней уравнения , к которому сводится задача о построении с помощью циркуля и линейки правильного -угольника. В частности, невозможно с помощью этих инструментов построить правильный семиугольник, девятиугольник и т.д. – такое построение возможно лишь в случае, когда - простое число вида или произведение различных простых чисел такого вида.

Наряду с поисками формул для решения конкретных уравнений был исследован вопрос о существовании корней у любого алгебраического уравнения. В XVIII в. французский философ и математик Ж. Д"Аламбер доказал, что любое алгебраическое уравнение ненулевой степени с комплексными коэффициентами имеет хотя бы один комплексный корень. В доказательстве Д"Аламбера были пропуски, восполненные потом Гауссом. Из этой теоремы следовало, что любой многочлен -й степени от разлагается в произведение линейных множителей.

В настоящее время теория систем алгебраических уравнений превратилась в самостоятельную область математики, называемую алгебраической геометрией. В ней изучаются линии, поверхности и многообразия высших размерностей, задаваемые системами таких уравнений.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает.

Уравнения, имеющие в своем составе символ \[\sqrtх\], называются уравнениями с квадратным корнем. Квадратным корнем из неотрицательного числа \ называется такое неотрицательное число, квадрат которого равен \. \[(\sqrt a=x, x_2=a; x, a\pm0)\]. Число или выражение, находящееся под знаком корнем всегда должно быть неотрицательным.

Существуют разные способы решения таких уравнений:

Возведение числа в квадрат, умножив для этого число само на себя;

Упрощение корней, если такое возможно, убрав из него полные корни;

Использование мнимых чисел для получения корня чисел отрицательного характера;

Применение алгоритма деления в столбик;

И другие.

Решим для наглядности такое уравнение c квадратным корнем:

\[\sqrt (x-5) =3\]

Умножаем каждую часть уравнения саму на себя, чтобы избавиться от радикалов:

Теперь перед нами простейшее линейное уравнение, которое решается следующим образом:

Где можно решить алгебраическое уравнение онлайн?

Решить алгебраическое уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

1. Алгебраическим уравнением степени называется уравнение вида

где старший коэффициент

Простейшие виды алгебраических уравнений - уравнения 1-й и 2-й степени и даже некоторые специальные виды уравнений 3-й степени - математики могли решать еще в древнем Вавилоне примерно 4000 лет тому назад. Правда, в те далекие времена ученые еще не знали современной математической символики и записывали и само уравнение и процесс его решения словами, а не формулами

2. Произвольное уравнение первой степени

всегда имеет, и притом единственное, решение

В школьном курсе алгебры доказывается следующая теорема о решении произвольного квадратного уравнения

Если число то уравнение имеет ровно два корня, которые даются формулой

Если , то корень только один:

Если же , то корней среди действительных чисел нет.

Математики всегда стараются избежать подобного разделения случаев - их число только увеличилось бы при переходе к уравнениям более высокой степени. Желательна была бы, конечно, формулйровка: «Уравнение второй степени имеет два корня». Ее можно достичь, если, с одной стороны, так расширить понятие числа, что было бы возможным извлекать квадратные корни из отрицательных чисел, а с другой - считать некоторые корни «несколько раз» (ввести понятие кратного корня).

И то и другое можно аккуратно сделать.

3. Общее уравнение третьей степени имеет вид

Разделив обе части этого уравнения на старший коэффициент А - решения от этого, очевидно, не меняются - приходим к уравнению вида

Введением новой неизвестной величины можно избавиться от слагаемого, содержащего неизвестную во второй степени, т. е. привести уравнение к виду

называемому редуцированным уравнением третьей степени.

Сведения об истории открытия формулы корней кубического уравнения неполны и противоречивы. По-видимому, первым (около 1515 г.) нашел метод решения кубических уравнений профессор университета в Болонье С. Ферро (1465-1526). Независимо от него (около 1535 г.) этот метод открыл Н. Тарталья (1500-1557). Однако первым опубликовал формулу корней кубического уравнения Дж. Кардано (1501-1576) (его работа вышла в 1545 г.), и поэтому эта формула носит его имя. Отметим, что, возможно, Кардано был знаком с работами Тартальи и Ферро.

В современных обозначениях метод решения уравнения (1) состоит в следующем.

Введем две новые неизвестные ; положив имеем

Если неизвестные удовлетворяют системе

то они также удовлетворяют уравнению (2). Решить систему (3) очень просто. Возведем первое уравнение в куб и подставим вместо его выражение из второго уравнения; получим, что удовлетворяет квадратному уравнению

Следовательно,

и, наконец,

Это и есть формула Кардано для решения редуцирован ного кубического уравнения (1).

Сразу возникают вопросы:

1) Что делать, если выражение

2) Сколько корней имеет кубическое уравнение?

3) Дает ли формула Кардано (4) все решения уравнения (1)?

Вопросы эти взаимосвязаны. Легко, например, убедиться, что уравнение

имеет решения -5, 2, 3, а как раз в этом случае

так что квадратные корни в формуле Кардано теряют смысл и три указанных корня этой формулой не выражаются.

Все говорит о том, что здесь еще больше, чем в случае квадратных уравнений, нельзя обойтись без бведения каких-то «новых чисел», для которых извлечение квадратного корня всегда возможно. Такие числа были постепенно введены на протяжении XVI-XIX вв. Они называются комплексными числами. В комплексных числах любое алгебраическое уравнение степени имеет ровно корней

Рассмотрим в качестве примера уравнение

Оно играет важную роль в теории и понадобится нам в дальнейшем.

В поле комплексных чисел это уравнение имеет различных решений, которые называются корнями степени из единицы:

Для записи решений кубического уравнения нужны корни 3-й степени из 1. В соответствии с формулами (6) это будут следующие комплексные числа:

Можно показать, что три корня редуцированного кубического уравнения есть

Здесь буквой обозначен - корень 3-й степени из как нетрудно видеть, равно Это и есть окончательные формулы Кардано.

4. В случае уравнений 1-й, 2-й и 3-й степени нам известны формулы, выражающие корни через коэффициенты уравнения при помощи рациональных операций операции извлечения квадратного корня (в случае квадратного уравнения), операций извлечения квадратного и кубического корней (в случае кубического уравнения). Подобные же правила были указаны и для уравнений 4-й степени учеником Дж. Кардано итальянским алгебраистом Л. Феррари (1522-1565). В них также участвуют лишь рациональные операции и операции Все попытки на протяжении почти трех веков (XVI-XVIII) найти подобные правила для уравнений 5-й и более высоких степеней при помощи рациональных операций и операций не увенчались успехом.

Постепенно стали подозревать, что, возможно, вообще нельзя выразить корни уравнения степени для через коэффициенты лишь при помощи операций и у для произвольных натуральных , т. е. что нельзя свести решение таких уравнений рациональными операциями к последовательному решению уравнений специального вида . Корни уравнений , т. е. то, что обычно обозначают через , принято называть радикалами, и поэтому задачу о возможности сведения нахождения корней произвольного уравнения к нахождению уравнений вида принято называть задачей о выражении корней уравнения радикалами.

Попытки доказать или опровергнуть эту гипотезу особенно участились во второй половине XVIII столетия и привели в начале XIX столетия к доказательству невозможности решения общего уравнения 5-й и более высоких степеней в радикалах.

Среди работ XVIII столетия в отмеченном направлении ясностью мысли выделяется мемуар знаменитого французского математика Ж. Л. Лагранжа (1736-1813), озаглавленный «Рассуждения об алгебраическом решении уравнений» (1771-1772). В нем автор подробно и внимательно проанализировал известные методы решения уравнений 2-й, 3-й и 4-й степени в радикалах, чтобы выяснить, как и почему в этих случаях такое решение удается. При этом он отметил следующее обстоятельство: во всех указанных случаях имеются некоторые функции от корней, которые удовлетворяют уравнениям более низкой степени и про которые уже известно, что они решаются в радикалах. Корни исходного уравнения, в свою очередь, могут быть найдены из этих промежуточных функций опять таки из уравнений, решаемых в радикалах.

Далее, Лагранж исследует вопрос, каким образом находятся подобные функции от корней в известных случаях. Оказалось, что это полиномы от корней которые при всевозможных перестановках корней - а их число, как известно, равно - принимают не а меньшее число значений, и даже меньшее, чем - степень исследуемого уравнения). Это произойдет тогда, когда не меняется при некоторых перестановках корней.

Вот каким образом перестановки появились в вопросе о решении уравнения в радикалах!

Если функция от корней принимает только k различных значений то коэффициенты многочлена

по одной известной уже давно, теореме - это так называемая основная теорема о симметрических функциях - должны рационально выражаться через коэффициенты исследуемого уравнения

4 Примеры. 1. Пусть - знакопеременная функция

от корней уравнения степени. Она принимает при всевозможных перестановках корней лишь два значения в зависимости от того, будет ли перестановка четной или нечетной. Следовательно, дискриминант уравнения не меняется при всевозможных перестановках и выражается рационально через коэффициенты исследуемого уравнения. Для квадратного уравнения

для редуцированного кубического уравнения

Знакопеременная функция от корней удовлетворяет уравнениям

соответственно. Мы узнаем выражения под квадратным корнем в формуле для решения квадратного уравнения и с точностью до постоянного множителя в формуле Кардано.

2. Другой пример появился в упоминавшейся выше работе Лагранжа. Это так называемые резольвенты Лагранжа. Мы их рассмотрим, как и сам Лагранж, для случая уравнения 3-й степени. При помощи кубических корней из 1

они определяются следующим образом:

Здесь корни исследуемого кубического уравнения. Обратим внимание на вторую и третью резольвенты. Как нетрудно видеть, при циклической перестановке корней они лишь умножаются на соответственно. Следовательно, выдерживают циклические перестановки и поэтому выражаются рационально через коэффициенты уравнения и через А. Соответствующие представления можно подсчитать. Извлечением кубического корня можно получить . По теореме Виета - это коэффициент при с обратным знаком, т. е. в случае редуцированного кубического уравнения . Зная из системы линейных уравнений (7), можно получить Если осуществить указанные вычисления, то можно убедиться, что вычисляются по формулам Кардано.

Аналогично, только технически более сложно, можно получить решение в радикалах уравнения 4-й степени. Что же касается уравнения 5-й степени, то аналогичное сведение к уравнениям низших степеней получить не удалось. Однако Лагранж не исключал его возможности.

Что такое понижение принципиально неосуществимо, показал в 1799 г. в работе «Общая теория уравнений, в которой доказывается невозможность алгебраического решения общих уравнений выше четвертой степени» итальянский математик П. Руффини (1765-1822). Однако в его доказательстве содержались пробелы, которые, ему не удалось устранить. Аккуратное доказательство было дано лишь в 1826 г. в работе норвежского математика Н. Г. Абеля (1802-1829) «Доказательство невозможности алгебраической разрешимости уравнений, степень которых превышает четвертую».

Глубокую причину несуществования функций от корней, удовлетворяющих уравнениям более низкой степени, чем рассматриваемое (исключение составляет всегда знакопеременная функция, удовлетворяющая квадратному уравнению) вскрыл гениальный французский математик Эварист Галуа (1811-1832). Галуа сопоставил каждому уравнению группу тех перестановок его корней, которые не меняют значения всех полиномов от корней с коэффициентами, зависящими рационально от коэффициентов заданного уравнения. Эту группу называют теперь группой Галуа рассматриваемого уравнения.

Понятие группы Галуа уравнения можно ввести следующим образом. Пусть - алгебраическое уравнение некоторой степени (левая часть этого уравнения) - полином степени .

Коэффициенты полинома - числа должны принадлежать одновременно какому-либо числовому полю - непустому множеству чисел, замкнутому относительно операций сложения, умножения, вычитания и деления на число, отличное от 0. Числовым полем является, например, множество Q всех рациональных чисел. Поскольку необходимые понятия вводятся для всех числовых полей единообразно, достаточно рассмотреть лишь одно из них. Поэтому мы будем считать, что коэффициенты многочлена - рациональные числа. Кроме того, можно предполагать (это доказывается в курсах алгебры), что Все корни многочлена - различны, т. е. уравнение имеет различных, вообще говоря, комплексных корней

Рациональным отношением между корнями называется всякое равенство вида

где - знак суммирования, сумма, стоящая в левой части этого равенства, берется по каким-то наборам показателей , а все коэффициенты - рациональные числа. Иными словами, в левой части рационального отношения (8) стоит некоторый многочлен от с рациональными коэффициентами. Множество всех рациональных отношений между корнями уравнения зависит только от многочлена . Понятно, что почленная сумма и почленное произведение рациональных отношений между корнями некоторого многочлена тоже будут рациональными отношениями между его корнями. Поскольку пример ненулевого рационального отношения легко указать для любого уравнения , отсюда получаем, что произвольному уравнению соответствует бесконечное множество рациональных отношений между его корнями.

Пусть теперь

Некоторая перестановка на множестве корней уравнения . Подействуем этой перестановкой на левую часть выражения (8). Каждый одночлен под действием перестановки преобразуется в одночлен (коэффициенты при всех одночленах остаются неизменными).

Левая часть соотношения (8) преобразуется в следующее выражение:

Это число может оказаться отличным от нуля. Все перестановки из симметрической группы на множестве корней уравнения можно разделить на две части - те, что сохраняют рациональное отношение (8), и те, что нарушают его. Если перестановки сохраняют рациональное отношение (8), то очевидно, что их произведение и обратная перестановка к каждой из них также будут преобразовывать это равенство в верхнее соотношение. такого же вида. Иными словами, множество всевозможных перестановок, сохраняющих соотношение (8) (поскольку оно не пустое!), образует группу. Эта группа и называется группой Галуа уравнения

По свойствам этой группы Галуа можно определить, будет ли данное уравнение разрешимо в радикалах или нет. Полученный признак содержит в виде частых случаев все ранее известные сведения о разрешимости или неразрешимости в радикалах алгебраических уравнений.

Но не исключается, что некоторые уравнения с числовыми коэффициентами разрешимы в радикалах. Возможно это или нет, устанавливается опять-таки на основании признака, найденного Галуа.

Исследование свойств групп Галуа выходит за рамки нашего изложения. Отметим только, что если группа Галуа данного уравнения является абелевой, то уравнение разрешимо в радикалах. Разрешимыми в радикалах будут уравнения, группа Галуа которых является одной из групп диэдра, группой симметрий тетраэдра и куба. Это примеры так называемых разрешимых групп, т. е. групп Галуа уравнений, разрешимых в радикалах. Наиболее «маленьким» примером неразрешимой группы является знакопеременная группа состоящая из 60 перестановок; неразрешимой является также и содержащая ее группа Можно сказать, что в неразрешимости общего уравнения 5-й степени в радикалах «виновны» именно эти группы: среди уравнений 5-й степени имеются такие, группа Галуа которых совпадает с или Примером такого уравнения является

Поскольку группа Галуа уравнения является столь важной его характеристикой, возникает вопрос, как же строить эту группу по уравнению? Оказывается, что нет необходимости проверять, выдерживают ли все рациональные отношения от корней уравнения данную перестановку его корней. Достаточно ограничиться такой проверкой для конечной и вполне обозримой части этих отношений. С доказательством последнего и других упомянутых здесь утверждений можно познакомиться по одной из книг, посвященных изложению теории Галуа и указанных в списке литературы.

Упражнения

1. Используя дискриминант D кубического уравнения, невозможно установить, все корни этого уравнения совпадают, - или же совпадают лишь два из них. Приведите пример выражения; составленного из корней данного уравнения, которое позволяло бы это делать.

5. Привести примеры числовых полей, отличных от поля рациональных чисел Q. Проверить, что всевозможные числа вида

образуют числовое поле.

6. Доказать, что если квадратный корень из дискриминанта многочлена является рациональным числом, то группа Галуа этого многочлена целиком состоит из четных перестановок.

Наз. коэффициентами уравнения и являются данными, хназ. неизвестным и является искомым. Коэффициенты А. у. (1) предполагаются не все равными нулю. Если то наз. степенью уравнения.

Значения неизвестного х, к-рые удовлетворяют уравнению (1), т. е. при подстановке вместо хобращают уравнение в тождество, наз. корнями уравнения (1), а также корнями многочлена

f n (x) = a 0 x n + a 1 x n-1 +...+a n . (2)

Корни многочлена связаны с его коэффициентами по формулам Виета (см. Виета теорема ). Решить уравнение - значит найти все его корни, лежащие в рассматриваемой области значений неизвестного.

Для приложений наиболее важен случай, когда коэффициенты и корни уравнения - числа той или иной природы (напр., рациональные, действительные или комплексные). Рассматривается также и случай, когда коэффициенты и корни - элементы произвольного поля. Если данное число (или элемент поля) с - корень многочлена f n (х), то согласно Безу теореме f n (х).делится на х- с без остатка. Деление можно выполнять по Горнера схеме.

Число (или элемент поля) с наз. k-к ратным корнем многочлена f(x)(k - натуральное число), если f(x).делится на ( х- с ) k , но не делится на (x-с) k+1 . Корни кратности 1 наз. простыми корнями многочлена.

Каждый многочлен f(x).степени n>0 с коэффициентами из поля Римеет в Рне более пкорней, считая каждый корень столько раз, какова его кратность (и, значит, не более празличных корней).

В алгебраически замкнутом поле каждый многочлен степени пимеет ровно пкорней (считая их кратность). В частности, это справедливо для поля комплексных чисел.

Уравнение (1) степени пс коэффициентами из поля Рназ. неприводимым над полем Р, если многочлен (2) неприводим над этим полем, т. е. не может быть представлен в виде произведения других многочленов над полем Р, степени к-рых меньше п. В противном случае многочлен и соответствующее уравнение наз. приводимыми. Многочлены нулевой степени и сам не причисляются ни к приводимым, ни к неприводимым. Свойство данного многочлена быть приводимым или неприводимым над полем Рзависит от рассматриваемого поля. Так, многочлен х 2 -2 неприводим над полем рациональных чисел, т. к. иначе он имел бы рациональные корни, но приводим над полем действительных чисел: х 2 - 2=(х+ Ц2 )( х- Ц2 ) . Аналогично, многочлен х 2 + 1 неприводим над полем действительных чисел, но приводим над полем комплексных чисел. Вообще, над полем комплексных чисел неприводимы только многочлены 1-й степени, и всякий многочлен может быть разложен на линейные множители. Над полем действительных чисел неприводимы только многочлены 1-й степени и многочлены 2-й степени, не имеющие действительных корней (и всякий многочлен разлагается в линейных и неприводимых квадратных многочленов). Над полем рациональных чисел существуют неприводимые многочлены любых степеней, таковы, напр., многочлены вида Неприводимость многочлена над полем рациональных чисел устанавливается критерием Эйзенштейна: если для многочлена (2) степени с целыми коэффициентами существует р такое, что старший не делится на р, все остальные коэффициенты делятся на , а свободный член не делится на то этот многочлен не-нриводим над полем рациональных чисел.

Пусть Р - произвольное поле. Для любого многочлена степени неприводимого над полем Р, существует такое расширение поля Р, в к-ром содержится хотя бы один корень многочлена более того, существует многочлена т. е. поля Р, в к-ром этот многочлен может быть разложен на линейные множители. Любое поле имеет алгебраически замкнутое .

Разрешимость алгебраических уравнений в радикалах. Всякое А. у. степени, не превосходящей 4, решается в радикалах. Решение задач, приводящихся к частным видам уравнении 2-й и 3-й степеней, можно найти еще в древнем Вавилоне (2000 лет до н. э.) (см. Квадратное уравнение, Кубическое уравнение). Первое изложение теории решения квадратных уравнений дано в книге Диофанта «Арифметика» (3 в. н. э.). Решение в радикалах уравнений 3-Й л 4-Й степенен с буквенными коэффициентами было получено итальянскими математиками в 16 в. (см. Кардано , Феррари метод). В течение почти 300 лет после этого делались безуспешные попытки решить в радикалах уравнение с буквенными коэффициентами 5-й и более высоких степеней. Наконец, в 1826 Н. Абель (N. Abel) доказал, что такое невозможно.

Современная формулировка теоремы Абеля: пусть (1) Ч уравнение степени с буквенными коэффициентами Ч любое поле и РЧ поле рациональных функций от с коэффициентами из К; тогда корни уравнения (1) (лежащие в нек-ром расширении поля Р) нельзя выразить через коэффициенты этого уравнения при помощи конечного числа действий сложения, вычитания, умножения, деления (имеющих смысл в поле Р) и знаков корня (имеющих смысл в расширении поля Р). Иными словами, общее уравнение степени n>4 неразрешимо в радикалах (см. , с. 226).

Теорема Абеля не исключает, однако, того, что каждое А. у. с данными числовыми коэффициентами (или коэффициентами из данного поля) решается в радикалах. Уравнения любой степени пнек-рых частных видов решаются в радикалах (напр., двучленные уравнения). Полное решение вопроса о том, при каких условиях А. у. разрешимо в радикалах, было получено ок. 1830 Э. Галуа (Е. Galois).

Основная Галуа теории о разрешимости А. у. в радикалах формулируется следующим образом: пусть Ч многочлен с коэффициентами из поля K, неприводимый над K; тогда: 1) если хотя бы один корень уравнения выражается в радикалах через коэффициенты этого уравнения, причем показатели радикалов не делятся на характеристику ноля K, то Галуа этого уравнения над полем Кразрешима; 2) обратно, если группа Галуа уравнения f(x) = Q над полем Кразрешима, причем K или равна нулю, или больше всех порядков композиционных факторов этой группы, то все корни уравнения представляются в радикалах через его коэффициенты, причем все показатели встречающихся радикалов Ч простые числа, а соответствующие этим радикалам двучленные уравнения неприводимы над полями, к к-рым эти присоединяются.

Э. Галуа доказал эту теорему для случая, когда К Ч поле рациональных чисел; при этом все условия на характеристику поля K, содержащиеся в формулировке теоремы, становятся ненужными.

Теорема Абеля является следствием теоремы Галуа, так как группа Галуа уравнения степени пс буквенными коэффициентами над полем Ррациональных функции от коэффициентов уравнения с коэффициентами из любого поля КЧ симметрич. группа и при неразрешима. Для любого существуют уравнения степени пс рациональными (и даже целыми) коэффициентами, неразрешимые в радикалах. Примером такого уравнения для может служить уравнение , где рЧ простое число. В теории Галуа применяется метод сведения решения данного А. у. к цепочке более простых уравнений, наз. резольвентами данного уравнения.

Разрешимость уравнений в радикалах тесно связана с вопросом о геометрич. построениях с помощью циркуля и линейки, в частности задача о делении окружности на n равных частей (см. Деления круга многочлен, Первообразный корень).

Алгебраические уравнения с одним неизвестным с числовыми коэффициентами. Для отыскания корней А. у. с коэффициентами из поля действительных или комплексных чисел степени выше 2-й, как правило, используются методы приближенных вычислений (напр., Парабол метод). При этом удобно сначала освободиться от кратных корней. Число с является k-кратным корнем многочлена тогда и только тогда, когда многочлен и его производные до порядка 1 включительно обращаются в нуль при . Если разделить на наибольший общий делитель этого многочлена и его производной, то получится многочлен, имеющий те же корни, что и многочлен , но только первой кратности. Можно даже построить многочлены, имеющие в качестве простых корней все корни многочлена одинаковой кратности. Многочлен имеет кратные корни тогда и только тогда, когда его дискриминант равен нулю.

Часто возникают задачи определения границ и числа корней. За верхнюю границу модулей всех корней (как действительных, так и комплексных) А. у. (1) с любыми комплексными коэффициентами можно взять число

В случае действительных коэффициентов более точную границу обычно дает Ньютона метод. К определению верхней границы положительных корней сводится определение нижней границы положительных, а также верхней и нижней границ отрицательных корней.

Для определения числа действительных корней проще всего применить Декарта теорему. Если известно, что все корни данного многочлена действительны (как, напр., для характеристич. многочлена действительной симметрич. матрицы), то теорема Декарта дает точное число корней. Рассматривая многочлен , можно с помощью этой же теоремы найти число отрицательных корней . Точное число действительных корней, лежащих на данном интервале (в частности, число всех действительных корней) многочлена с действительными коэффициентами, не имеющего кратных корней, можно найти по Штурма правилу. Теорема Декарта является частным случаем Бюдана Ч Фурье теоремы, дающей оценку сверху числа действительных корней многочлена с действительными коэффициентами, заключенных в нек-ром фиксированном интервале.

Иногда интересуются разысканием корней специального вида, так, напр., критерий Гурвица дает необходимое и достаточное условие для того, чтобы все корни уравнения (с комплексными коэффициентами) имели отрицательные действительные части (см. Рауса Ч Гурвица критерий).

Для многочлена с рациональными коэффициентами существует метод вычисления всех его рациональных корней. Многочлен с рациональными коэффициентами имеет те же корни, что и многочлен с целыми коэффициентами, получающийся из умножением на общее всех знаменателей коэффициентов Рациональными корнями многочлена с целыми коэффициентами могут быть только те несократимые дроби вида , у к-рых рЧ числа , а Ч делитель числа (и даже только те из этих дробей, для к-рых при любом целом число делится на ).

Если , то все рациональные корни многочлена (если они у него вообще есть) Ч целые числа, являющиеся делителями свободного члена, и могут быть найдены перебором.

Системы алгебраических уравнений. О системах А. у. 1-й степени см. Линейное уравнение.

Систему двух А. у. любых степеней с двумя неизвестными х и у можно записать в виде:

где Ч многочлены от одного неизвестного х.

Если хпридать нек-рое числовое значение, получится система двух уравнений от одного неизвестного ус постоянными коэффициентами . Результантом этой системы будет следующий определитель:

Справедливо утверждение: число тогда и только тогда является корнем результанта , когда или многочлены и имеют общий корень , или оба старших коэффициента и равны нулю.

Таким образом, для решения системы (3) надо найти все корни результанта , подставить каждый из этих корней в систему (3) и найти общие корни этих двух уравнений с одним неизвестным у. Кроме того, надо найти общие корни двух многочленов и и также подставить их в систему (3) и проверить, не имеют ли полученные уравнения с одним неизвестным уобщих корней. Иными словами, решение системы двух А. у. с двумя неизвестными сводится к решению одного уравнения с одним неизвестным и вычислению общих корней двух уравнений с одним неизвестным (общие корни двух или нескольких многочленов с одним неизвестным являются корнями их наибольшего общего делителя). - АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ, уравнение, которое можно преобразовать так, что в левой части будет многочлен от неизвестных, а в правой нуль. Степень многочлена называется степенью уравнения. Простейшие алгебраические уравнения: линейное уравнение… … Иллюстрированный энциклопедический словарь

Уравнение, получающееся при приравнивании двух алгебраических выражений. Напр., x2+xy+y2 =x+1. Алгебраическое уравнение с одним неизвестным может быть преобразовано к виду aо + a1x + ... + anxn=0 … Большой Энциклопедический словарь

алгебраическое уравнение - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN polynomial equation … Справочник технического переводчика - ур ние, получающееся при приравнивании двух алгебр. выражений. Напр., х2 + ху + у2 = х+ 1. А. у. с одним неизвестным х может быть преобразовано к виду ао + а1х+ ...+аnхn = 0 … Естествознание. Энциклопедический словарь

Уравнение четвёртой степени в математике алгебраическое уравнение вида: . Четвёртая степень для алгебраических уравнений является наивысшей, при которой существует аналитическое решение в радикалах в общем виде (то есть при любом значении… … Википедия

График полинома 6 й степени, с 5 критическими точками. Уравнение шестой степени это алгебраическое уравнение, имеющее максимальную степень 6. В общем виде может быть записано следующим образом … Википедия

ТИПЫ УРАВНЕНИЙ

Алгебраические уравнения. Уравнения вида f n = 0, где f n – многочлен от одной или нескольких переменных, называются алгебраическими уравнениями. Многочленом называется выражение вида

f n = a 0 x i y j ... v k + a 1 x l y m ... v n + ¼ + a s x p y q ... v r ,

где x , y , ..., v – переменные, а i , j , ..., r – показатели степеней (целые неотрицательные числа). Многочлен от одной переменной записывается так:

f (x ) = a 0 x n + a 1 x n – 1 + ... + a n – 1 x + a n

или, в частном случае, 3x 4 – x 3 + 2x 2 + 4x – 1. Алгебраическим уравнением с одним неизвестным называется любое уравнение вида f (x ) = 0. Если a 0 ¹ 0, то n называется степенью уравнения. Например, 2x + 3 = 0 – уравнение первой степени; уравнения первой степени называются линейными, так как график функции y = ax + b имеет вид прямой. Уравнения второй степени называются квадратными, а уравнения третьей степени – кубическими. Аналогичные названия имеют и уравнения более высоких степеней.

Трансцендентные уравнения. Уравнения, содержащие трансцендентные функции, такие, как логарифмическая, показательная или тригонометрическая функция, называются трансцендентными. Примером могут служить следующие уравнения:

где lg – логарифм по основанию 10.

Дифференциальные уравнения. Так называются уравнения, содержащие одну или несколько функций и их производные или дифференциалы. Дифференциальные уравнения оказались исключительно ценным средством точной формулировки законов природы.

Интегральные уравнения. Уравнения, содержащие неизвестную функцию под знаком интеграла, например, f (s ) = òK (s, t ) f (t ) dt , где f (s ) и K (s ,t ) заданы, а f (t ) требуется найти.

Диофантовы уравнения. Диофантовым уравнением называется алгебраическое уравнение с двумя или более неизвестными с целыми коэффициентами, решение которого ищется в целых или рациональных числах. Например, уравнение 3x – 5y = 1 имеет решение x = 7, y = 4; вообще же его решениями служат целые числа вида x = 7 + 5n , y = 4 + 3n .

РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Для всех перечисленных выше типов уравнений общих методов решения не существует. И все же во многих случаях, особенно для алгебраических уравнений определенного типа, имеется достаточно полная теория их решения.

Линейные уравнения. Эти простые уравнения решаются путем их сведения к эквивалентному уравнению, из которого непосредственно видно значение неизвестного. Например, уравнение x + 2 = 7 можно свести к эквивалентному уравнению x = 5 вычитанием числа 2 из правой и левой частей. Шаги, совершаемые при сведении простого уравнения, например, x + 2 = 7, к эквивалентному, основаны на использовании четырех аксиом.


1. Если равные величины увеличить на одно и то же число, то результаты будут равны.

2. Если из равных величин вычесть одно и то же число, то результаты будут равны.

3. Если равные величины умножить на одно и то же число, то результаты будут равны.

4. Если равные величины разделить на одно и то же число, то результаты будут равны.

Например, чтобы решить уравнение 2x + 5 = 15, мы воспользуемся аксиомой 2 и вычтем число 5 из правой и левой частей, в результате чего получим эквивалентное уравнение 2x = 10. Затем мы воспользуемся аксиомой 4 и разделим обе части полученного уравнения на 2, в результате чего исходное уравнение сведется к виду x = 5, что и является искомым решением.

Квадратные уравнения. Решения общего квадратного уравнения ax 2 + bx + c = 0 можно получить с помощью формулы

Таким образом, существуют два решения, которые в частном случае могут совпадать.

Другие алгебраические уравнения. Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений третьей и четвертой степеней. Но и эти формулы сложны и далеко не всегда помогают легко находит корни. Что же касается уравнений пятой степени или выше, то для них, как доказал Н.Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удается легко решить, факторизуя их левую часть, т.е. разлагая ее на множители.

Например, уравнение x 3 + 1 = 0 можно записать в факторизованном виде (x + 1)(x 2 – x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю:

Таким образом, корни равны x = –1, , т.е. всего 3 корня.

Если уравнение не факторизуется, то следует воспользоваться приближенными решениями. Основные методы нахождения приближенных решений были разработаны Горнером, Ньютоном и Греффе. Однако во всех случаях существует твердая уверенность в том, что решение существует: алгебраическое уравнение n -й степени имеет ровно n корней.

Системы линейных уравнений. Два линейных уравнения с двумя неизвестными можно записать в виде

Решение такой системы находится с помощью определителей

Оно имеет смысл, если Если же D = 0, то возможны два случая. (1) По крайней мере один из определителей и отличен от нуля. В этом случае решения уравнений не существует; уравнения несовместны. Численный пример такой ситуации – система

(2) Оба определителя равны нулю. В этом случае второе уравнение просто кратно первому и существует бесконечное число решений.

Общая теория рассматривает m линейных уравнений с n переменными:

Если m = n и матрица (a ij ) невырожденна, то решение единственно и может быть найдено по правилу Крамера:

где A ji – алгебраическое дополнение элемента a ij в матрице (a ij ). В более общем плане существуют следующие теоремы. Пусть r – ранг матрицы (a ij ), s – ранг окаймленной матрицы (a ij ; b i ), которая получается из a ij присоединением столбца из чисел b i . Тогда: (1) если r = s , то существует n – r линейно независимых решений; (2) если r < s , то уравнения несовместны и решений не существует.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей