Является ли уравнение первой степени линейным уравнением. Особенности решения двойных неравенств

Уравнения в математике так же важны, как глаголы в русском языке. Без умения находить корень уравнения сложно утверждать, что ученик усвоил курс алгебры. К тому же для каждого их вида существуют свои особенные пути решения.

Что это такое?

Уравнение - это два произвольных выражения, содержащих переменные величины, между которыми поставлен знак равенства. Причем количество неизвестных величин может быть произвольным. Минимальное количество - одна.

Решить его - это значит узнать, есть ли корень уравнения. То есть число, которое превращает его в верное равенство. Если его нет, то ответом является утверждение, что «корней нет». Но может быть и противоположное, когда ответом является множество чисел.

Какие виды уравнений существуют?

Линейное. Оно содержит переменную, степень которой равна единице.

  • Квадратное. Переменная стоит со степенью 2, или преобразования приводят к появлению такой степени.
  • Уравнение высшей степени.
  • Дробно-рациональное. Когда переменная величина оказывается в знаменателе дроби.
  • С модулем.
  • Иррациональное. То есть такое, которое содержит алгебраический корень.

Как решается линейное уравнение?

Оно является основным. К такому виду стремятся привести все остальные. Так как у него найти корень уравнения достаточно просто.

  • Сначала нужно выполнить возможные преобразования, то есть раскрыть скобки и привести подобные слагаемые.
  • Перенести все одночлены с переменной величиной в левую часть равенства, оставив свободные члены в правой.
  • Привести подобные члены в каждой части решаемого уравнения.
  • В получившемся равенстве в левой его половине будет стоять произведение коэффициента и переменной, а в правой - число.
  • Осталось найти корень уравнения, разделив число справа, на коэффициент перед неизвестной.

Как найти корни квадратного уравнения?

Сначала его нужно привести к стандартному виду, то есть раскрыть все скобки, привести подобные слагаемые и перенести все одночлены в левую часть. В правой части равенства должен остаться только ноль.

  • Воспользуйтесь формулой для дискриминанта. Возведите в квадрат коэффициент перед неизвестной со степенью «1». Перемножьте свободный одночлен и число перед переменной в квадрате с числом 4. Из полученного квадрата вычтите произведение.
  • Оцените значение дискриминанта. Он отрицательный - решение закончено, так как у него корней нет. Равен нулю - ответом будет одно число. Положительный - два значения у переменной.

Как решить кубическое уравнение?

Сначала найдите корень уравнения x. Он определяется методом подбора из чисел, которые являются делителями свободного члена. Этот способ удобно рассмотреть на конкретном примере. Пусть уравнение имеет вид: х 3 - 3х 2 - 4х + 12 = 0.

Его свободный член равен 12. Тогда делителями, которые требуется проверить, будут положительные и отрицательные числа: 1, 2, 3, 4, 6 и 12. Перебор можно закончить уже на числе 2. Оно дает верное равенство в уравнении. То есть его левая часть оказывается равной нулю. Значит число 2 - это первый корень кубического уравнения.

Теперь необходимо разделить исходное уравнение на разность переменной и первого корня. В конкретном примере это (х - 2). Несложное преобразование приводит числитель к такому разложению на множители: (х - 2)(х + 2)(х - 3). Одинаковые множители числителя и знаменателя сокращаются, а оставшиеся две скобки при раскрытии дают простое квадратное уравнение: х 2 - х - 6 = 0.

Здесь найдите два корня уравнения по принципу, описанному в предыдущем разделе. Ими оказываются числа: 3 и -2.

Итого, у конкретного кубического уравнения получилось три корня: 2, -2 и 3.

Как решаются системы линейных уравнений?

Здесь предложен метод исключения неизвестных. Он заключается в том, чтобы выразить одну неизвестную через другую в одном уравнении и подставить это выражение в другое. Причем решением системы из двух уравнений с двумя неизвестными всегда является пара переменных величин.

Если в них переменные обозначены буквами х 1 и х 2 , то можно из первого равенства вывести, к примеру, х 2 . Потом оно подставляется во второе. Проводится необходимое преобразование: раскрытие скобок и приведение подобных членов. Получается простое линейное уравнение, корень которого вычислить легко.

Теперь возвратитесь к первому уравнению и найдите корень уравнения x 2 , используя получившееся равенство. Эти два числа являются ответом.

Для того чтобы быть уверенным в полученном ответе, рекомендуется всегда делать проверку. Ее не обязательно записывать.

Если решается одно уравнение, то каждый из его корней нужно подставить в исходное равенство и получить одинаковые числа в обеих его частях. Все сошлось - решение верное.

При работе с системой корни необходимо подставлять в каждое решение и выполнять все возможные действия. Получается верное равенство? Значит решение правильное.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Что такое «линейные уравнения»

или в устной форме - трем друзьям дали по яблок из расчета, что всего в наличии у Васи яблок.

И вот ты уже решил линейное уравнение
Теперь дадим этому термину математическое определение.

Линейное уравнение - это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна . Оно выглядит следующим образом:

Где и - любые числа и

Для нашего случая с Васей и яблоками мы запишем:

- «если Вася раздаст всем троим друзьям одинаковое количество яблок, у него яблок не останется»

«Скрытые» линейные уравнения, или важность тождественных преобразований

Несмотря на то, что на первый взгляд все предельно просто, при решении уравнений необходимо быть внимательным, потому что линейными уравнениями называются не только уравнения вида, но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду. Например:

Мы видим, что справа стоит, что, по идее, уже говорит о том, что уравнение не линейное. Мало того, если мы раскроем скобки, то получим еще два слагаемых, в которых будет, но не надо торопиться с выводами ! Прежде, чем судить, является ли уравнение линейным, необходимо произвести все преобразования и таким образом, упростить исходный пример. При этом преобразования могут изменять внешний вид, но никак не саму суть уравнения.

Иными словами данные преобразования должны быть тождественными или равносильными . Таких преобразований всего два, но они играют очень, ОЧЕНЬ важную роль при решении задач. Рассмотрим оба преобразования на конкретных примерах.

Перенос влево - вправо.

Допустим, нам необходимо решить такое уравнение:

Еще в начальной школе нам говорили: «с иксами - влево, без иксов - вправо». Какое выражение с иксом стоит справа? Правильно, а не как не. И это важно, так как при неправильном понимании этого, казалось бы простого вопроса, выходит неверный ответ. А какое выражение с иксом стоит слева? Правильно, .

Теперь, когда мы с этим разобрались, переносим все слагаемые с неизвестными в левую сторону, а все, что известно - в правую, помня, что если перед числом нет никакого знака, например, то значит число положительно, то есть перед ним стоит знак « ».

Перенес? Что у тебя получилось?

Все, что осталось сделать - привести подобные слагаемые. Приводим:

Итак, первое тождественное преобразование мы успешно разобрали, хотя уверена, что ты и без меня его знал и активно использовал. Главное - не забывай про знаки при числах и меняй их на противоположные при переносе через знак равенства!

Умножение-деление.

Начнем сразу же с примера

Смотрим и соображаем: что нам не нравится в этом примере? Неизвестное все в одной части, известные - в другой, но что-то нам мешает… И это что-то - четверка, так как если бы ее не было, все было бы идеально - икс равен числу - именно так, как нам и нужно!

Как можно от неё избавиться? Перенести вправо мы не можем, так как тогда нам нужно переносить весь множитель (мы же не можем ее взять и оторвать от), а переносить весь множитель тоже не имеет смысла…

Пришло время вспомнить про деление, в связи с чем разделим все как раз на! Все - это означает и левую, и правую часть. Так и только так! Что у нас получается?

Вот и ответ.

Посмотрим теперь другой пример:

Догадываешься, что нужно сделать в этом случае? Правильно, умножить левую и правую части на! Какой ты получил ответ? Правильно. .

Наверняка все про тождественные преобразования ты и так уже знал. Считай, что мы просто освежили эти знания в твоей памяти и настало время для нечто большего - Например, для решения нашего большого примера:

Как мы уже говорили ранее, глядя на него, не скажешь, что данное уравнение является линейным, но нам необходимо раскрыть скобки и осуществить тождественные преобразования. Так что начнем!

Для начала вспоминаем формулы сокращенного умножения, в частности, квадрат суммы и квадрат разности. Если ты не помнишь, что это такое и как раскрываются скобки, настоятельно рекомендую почитать тему , так как эти навыки пригодятся тебе при решении практически всех примеров, встречающихся на экзамене.
Раскрыл? Сравниваем:

Теперь пришло время привести подобные слагаемые. Помнишь, как нам в тех же начальных классах говорили «не складываем мухи с котлетами»? Вот напоминаю об этом. Складываем все отдельно - множители, у которых есть, множители, у которых есть и остальные множители, в которых нет неизвестных. Как приведешь подобные слагаемые, перенеси все неизвестные влево, а все, что известно вправо. Что у тебя получилось?

Как ты видишь, иксы в квадрате исчезли, и мы видим совершенно обычное линейное уравнение . Осталось только найти!

И напоследок скажу еще одну очень важную вещь про тождественные преобразования - тождественные преобразования применимы не только для линейных уравнений, но и для квадратных, дробных рациональных и других. Просто нужно запомнить, что при переносе множителей через знак равенства мы меняем знак на противоположный, а при делении или умножении на какое-то число, мы умножаем/делим обе части уравнения на ОДНО и то же число.

Что еще ты вынес из этого примера? Что глядя на уравнение не всегда можно прямо и точно определить, является ли оно линейным или нет. Необходимо сначала полностью упростить выражение, и лишь потом судить, каким оно является.

Линейные уравнения. Примеры.

Вот тебе еще пару примеров для самостоятельной тренировки - определи, является ли уравнение линейным и если да, найди его корни:

Ответы:

1. Является.

2. Не является.

Раскроем скобки и приведем подобные слагаемые:

Произведем тождественное преобразование - разделим левую и правую часть на:

Мы видим, что уравнение не является линейным, так что искать его корни не нужно.

3. Является.

Произведем тождественное преобразование - умножим левую и правую часть на, чтобы избавиться от знаменателя.

Подумай, почему так важно, чтобы? Если ты знаешь ответ на этот вопрос, переходим к дальнейшему решению уравнения, если нет - обязательно загляни в тему , чтобы не наделать ошибок в более сложных примерах. Кстати, как ты видишь, ситуация, когда невозможна. Почему?
Итак, продолжаем и преобразовываем уравнение:

Если ты без труда со всем справился, поговорим о линейных уравнениях с двумя переменными.

Линейные уравнения с двумя переменными

Теперь перейдем к чуть более сложному - линейным уравнениям с двумя переменными.

Линейные уравнения с двумя переменными имеют вид:

Где, и - любые числа и.

Как ты видишь, вся разница только в том, что в уравнение добавляется еще одна переменная. А так все то же самое - здесь нет иксов в квадрате, нет деления на переменную и т.д. и т.п.

Какой бы привести тебе жизненный пример... Возьмем того же Васю. Допустим, он решил, что каждому из 3-ех друзей он даст одинаковое количество яблок, а яблока оставит себе. Сколько яблок нужно купить Васе, если каждому другу он даст по яблоку? А по? А если по?

Зависимость количества яблок, которое получит каждый человек к общему количеству яблок, которое необходимо приобрести будет выражена уравнением:

  • - количество яблок, которое получит человек (, или, или);
  • - количество яблок, которое Вася возьмет себе;
  • - сколько всего яблок нужно купить Васе с учетом количества яблок на человека.

Решая эту задачу, мы получим, что если одному другу Вася даст яблоко, то ему необходимо покупать штук, если даст яблока - и т.д.

И вообще. У нас две переменные. Почему бы не построить эту зависимость на графике? Строим и отмечаем значение наших, то есть точки, с координатами, и!

Как ты видишь, и зависят друг от друга линейно , отсюда и название уравнений - «линейные ».

Абстрагируемся от яблок и рассмотрим графически различные уравнения. Посмотри внимательно на два построенных графика - прямой и параболы, заданными произвольными функциями:

Найди и отметь на обоих рисунках точки, соответствующие.
Что у тебя получилось?

Ты видишь, что на графике первой функции одному соответствует один , то есть и линейно зависят друг от друга, что не скажешь про вторую функцию. Конечно, ты можешь возразить, что на втором графике так же соответствует икс - , но это только одна точка, то есть частный случай, так как ты все равно можешь найти такой, которому соответствует не только один. Да и построенный график никак не напоминает линию, а является параболой.

Повторюсь, еще раз: графиком линейного уравнения должна быть ПРЯМАЯ линия .

С тем, что уравнение не будет линейным, если у нас идет в какой-либо степени - это понятно на примере параболы, хотя для себя ты можешь построить еще несколько простых графиков, например или. Но я тебя уверяю - ни один из них не будет представлять собой ПРЯМУЮ ЛИНИЮ.

Не веришь? Построй, а затем сравни с тем, что получилось у меня:

А что будет, если мы разделим что-то на, например, какое-то число? Будет ли линейная зависимость и? Не будем рассуждать, а будем строить! Например, построим график функции.

Как-то не выглядит построенное прямой линией… соответственно, уравнение не линейное.
Подведем итоги:

  1. Линейное уравнение - это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна.
  2. Линейное уравнение с одной переменной имеет вид:
    , где и - любые числа;
    Линейное уравнение с двумя переменными:
    , где, и - любые числа.
  3. Не всегда сразу можно определить, является ли уравнение линейным или нет. Иногда, чтобы понять это, необходимо произвести тождественные преобразования перенести влево/вправо подобные члены, не забыв изменить знак, или умножить/разделить обе части уравнения на одного и тоже число.

ЛИНЕЙНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

1. Линейное уравнение

Это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна.

2. Линейное уравнение с одной переменной имеет вид:

Где и - любые числа;

3. Линейное уравнение с двумя переменными имеет вид:

Где, и - любые числа.

4. Тождественные преобразования

Чтобы определить является ли уравнение линейным или нет, необходимо произвести тождественные преобразования:

  • перенести влево/вправо подобные члены, не забыв изменить знак;
  • умножить/разделить обе части уравнения на одного и тоже число.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Системы уравнений получили широкое применение в экономической отрасли при математическом моделировании различных процессов. Например, при решении задач управления и планирования производства, логистических маршрутов (транспортная задача) или размещения оборудования.

Системы уравнения используются не только в области математики, но и физики, химии и биологии, при решении задач по нахождению численности популяции.

Системой линейных уравнений называют два и более уравнения с несколькими переменными, для которых необходимо найти общее решение. Такую последовательность чисел, при которых все уравнения станут верными равенствами или доказать, что последовательности не существует.

Линейное уравнение

Уравнения вида ax+by=c называют линейными. Обозначения x, y - это неизвестные, значение которых надо найти, b, a - коэффициенты при переменных, c - свободный член уравнения.
Решение уравнение путем построение его графика будет иметь вид прямой, все точки которой являются решением многочлена.

Виды систем линейных уравнений

Наиболее простыми считаются примеры систем линейных уравнений с двумя переменными X и Y.

F1(x, y) = 0 и F2(x, y) = 0, где F1,2 - функции, а (x, y) - переменные функций.

Решить систему уравнений - это значит найти такие значения (x, y), при которых система превращается в верное равенство или установить, что подходящих значений x и y не существует.

Пара значений (x, y), записанная в виде координат точки, называется решением системы линейных уравнений.

Если системы имеют одно общее решение или решения не существует их называют равносильными.

Однородными системами линейных уравнений являются системы правая часть которых равна нулю. Если правая после знака "равенство" часть имеет значение или выражена функцией, такая система неоднородна.

Количество переменных может быть гораздо больше двух, тогда следует говорить о примере системы линейных уравнений с тремя переменными или более.

Сталкиваясь с системами школьники предполагают, что количество уравнений обязательно должно совпадать с количеством неизвестных, но это не так. Количество уравнений в системе не зависит от переменных, их может быть сколь угодно много.

Простые и сложные методы решения систем уравнений

Не существует общего аналитического способа решения подобных систем, все методы основаны на численных решениях. В школьном курсе математики подробно описаны такие методы как перестановка, алгебраическое сложение, подстановка, а так же графический и матричный способ, решение методом Гаусса.

Основная задача при обучении способам решения - это научить правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. Главное не вызубрить систему правил и действий для каждого способа, а понять принципы применения того или иного метода

Решение примеров систем линейных уравнений 7 класса программы общеобразовательной школы довольно простое и объяснено очень подробно. В любом учебнике математике этому разделу отводится достаточно внимания. Решение примеров систем линейных уравнений методом Гаусса и Крамера более подробно изучают на первых курсах высших учебных заведений.

Решение систем методом подстановки

Действия метода подстановки направлены на выражение значения одной переменной через вторую. Выражение подставляется в оставшееся уравнение, затем его приводят к виду с одной переменной. Действие повторяется в зависимости от количества неизвестных в системе

Приведем решение примера системы линейных уравнений 7 класса методом подстановки:

Как видно из примера, переменная x была выражена через F(X) = 7 + Y. Полученное выражение, подставленное во 2-е уравнение системы на место X, помогло получить одну переменную Y во 2-е уравнении. Решение данного примера не вызывает трудностей и позволяет получить значение Y. Последний шаг это проверка полученных значений.

Решить пример системы линейных уравнений подстановкой не всегда возможно. Уравнения могут быть сложными и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Решение примера системы линейных неоднородных уравнений:

Решение с помощью алгебраического сложения

При поиске решении систем методом сложения производят почленное сложение и умножение уравнений на различные числа. Конечной целью математических действий является уравнение с одной переменной.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять когда в уравнениях присутствуют дроби и десятичные числа.

Алгоритм действий решения:

  1. Умножить обе части уравнения на некое число. В результате арифметического действия один из коэффициентов при переменной должен стать равным 1.
  2. Почленно сложить полученное выражение и найти одно из неизвестных.
  3. Подставить полученное значение во 2-е уравнение системы для поиска оставшейся переменной.

Способ решения введением новой переменной

Новую переменную можно вводить, если в системе требуется найти решение не более чем для двух уравнений, количество неизвестных тоже должно быть не больше двух.

Способ используется, чтобы упростить одно из уравнений, вводом новой переменной. Новое уравнение решается относительно введенной неизвестной, а полученное значение используется для определения первоначальной переменной.

Из примера видно, что введя новую переменную t удалось свести 1-е уравнение системы к стандартному квадратному трехчлену. Решить многочлен можно отыскав дискриминант.

Необходимо найти значение дискриминанта по известной формуле: D = b2 - 4*a*c, где D - искомый дискриминант, b, a, c - множители многочлена. В заданном примере a=1, b=16, c=39, следовательно, D=100. Если дискриминант больше нуля, то решений два: t = -b±√D / 2*a, если дискриминант меньше нуля, то решение одно: x= -b / 2*a.

Решение для полученных в итоге системы находят методом сложения.

Наглядный метод решения систем

Подходит для систем с 3-мя уравнениями. Метод заключается в построении на координатной оси графиков каждого уравнения, входящего в систему. Координаты точек пересечения кривых и будут общим решением системы.

Графический способ имеет ряд нюансов. Рассмотрим несколько примеров решения систем линейных уравнений наглядным способом.

Как видно из примера, для каждой прямой было построено две точки, значения переменной x были выбраны произвольно: 0 и 3. Исходя из значений x, найдены значения для y: 3 и 0. Точки с координатами (0, 3) и (3, 0) были отмечены на графике и соединены линией.

Действия необходимо повторить для второго уравнения. Точка пересечения прямых является решением системы.

В следующем примере требуется найти графическое решение системы линейных уравнений: 0,5x-y+2=0 и 0,5x-y-1=0.

Как видно из примера, система не имеет решения, потому что графики параллельны и не пересекаются на всем своем протяжении.

Системы из примеров 2 и 3 похожи, но при построении становится очевидно, что их решения разные. Следует помнить, что не всегда можно сказать имеет ли система решение или нет, всегда необходимо построить график.

Матрица и ее разновидности

Матрицы используются для краткой записи системы линейных уравнений. Матрицей называют таблицу специального вида, заполненную числами. n*m имеет n - строк и m - столбцов.

Матрица является квадратной, когда количество столбцов и строк равно между собой. Матрицей - вектором называется матрица из одного столбца с бесконечно возможным количеством строк. Матрица с единицами по одной из диагоналей и прочими нулевыми элементами называется единичной.

Обратная матрица - это такая матрица при умножении на которую исходная превращается в единичную, такая матрица существует только для исходной квадратной.

Правила преобразования системы уравнений в матрицу

Применительно к системам уравнений в качестве чисел матрицы записывают коэффициенты и свободные члены уравнений, одно уравнение - одна строка матрицы.

Строка матрицы называется ненулевой, если хотя бы один элемент строки не равен нулю. Поэтому если в каком-либо из уравнений количество переменных разнится, то необходимо на месте отсутствующей неизвестной вписать нуль.

Столбцы матрицы должны строго соответствовать переменным. Это означает что коэффициенты переменной x могут быть записаны только в один столбец, например первый, коэффициент неизвестной y - только во второй.

При умножении матрицы все элементы матрицы последовательно умножаются на число.

Варианты нахождения обратной матрицы

Формула нахождения обратной матрицы довольно проста: K -1 = 1 / |K|, где K -1 - обратная матрица, а |K| - определитель матрицы. |K| не должен быть равен нулю, тогда система имеет решение.

Определитель легко вычисляется для матрицы "два на два", необходимо лишь помножить друг на друга элементы по диагонали. Для варианта "три на три" существует формула |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c 3 + a 3 b 2 c 1 . Можно воспользоваться формулой, а можно запомнить что необходимо взять по одному элементу из каждой строки и каждого столбца так, чтобы в произведении не повторялись номера столбцов и строк элементов.

Решение примеров систем линейных уравнений матричным методом

Матричный способ поиска решения позволяет сократить громоздкие записи при решении систем с большим количеством переменных и уравнений.

В примере a nm - коэффициенты уравнений, матрица - вектор x n - переменные, а b n - свободные члены.

Решение систем методом Гаусса

В высшей математике способ Гаусса изучают совместно с методом Крамера, а процесс поиска решения систем так и называется метод решения Гаусса - Крамера. Данные способы используют при нахождении переменных систем с большим количеством линейных уравнений.

Метод Гаусса очень похож на решения с помощью подстановок и алгебраического сложения, но более систематичен. В школьном курсе решение способом Гаусса применяется для систем из 3 и 4 уравнений. Цель метода состоит в приведении системы к виду перевернутой трапеции. Путем алгебраических преобразований и подстановок находится значение одной переменной в одном из уравнении системы. Второе уравнение представляет собой выражение с 2-мя неизвестными, ну а 3 и 4 - соответственно с 3-мя и 4-мя переменными.

После приведения системы к описанному виду, дальнейшее решение сводится к последовательной подстановке известных переменных в уравнения системы.

В школьных учебниках для 7 класса пример решения методом Гаусса описан следующим образом:

Как видно из примера, на шаге (3) было получено два уравнения 3x 3 -2x 4 =11 и 3x 3 +2x 4 =7. Решение любого из уравнений позволит узнать одну из переменных x n .

Теорема 5, о которой упоминается в тексте, гласит что если одно из уравнений системы заменить равносильным, то полученная система будет также равносильна исходной.

Метод Гаусса труден для восприятия учеников средней школы, но является одним из наиболее интересных способов для развития смекалки детей, обучающихся по программе углубленного изучения в математических и физических классах.

Для простоты записи вычислений принято делать следующим образом:

Коэффициенты уравнений и свободные члены записываются в виде матрицы, где каждая строка матрицы соотносится с одним из уравнений системы. отделяет левую часть уравнения от правой. Римскими цифрами обозначаются номера уравнений в системе.

Сначала записывают матрицу, с которой предстоит работать, затем все действия проводимые с одной из строк. Полученную матрицу записывают после знака "стрелка" и продолжают выполнять необходимые алгебраические действия до достижения результата.

В итоге должна получиться матрица в которой по одной из диагоналей стоят 1, а все другие коэффициенты равны нулю, то есть матрицу приводят к единичному виду. Нельзя забывать производить вычисления с цифрами обеих частей уравнения.

Данный способ записи менее громоздкий и позволяет не отвлекаться на перечисление многочисленных неизвестных.

Свободное применение любого способа решения потребует внимательности и определенного опыта. Не все методы имеют прикладной характер. Какие-то способы поиска решений более предпочтительны в той иной области деятельности людей, а другие существуют в целях обучения.

Линейное уравнение - это алгебраическое уравнение, полная степень многочленов которого равна единице. Решение линейных уравнений - часть школьной программы, причем не самая сложная. Однако некоторые все же испытывают затруднения при прохождении данной темы. Надеемся, прочитав данный материал, все трудности для вас останутся в прошлом. Итак, давайте разбираться. как решать линейные уравнения.

Общий вид

Линейное уравнение представляется в виде:

  • ax + b = 0, где a и b - любые числа.

Несмотря на то, что a и b могут быть любыми числами, их значения влияют на количество решений уравнение. Выделяют несколько частных случаев решения:

  • Если a=b=0, уравнение имеет бесконечное множество решений;
  • Если a=0, b≠0, уравнение не имеет решения;
  • Если a≠0, b=0, уравнение имеет решение: x = 0.

В том случае, если оба числа имеют не нулевые значения, уравнение предстоит решить, чтобы вывести конечное выражения для переменной.

Как решать?

Решить линейное уравнение - значит, найти, чему равна переменная. Как же это сделать? Да очень просто - используя простые алгебраические операции и следуя правилам переноса. Если уравнение предстало перед вами в общем виде, вам повезло, все, что необходимо сделать:

  1. Перенести b в правую сторону уравнения, не забыв изменить знак (правило переноса!), таким образом, из выражения вида ax + b = 0 должно получиться выражение вида: ax = -b.
  2. Применить правило: чтобы найти один из множителей (x - в нашем случае), нужно произведение (-b в нашем случае) поделить на другой множитель (a - в нашем случае). Таким образом, должно получиться выражение вида: x = -b/а.

Вот и все - решение найдено!

Теперь давайте разберем на конкретном примере:

  1. 2x + 4 = 0 - переносим b, равное в данном случае 4, в правую сторону
  2. 2x = -4 - делим b на a (не забываем о знаке минус)
  3. x = -4/2 = -2

Вот и все! Наше решение: x = -2.

Как видите, решение линейного уравнения с одной переменной найти довольно просто, однако так просто все, если нам повезло встретить уравнение в общем виде. В большинстве случаев, прежде чем решать уравнение в описанные выше две ступени, нужно еще привести имеющееся выражение к общему виду. Впрочем, это тоже не архисложная задача. Давайте разберем некоторые частные случаи на примерах.

Решение частных случаев

Во-первых, давайте разберем случаи, которые мы описали в начале статьи, и объясним, что же значит бесконечное множество решений и отсутствие решения.

  • Если a=b=0, уравнение будет иметь вид: 0x + 0 = 0. Выполняя первый шаг, получаем: 0x = 0. Что значит эта бессмыслица, воскликните вы! Ведь какое число на ноль ни умножай, всегда получится ноль! Верно! Поэтому и говорят, что уравнение имеет бесконечное множество решений - какое число ни возьми, равенство будет верным, 0x = 0 или 0=0.
  • Если a=0, b≠0, уравнение будет иметь вид: 0x + 3 = 0. Выполняем первый шаг, получаем 0x = -3. Снова бессмыслица! Очевидно же, что данное равенство никогда не будет верным! Потому и говорят - уравнение не имеет решений.
  • Если a≠0, b=0, уравнение будет иметь вид: 3x + 0 = 0. Выполняя первый шаг, получаем: 3x = 0. Какое решение? Это легко, x = 0.

Трудности перевода

Описанные частные случаи - это не все, чем нас могут удивить линейный уравнения. Иногда уравнение вообще с первого взгляда трудно идентифицировать. Разберем пример:

  • 12x - 14 = 2x + 6

Разве это линейное уравнение? А как же ноль в правой части? Торопиться с выводами не будем, будем действовать - перенесем все составляющие нашего уравнения в левую сторону. Получим:

  • 12x - 2x - 14 - 6 = 0

Теперь вычтем подобное из подобного, получим:

  • 10x - 20 = 0

Узнали? Самое что ни на есть линейное уравнение! Решение которого: x = 20/10 = 2.

А что если перед нами такой пример:

  • 12((x + 2)/3) + x) = 12 (1 - 3x/4)

Да, это тоже линейное уравнение, только преобразований нужно провести побольше. Сначала раскроем скобки:

  1. (12(x+2)/3) + 12x = 12 - 36x/4
  2. 4(x+2) + 12x = 12 - 36x/4
  3. 4x + 8 + 12x = 12 - 9x - теперь выполняем перенос:
  4. 25x - 4 = 0 - осталось найти решение по уже известной схеме:
  5. 25x = 4,
  6. x = 4/25 = 0.16

Как видите, все решаемо, главное - не переживать, а действовать. Запомните, если в вашем уравнении только переменные первой степени и числа, перед вами линейное уравнение, которое, как бы оно ни выглядело изначально, можно привести к общему виду и решить. Надеемся, у вас все получится! Удачи!

Сперва необходимо понять, что же это такое.

Есть простое определение линейного уравнения , которое дают в обычной школе: «уравнение, в котором переменная встречается только в первой степени». Но оно не совсем верно: уравнение не является линейным, оно даже не приводится к такому, оно приводится к квадратичному.

Более точное определение таково: линейное уравнение – это уравнение, которое с помощью эквивалентных преобразований можно привести к виду , где title="a,b in bbR, ~a0">. На деле мы будем приводить это уравнение к виду путём переноса в правую часть и деления обеих частей уравнения на . Осталось разъяснить, какие уравнения и как мы можем привести к такому виду, и, самое главное, что дальше делать с ними, чтобы решить его.

На самом деле, чтобы понять, является ли уравнение линейным или нет, его необходимо сперва упростить, то есть привести к виду, где его классификация будет однозначна. Запомните, с уравнением можно делать всё, что угодно, что не изменит его корней - это и есть эквивалентное преобразование . Из самых простых эквивалентных преобразований можно выделить:

  1. раскрытие скобок
  2. приведение подобных
  3. умножение и/или деление обеих частей уравнения на ненулевое число
  4. прибавление и/или вычитание из обеих частей одного и того же числа или выражения*
Эти преобразования Вы можете делать безболезненно, не задумываясь о том, "испортите" Вы уравнение или нет.
*Частной интерпретацией последнего преобразования является "перенос" слагаемых из одной части в другую со сменой знака.

Пример 1:
(раскроем скобки)
(прибавим к обеим частям и вычитание /перенесём со сменой знака числа влево, а переменные вправо)
(приведём подобные)
(разделим на 3 обе части уравнения)

Вот мы и получили уравнение, которое имеет такие же корни, как и исходное. Напомним читателю, что "решить уравнение" - значит найти все его корни и доказать, что других нет, а "корень уравнения" - это такое число, которое будучи подставленным вместо неизвестной, обратит уравнение в верное равенство. Ну так в последнее уравнение найти число, обращающее уравнение в верное равенство очень просто - это число . Никакое другое число тождества из данного уравнения не сделает. Ответ:

Пример 2:
(умножим обе части уравнения на , предварительно убедившись, что мы не умножаем на : title="x3/2"> и title="x3">. То есть если такие корни получатся, то мы их обязаны будем выкинуть.)
(раскроем скобки)
(перенесём слагаемые)
(приведём подобные)
(разделим обе части на )

Примерно так и решаются все линейные уравнения. Для читателей помладше, скорее всего, данное объяснение показалось сложным, поэтому предлагаем версию "линейные уравнения для 5 класса"

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей