Общее временное уравнение шредингера. Обще уравнение Шредингера

Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Ψ(х, у, z, t), так как именно она, или, точнее, величина |Ψ| 2 , определяет вероятность пребывания частицы в момент времени t в объеме ΔV, т. е. в области с координатами х и х + dх, у и у + dу, z и z + dz .

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером . Уравнение Шрёдингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы.

Общее уравнение Шредингера имеет вид:

где ? = h / (), m - масса частицы, Δ - оператор Лапласа , i - мнимая единица, U (x, y, z, t ) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x, y, z, t ) - искомая волновая функция частицы.

Уравнение (1) справедливо для любой частицы (со спином, равным 0), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью υ «с.

Оно дополняется условиями , накладываемыми на волновую функцию:

1) волновая функция должна быть конечной, однозначной и непрерывной;

2) производные должны быть непрерывны;

3) функция |Ψ| 2 должна быть интегрируема (это условие в простейших случаях сводится к условию нормировки вероятностей).

Уравнение (1) называют уравнением Шредингера, зависящим от времени.

Дли многих физических явлений, происходящих в микромире, уравнение (1) можно упростить, исключив зависимость Ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U (х, у , z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде

. (2)

Уравнение (2) называется уравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций : вол новые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными.


Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями Ψ. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения, которые соответствуют собственным значениям энергии, называются собственнымифункциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»

Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

где l — ширина «ямы», а энергия отсчитывается от ее дна (рис. 2).

Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

. (1)

По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = 1) непрерывная волновая функция также должна обращаться в нуль.

Следовательно, граничные условия в данном случае имеют вид:

Ψ (0) = Ψ (l ) = 0. (2)

В пределах «ямы» (0 ≤ х ≤ 0) уравнение Шредингера (1) сведется к уравнению:

или . (3)

где k 2 = 2mE / ? 2 . (4)

Общее решение дифференциального уравнения (3):

Ψ (x ) = A sin kx + B cos kx .

Так как по (2) Ψ (0) = 0, то В = 0. Тогда

Ψ (x ) = A sin kx . (5)

Условие Ψ (l ) = A sin kl = 0 (2) выполняется только при kl = nπ , где n - целые числа, т.е. необходимо, чтобы

k = nπ / l . (6)

Из выражений (4) и (6) следует, что:

(n = 1, 2, 3,…), (7)

т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях Е п, зависящих от целого числа п. Следовательно, энергия Е п частицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т. е. квантуется.

Квантованные значения энергии Е п называются уровнями энергии, а число п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне Е п, или, как говорят, частица находится в квантовом состоянии п.

Подставив в (5) значение k из (6), найдем собственные функции:

.

Постоянную интегрирования А найдем из условия нормировки, которое для данного случая запишется в виде:

.

В результате интегрирования получим , а собственные функции будут иметь вид:

(n = 1, 2, 3,…). (8)

Графики собственных функций (8), соответствующие уровням энергии (7) при n = 1,2,3, приведены на рис. 3, а. На рис. 3, б изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок» ямы, равная ‌‌‌‌‌‌ Ψ n (x )‌ 2 = Ψ n (x )·Ψ n * (x ) для п = 1, 2 и 3. Из рисунка следует, что, например, в квантовом состоянии с п= 2 частица не может находиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (7) вытекает, что энергетический интервал между двумя соседними уровнями равен:

Например, для электрона при размерах ямы l = 10 -1 м (свободные электроны в металле), ΔЕ n ≈ 10 -35 ·n Дж ≈ 10 -1 6 n эВ, т.е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l ≈ 10 -10 м), то для электрона ΔЕ n ≈ 10 -17 n Дж 10 2 n эВ, т.е. получаются явно дискретные значения энергии (линейчатый спектр).

Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.

Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица «в потенциальной яме» с бесконечно высокими «стенками» не может иметь энергию меньшую, чем минимальная энергия, равная π 2 ? 2 /(2т1 2 ). Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты Δх частицы в «яме» шириной l равна Δх = l .

Тогда, согласно соотношению неопределенностей, импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса Δр h / l . Такому разбросу значений импульса соответствует кинетическая энергия Е min ≈ p ) 2 / (2m ) = ? 2 / (2ml 2 ). Все остальные уровни (п > 1) имеют энергию, превышающую это минимальное значение.

Из формул (9) и (7) следует, что при больших квантовых числах (n »1) ΔЕ n / E п ≈ 2/п «1, т. е. соседние уровни расположены тесно: тем теснее, чем больше п. Если п очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов — дискретность - сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.

Вид волнового уравнения физической системы определяется ее гамильтонианом, приобретающим в силу этого фундаментальное значение во всем математическом аппарате квантовой механики.

Вид гамильтониана свободной частицы устанавливается уже общими требованиями, связанными с однородностью и изотропией пространства и принципом относительности Галилея. В классической механике эти требования приводят к квадратичной зависимости энергии частицы от ее импульса: где постоянная называется массой частицы (см. I, § 4). В квантовой механике те же требования приводят к такому же соотношению для собственных значений энергии и импульса - одновременно измеримых сохраняющихся (для свободной частицы) величин.

Но для того чтобы соотношение имело место для всех собственных значений энергии и импульса, оно должно быть справедливым и для их операторов:

Подставив сюда (15,2), получим гамильтониан свободно движущейся частицы в виде

где - оператор Лапласа.

Гамильтониан системы невзаимодействующих частиц равен сумме гамильтонианов каждой из них:

где индекс а нумерует частицы; - оператор Лапласа, в котором дифференцирование производится по координатам частицы.

В классической (нерелятивистской) механике взаимодействие частиц описывается аддитивным членом в функции Гамильтона - потенциальной энергией взаимодействия являющейся функцией координат частиц.

Прибавлением такой же функции к гамильтониану системы описывается и взаимодействие частиц в квантовой механике:

первый член можно рассматривать как оператор кинетической энергии, а второй - как оператор потенциальной энергии. В частности, гамильтониан для одной частицы, находящейся во внешнем поле,

где U(х, у, z) - потенциальная энергия частицы во внешнем поле.

Подстановка выражений (17,2)-(17,5) в общее уравнение (8,1) дает волновые уравнения для соответствующих систем. Выпишем здесь волновое уравнение для частицы во внешнем поле

Уравнение же (10,2), определяющее стационарные состояния, принимает вид

Уравнения (17,6), (17,7) были установлены Шредингером в 1926 г. и называются уравнениями Шредингера.

Для свободной частицы уравнение (17,7) имеет вид

Это уравнение имеет конечные во всем пространстве решения при любом положительном значении энергии Е. Для состояний с определенными направлениями движения этими решениями являются собственные функции оператора импульса, причем . Полные (зависящие от времени) волновые функции таких стационарных состояний имеют вид

(17,9)

Каждая такая функция - плоская волна - описывает состояние, в котором частица обладает определенными энергией Е и импульсом . Частота этой волны равна а ее волновой вектор соответствующую длину волны называют де-бройлевской длиной волны частицы.

Энергетический спектр свободно движущейся частицы оказывается, таким образом, непрерывным, простираясь от нуля до Каждое из этих собственных значений (за исключением только значения вырождено, причем вырождение - бесконечной кратности. Действительно, каждому отличному от нуля значению Е соответствует бесконечное множество собственных функций (17,9), отличающихся направлениями вектора при одинаковой его абсолютной величине.

Проследим, каким образом происходит в уравнении Шредингера предельный переход к классической механике, рассматривая для простоты всего одну частицу во внешнем поле. Подставив в уравнение Шредингера (17,6) предельное выражение (6,1) волновой функции получим, произведя дифференцирования,

В этом уравнении имеются чисто вещественные и чисто мнимые члены (напомним, что S и а вещественны); приравнивая те и другие в отдельности нулю, получим два уравнения:

Пренебрегая в первом из этих уравнений членом, содержащим получим

(17,10)

т. е., как и следовало, классическое уравнение Гамильтона - Якоби для действия S частицы. Мы видим, кстати, что при классическая механика справедлива с точностью до величин первого (а не нулевого) порядка по включительно.

Второе из полученных уравнений после умножения на 2а может быть переписано в виде

Это уравнение имеет наглядный физический смысл: есть плотность вероятности нахождения частицы в том или ином месте пространства есть классическая скорость v частицы. Поэтому уравнение (17,11) есть не что иное, как уравнение непрерывности, показывающее, что плотность вероятности «перемещается» по законам классической механики с классической скоростью v в каждой точке.

Задача

Найти закон преобразования волновой функции при преобразовании Галилея.

Решение. Произведем преобразование над волновой функцией свободного движения частицы (плоской волной). Поскольку всякая функция может быть разложена по плоским волнам, то тем самым будет найден закон преобразования и для произвольной волновой функции.

Плоские волны в системах отсчета К и К" (К" движется относительно К со скоростью V):

причем а импульсы и энергии частицы в обеих системах связаны друг с другом формулами

(см. I, § 8), Подставив эти выражения в получим

В таком виде эта формула уже не содержит величин, характеризующих свободное движение частицы, и устанавливает искомый общий закон преобразования волновой функции произвольного состояния частицы. Для системы частиц в показателе экспоненты в (1) должна стоять сумма по частицам.

Лекция 5. УРАВНЕНИЕ ШРЕДИНГЕРА.

Вероятностный смысл волн де Бройля. Волновая функция.

Волны де Бройля имеют специфическую квантовую природу, не имеющую аналогии с волнами в классической физике. Это не электромагнитные волны, так как их распространение в пространстве не связано с распространением какого-либо электромагнитного поля. Вопрос о природе волн можно сформулировать как вопрос о физическом смысле амплитуды этих волн. Вместо амплитуды удобнее выбрать интенсивность волны, пропорциональную квадрату модуля амплитуды.

Из опытов по дифракции электронов следует, что в этих экспериментах обнаруживается неодинаковое распределение пучков электронов, отраженных по различным направлениям. С волновой точки зрения наличие максимумов числа электронов в некоторых направлениях означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. Интенсивность волн в данной точке пространства определяет плотность вероятности попадания электронов в эту точку за 1 сек.

Это послужило основанием для своеобразного статистического, вероятностного истолкования волн де Бройля.

Квадрат модуля амплитуды волн де Бройля в данной точке является мерой вероятности того, что частица обнаруживается в этой точке.

Для того чтобы описать распределение вероятности нахождения частицы в данный момент времени в некоторой точке пространства, введем функцию, которая является функцией времени и координат, обозначается греческой буквой ψ и называется волновой функцией или просто пси-функцией.

По определению - вероятность того, что частица имеет координату в пределах x, x+dx.

Если , то - вероятность того, что частица находится в объеме dxdydz.

Следовательно, вероятность того, что частица находится в элементе объема dV, пропорциональна квадрату модуля пси-функции и элементу объема dV.

Физический смысл имеет не сама функция ψ, а квадрат ее модуля , где ψ* - функция, комплексно сопряженная с ψ. Величина имеет смысл плотности вероятности , т.е. определяет вероятность пребывания частицы в данной точке пространства . Иными словами определяет интенсивность волн де Бройля. Волновая функция является основной характеристикой состояния микрообъектов (элементарных частиц, атомов, молекул).

Нестационарное уравнение Шредингера.

Уравнения Ньютона в классической механике позволяют для макроскопических тел решить основную задачу механики – по заданным силам, действующим на тело (или систему тел), и начальным условиям найти для любого момента времени координаты тела и его скорость, т.е. описать движение тела в пространстве и времени.

При постановке аналогичной задачи в квантовой механике необходимо учитывать ограничения на возможность применения к микрочастицам классических понятий координат и импульса. Поскольку состояние микрочастицы в пространстве в данный момент времени задается волновой функцией, а точнее - вероятностью нахождения частицы в точке x,y,z в момент t , основное уравнение квантовой механики является уравнением относительно пси-функции .

Это уравнение было получено в 1926 г. Шредингером. Как и уравнения движения Ньютона, уравнение Шредингера постулируется, а не выводится. Справедливость этого уравнения доказывается тем, что полученные с его помощью выводы находятся в хорошем согласии с экспериментами.

Уравнение Шредингера имеет вид

,

здесь m – масса частицы, i – мнимая единица, - оператор Лапласа, результат действия которого на некоторую функцию

.

U(x,y,z,t) – в рамках наших задач потенциальная энергия частицы, движущейся в силовом поле. Из уравнения Шредингера следует, что вид пси-функции определяется функцией U, т.е. в конечном счете, характером сил, действующих на частицу.

Уравнение Шредингера дополняется важными условиями, которые накладываются на пси-функцию. Этих условий три:

1) функция ψ должна быть конечной, непрерывной и однозначной;

2) производные должны быть непрерывны

3) функция должна быть интегрируема, т.е. интеграл

должен быть конечным. В простейших случаях третье условие сводится к условию нормировки

Это означает, что пребывание частицы где-либо в пространстве есть достоверное событие и его вероятность должна быть равна единице. Первые два условия – обычные требования, накладываемые на искомое решение дифференциального уравнения.

Поясним, как можно прийти к уравнению Шредингера. Ограничимся для простоты одномерным случаем. Рассмотрим свободно движущуюся частицу (U = 0).

Сопоставим ей, согласно идее де Бройля, плоскую волну

Заменим и и перепишем

.

Продифференцировав это выражение один раз по t, а второй раз дважды по x, получим

Энергия и импульс свободной частицы связаны соотношением

Подставив в это соотношения выражения для Е и р 2

Последнее выражение совпадает с уравнением Шредингера при U =0.

В случае движения частицы в силовом поле, характеризуемом потенциальной энергией U, энергия Е и импульс р связаны соотношением

Изложенные рассуждения не имеют доказательной силы и не могут рассматриваться как вывод уравнения Шредингера. Их цель – пояснить, каким образом можно прийти к установлению этого уравнения.

| следующая лекция ==>

Из статистического толкования волн де Бройля (см. § и соотношения не- определенностей Гейзенберга (см. § 215) следовало, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравне- ние, из которого бы вытекали наблю- даемые на опыте волновые свойства частиц.

Основное уравнение должно быть уравнением относительно волновой функции так как именно она, или, точнее, величина |Ф|2, определяет вероятность пребывания частицы в мо- мент времени t в объеме dV, в обла- сти с координатами и х + dx, y+dy,


z и Так как искомое уравнениедолжно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, опи- сывающему электромагнитные волны. Основное уравнение нерелятивист- ской квантовоймеханики сформулиро- вано в 1926 г. Э.Шредингером. Урав- нение Шредингера, как и все основные уравнения физики (например, уравне- ния Ньютона в классической механике и уравнения Максвелла для электро- магнитного поля), не выводится, а по- стулируется. Правильность этого урав- нения подтверждается согласием с опы- том получаемых с его помощью резуль- татов, что, в свою очередь, придает ему характер закона природы. Уравнение

Шредингера имеет вид

д е -
г масса частицы; А - оператор Лапласа

Мнимаяединица, y,z,t) -

Потенциальная функция частицы в си- ловом поле, в котором она движется; z,t) - искомая волновая функция

Уравнение справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоро- стью, т. е. со скоростью v с. Оно до- полняется условиями, накладываемы- ми на волновую функцию: 1) волновая функция должна быть конечной, одно- значной и непрерывной (см. § 216);

2) производные -, -, --, долж-

дх ду

ны быть непрерывны; 3) функция |Ф|2 должна быть интегрируема; это усло- вие в простейших случаях сводится к


Условию нормировки (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно де Бройля, сопостав- ляется Для простоты рассмот- рим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154) t) = A cos - илив комплекснойзаписи t)- Следовательно, плоская волна де Бройля имеет вид

(217.2)

(учтено, что - = -). В квантово й

Показатель экспоненты берут со знаком « - », поскольку физический смысл имеет только |Ф|2, то это несуществен- но. Тогда

Используя взаимосвязь между энерги- ей Е и импульсом = --) и подставляя

выражения (217.3), получим дифференци- альное уравнение

которое совпадает с уравнением для случая U- О (мы рассматривали свободную частицу).

Если частица движется в силовом поле, характеризуемом потенциальной энерги- ей U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и ис- пользуя взаимосвязь между ("для

Случая = Е -U), придем к диффе- ренциальному уравнению, совпадающему с (217.1).


Приведенные рассуждения не долж- ны восприниматься как вывод уравне- ния Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравне- ния Шредингера является согласие с опытом тех выводов, к которым приводит.

Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость времени, иными словами, найти урав- нение Шредингера для стационарных состояний - состояний с фиксирован- ными значениями энергии. Это возмож- но, если силовое поле, в котором час- тица движется, стационарно, т. е. функ- ция U= z) не зависит явно от вре- мени и имеет смысл потенциальной энергии.

В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выража-

Ется множителем е" = е, так что

(217.4)

где Е - полная энергия частицы, посто- янная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

Откуда после деления па общий множи- тель е соответствующих преобра-


зовании придем к уравнению, опреде- ляющему функцию

Уравнение урав-

нением Шредингера для стационар- ных состояний. В это уравнение в ка- честве параметра входит полная энер- гия Е частицы. В теории дифференци- альных уравнений доказывается, что подобные уравнения имеют бесчислен- ное множество решений, из которых по- средством наложения граничных усло- вий отбирают решения, имеющие фи- зический



Для уравнения Шредингера такими условиями являются условия регуляр- ности волновых функций: волновые функции должны быть конечными, од- нозначными и непрерывными вместе со своими первыми производными.

Таким образом, реальный физичес- кий смысл имеют только такие реше- ния, которые выражаются регулярны- ми функциями Но регулярные реше- ния имеют место не при любых значе- ниях параметра Е, а лишь при опреде- ленном их наборе, характерном для дан- ной задачи. Эти значения энергии на- зываются собственными. Решения же, которые соответствуют собственным значениям энергии, называются соб- ственными функциями. Собственные значения Е могут образовывать как не- прерывный, так и дискретный ряд. В пер- вом случае говорят о непрерывном, или сплошном, спектре, во втором - о дис- кретном спектре.

§ 218. Принцип причинности в квантовой механике

Из соотношения неопределенностей часто делают вывод о неприменимости


принципа причинности к явлениям, происходящим в микромире. При этом основываются на следующих соображе- ниях. В классической механике, соглас- но принципупричинности- принци- пу классического детерминизма, по известному состоянию системы в неко- торый момент времени (полностью оп- ределяется значениями координат и импульсов всех частиц системы) и си- лам, приложенным к ней, можно абсо- лютно точно задать ее состояние в лю- бой последующий момент. Следова- тельно, классическая физика основыва- ется на следующем понимании причин- ности: состояние механической систе- мы в начальный момент времени с из- вестным законом взаимодействия час- тиц есть причина, а ее состояние в пос- момент - следствие.

С другой стороны, микрообъекты не могут иметь одновременно и опреде- ленную координату, и определенную соответствующую проекцию импульса [задаются соотношением неопределен- ностей поэтому и делается вы- вод о том, что в начальный момент вре- мени состояние системы точно не оп- ределяется. Если же состояние системы не определенно в начальный момент времени, то не могут быть предсказаны и последующие состояния, т. е. наруша- ется принцип причинности.

Однако никакого нарушения прин- ципа причинности применительно к микрообъектам не наблюдается, по- скольку в квантовой механике понятие состояния микрообъекта приобретает совершенно иной смысл, чем в класси- ческой механике. В квантовой меха- нике состояние микрообъекта полнос- тью определяется волновой функцией квадрат модуля которой

2 задает плотность вероятно- сти нахождения частицы в точке с ко- ординатами х, у, z.

В свою очередь, волновая функция удовлетворяет уравнению

Шредингера содержащему пер- вую производную функции Ф по време- ни. Это же означает, что задание функ- ции (для момента времени опре- деляет ее значение в последующие мо- менты. Следовательно, в квантовой ме- ханике начальное состояние есть причина, а состояние Ф в последующий момент - следствие. Это и есть форма принципа причинности в квантовой механике, т.е. задание функции пре- допределяет ее значения для любых последующих моментов. Таким обра- зом, состояние системы микрочастиц, определенное в квантовой механике, однозначно вытекает из предшествую- щего состояния, как того требует прин- цип причинности.

§219. Движение свободной частицы

Свободнаячастица - частица,дви- жущаяся в отсутствие внешних полей. Так как на свободную (пусть она движется вдоль оси х) силы не дей- ствуют, то потенциальная энергия час- тицы U(x) = const и ее можно принять равной нулю. Тогда полная энергия ча- стицы совпадает с ее кинетической энергией. В таком случае уравнение Шредингера (217.5) для стационарных состояний примет вид

(219.1)

Прямой подстановкой можно убе- диться в том, что частным решением уравнения (219.1) является функция - где А = const и к = const, с собственным значением энергии


Функция = = представляет собой только координат- ную часть волновой функции Поэтому зависящая от времени волно- вая функция, согласно (217.4),

(219.3) представляет собой плоскую монохроматическую волну де Бройля [см. (217.2)].

Из выражения (219.2) следует, что зависимость энергии от импульса

оказывается обычной для нерелятиви- стских частиц. Следовательно, энергия свободной частицы может принимать любые значения (так как волновое чис- ло к может принимать любые положи- тельные значения), т. е. энергетический спектр свободной частицы является непрерывным.

Таким образом, свободная квантовая частица описывается плоской монохро- матической волной де Бройля. Этому соответствует не зависящая от време- ни плотность вероятности обнаружения частицы в данной точке пространства

т. е. все положения свободной частицы в пространстве являются равновероят- ными.

§ 220. Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими

«стенками»

Проведем качественный анализ ре- шений уравнения Шредингера приме-


Рис. 299



(220.4)

нительно к частице в одномерной пря- моугольной «потенциальной яме» с бесконечно высокими «стенками». Та- кая «яма» описывается потенциальной энергией вида (для простоты принима- ем, что частица движется вдоль оси х)

где ширина «ямы», а энергия отсчи- тывается от ее дна (рис. 299).

Уравнение Шредингера (217.5) для стационарных состояний в случае одно- мерной задачи запишется в виде

По условию задачи (бесконечно вы- сокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и вол- новая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х- 0 и х = непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные усло- вия в данном случае имеют вид

В пределах «ямы» (0 х урав- нение Шредингера (220.1) сведется к уравнению

Общее решение дифференциально- го уравнения (220.3):

Так как по (220.2) = 0, то В = 0.

(220.5)

Условие (220.2) = 0 выполняется только при где п - целые числа, т. е. необходимо, чтобы

Из выражений (220.4) и (220.6) сле- дует,

т. е. стационарное уравнение Шредин- гера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяет- ся только при собственных значени- ях зависящих от целого числа п. Следовательно, энергия частицы в

«потенциальной яме» с бесконечно вы- сокими «стенками» принимает лишь определенныедискретныезначения, т.е. квантуется.

Квантованные значения энергии называются уровнями энергии, а чис- ло п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определен- ном энергетическом уровне или, как говорят, частица находится в квантовом


Подставив в (220.5) значение к из (220.6), найдем собственные функции:


Постоянную интегрирования А най- дем из условия нормировки (216.3), которое для данного случая запишется в виде

В результате интегрирования полу-

А - а собственные функции будут иметь вид

I рафики собственных функции (220.8), соответствующие уровням

энергии (220.7) при п=1,2, 3, приведе- ны на рис. 300, а. На рис. 300, б изобра- жена плотность вероятности обнаруже- ния частицы на различных расстояни- ях от «стенок» ямы, равная =

Для п= 1, 2 и 3. Из рисун- ка следует, что, например, в квантовом состоянии с п = 2 частица не может на- ходиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое пове- дение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны. Из выражения (220.7) вытекает, что энергетический интервал между двумя

Соседними уровнями равен


Например, для электрона при раз- мерах ямы - 10"1 м (свободные элек-


Троны в металле) 10 Дж

Т. е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерыв- ным. Если же размеры ямы соизмери- мы с атомными м), то для электрона Дж эВ, т.е. получаются явно дискретные зна- чения энергии (линейчатый спектр).

Таким образом, применение уравне- ния Шредингера к частице в «потенци- альной яме» с бесконечно высокими

«стенками» приводит к квантованным значениям энергии, в то время как клас- сическая механика на энергию этой ча- стицы никаких ограничений не накла- дывает.

Кроме того,

Рассмотрение данной задачи приводит к выводу, что частица «в потенциаль- ной яме» с бесконечно высокими «стен- ками» не может иметь энергию меньше

Минимальной, равной [см. (220.7)].

Наличие отличной от нуля мини- мальной энергии не случайно и выте- кает из соотношения неопределеннос- тей. Неопределенность координаты Ах частицы в «яме» шириной Ах= Тогда, согласно соотношению неопре- деленностей импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса

Такому разбросу значений


импульса соответствует кинетическая энергия

Все остальные уровни (п > 1) име- ют энергию, превышающую это мини- мальное значение.

Из формул (220.9) и (220.7) следу- ет, что при больших квантовых числах

т. е. соседние уровни расположены тес- но: тем теснее, чем больше п. Если п очень велико, то можно говорить о практически непрерывной последова- тельности уровней и характерная осо- бенность квантовых процессов - диск- ретность - сглаживается. Этот резуль- тат является частным случаем принци- па соответствия Бора (1923), соглас- но которому законы квантовой механи- ки должны при больших значениях квантовых чисел переходить в законы классической физики.

Более общая трактовка принципа соответствия: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полнос- тью, а включает в себя классическую теорию, указывая границы ее примене- ния, причем в определенных предель- ных случаях новая теория переходит в старую. Так, формулы кинематики и динамики специальной теории относи- тельности переходят при v с в форму- лы механики Ньютона. Например, хотя гипотеза да Бройля приписывает вол- новые свойства всем телам, но в тех слу- чаях, когда мы имеем дело с макроско- пическими телами, их волновыми свой- ствами можно пренебречь, т.е. приме- нять классическую механику Ньютона.


§ 221. Прохождение частицы сквозь потенциальный барьер.

Туннельный эффект

простейший потенци- альный барьер прямоугольной формы (рис. для одномерного (по оси движения частицы. Для потенциально- го барьера прямоугольной формы вы- сотой шириной /можем записать

При данных условиях задачи клас- сическая частица, обладая энергией Е, либо беспрепятственно пройдет над ба- рьером (при Е > U), либо отразится от него (при Е < U) будет двигаться в обратную сторону, т.е. она не может проникнуть сквозь барьер. Для микро- частицы, даже при Е > U, имеется от- личная от нуля вероятность, что части- ца отразится от барьера и будет двигать- ся в обратную сторону. При Е име- ется также отличная от нуля вероят- ность, что частица окажется в области х> т.е. проникнет сквозь барьер. По- добные, казалось бы, парадоксальные выводы следуют непосредственно из решения уравнения Шредингера, опи-


412


сывающего движение микрочастицы при условиях данной задачи.

Уравнение (217.5) для стационарных состояний для каждой из выделенных рис. 301, а области име- ет

(для областей

(для области

Общие решения этих дифференци- альных уравнений:


Решение (221.3) содержит также волны (после умножения на временной множитель), распространяющиеся в обе стороны. Однако в области 3 име- ется только волна, прошедшая сквозь барьер и распространяющаяся слева направо. Поэтому коэффициент формуле (221.3) следует принять рав- ным нулю.

В области 2 решение зависит от со- отношений E>U или Е Физичес- кий интерес представляет случай, ког- да полная энергия частицы меньше вы- соты потенциального барьера, посколь- ку при Е законы классической фи- зики однозначно не разрешают части- це проникнуть сквозь барьер. В данном случае, согласно q = - мни- мое число, где

(для области

(для области 2);




Значение q и 0, полу- чим решения уравнения Шредингера для трех областей в следующем виде:


(для области 3).

В частности, для области 1 полная волновая функция, согласно (217.4), будет иметь вид


В этом выражении первое слагаемое представляет собой плоскую волну типа (219.3), распространяющуюся в положительном направлении оси х (со- ответствует частице, движущейся в сто- рону барьера), а второе - волну, рас- пространяющуюся в противоположном направлении, т. е. отраженную от барь- ера (соответствует частице, движущей- ся от барьера налево).


(для области 3).

В области 2 функция уже не соответствует плоским волнам, распро- страняющимся в обе стороны, посколь- ку показатели степени экспонент не мнимые, а действительные. Можно по- казать, что для частного случая высо- кого и широкого барьера, когда 1,

Качественный характер функций и иллюстрируется на рис. 301, откуда следует, что волно-


Функция не равна нулю и внутри ба- рьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей ампли- тудой. Следовательно, получили, что частица имеет отличную от нуля веро- ятность прохождения сквозь потенци- альный барьер конечной ширины.

Таким образом, квантовая механика приводит к принципиально новому спе- цифическому квантовому явлению, по- лучившему название туннельного эф- фекта, в результате которого микро- объект может «пройти» сквозь потен- циальный барьер. через Совместное решение уравнений для прямоугольного потенциального барьера дает (в предпо- ложении, что коэффициент прозрачно- сти мал по сравнению с единицей)


где - постоянный множитель, кото- рый можно приравнять единице; U - высота потенциального барьера; Е - энергия частицы; - ширина барьера.

Из выражения (221.7) следует, что D сильно зависит от массы т частицы, ширины / барьера и от (U - чем шире барьер, тем меньше вероятность прохождения сквозь него частицы.

Для потенциального барьера произ- вольной формы (рис. 302), удовлетво- ряющей условиям так называемого ква- зиклассического приближения (доста- точно гладкая форма кривой), имеем


где U= U(x).

С классической точки зрения про- хождение частицы сквозь потенциаль- ный барьер при Е невозможно, так как частица, находясь в области барье- ра, должна была бы обладать отрица- тельной кинетической энергией. Тун- нельный эффект является специфиче- ским квантовым эффектом.

Прохождение частицы сквозь об- ласть, в которую, согласно законам клас- сической механики, она не может про- никнуть, можно пояснить соотношени- ем неопределенностей. Неопределен- ность импульса Ар на отрезке Ах = со- ставляет Ар > -. Связанная с этим раз- бросом в значениях импульса кинети-

302

Ческая энергия может оказаться

достаточной для того, чтобы полная

энергия частицы оказалась больше по- тенциальной.

Основы теории туннельных перехо- дов заложены в работах Л. И. Мандель- штама

Туннельное прохождение сквозь потен- циальный барьер лежит в основе мно- гих явлений физики твердого тела (на- пример, явления в контактном слое на границе двух полупроводников), атом- ной и ядерной физики (например, распад, протекание термоядерных реак- ций).

§ 222. Линейный гармонический осциллятор

В квантовой механике

Линейный гармонический осцил- лятор - система, совершающая одно- мерное движение под действием квази- упругой силы, - является моделью, ис- пользуемой во многих задачах класси- ческой и квантовой теории (см. § 142). Пружинный, физический и математи- ческий маятники - примеры класси- ческих гармонических осцилляторов.

Потенциальная энергия гармони- ческого осциллятора [см. (141.5)] равна

Где - собственная частота колебаний осциллятора; т - масса частицы.

Зависимость (222.1) имеет вид пара- болы (рис. 303), т.е. «потенциальная яма» в данном случае является парабо- лической.

Амплитуда малых колебаний клас- сического осциллятора определяется его полной энергией Е (см. рис. 17).


дингера учитывающим выраже- ние (222.1) для потенциальной энергии. Тогда стационарные состояния кванто- вого осциллятора определяются урав- нением Шредингера вида

= 0, (222.2)

где Е - полная энергия осциллятора. В теории дифференциальных урав-

нений доказывается, что уравнение (222.2) решается только при собствен- ных значениях энергии

(222.3)

Формула (222.3) показывает, что энергия квантового осциллятора может


иметь лишь дискретные значения, т. е. квантуется. Энергия ограничена сни- зу отличным от нуля, как и для прямо- угольной «ямы» с бесконечно высоки- ми «стенками» (см. § 220), минималь- ным значением энергии = Су-

ществование минимальной энергии - она называется энергией нулевых ко- лебаний - является типичной для кван- товых систем и представляет собой пря- мое следствие соотношения неопреде- ленностей.

Наличие нулевых колебаний означа- ет, что частица не может находиться на дне «потенциальной ямы» (независимо от формы ямы). В самом деле, «падение на дно ямы» связано с обращением в нуль импульса частицы, а вместе с тем и его неопределенности. Тогда неопреде- ленность координаты становится сколь угодно большой, что противоречит, в свою очередь, пребыванию частицы в

«потенциальной яме».

Вывод о наличии энергии нулевых колебаний квантового осциллятора про- тиворечит выводам классической тео- рии, согласно которой наименьшая энергия, которую может иметь осцил- лятор, равна нулю (соответствует поко- ящейся в положении равновесия части- це). Например, согласно выводам клас- сической физики при Т = 0 энергия колебательного движения атомов кри- сталла должна была бы обращаться в нуль. Следовательно, должно исчезать и рассеяние света, обусловленное коле- баниями атомов. Однако эксперимент показывает, что интенсивность рассея- ния света при понижении температуры не равна нулю, а стремится к некоторо- му предельному значению, указываю- щему на то, что при Т 0 колебания атомов в кристалле не прекращаются. Это является подтверждением наличия нулевых колебаний.


Из формулы (222.3) также следует, что уровни энергии линейного гармо- нического осциллятора расположены на одинаковых расстояниях друг от друга (см. рис. 303), а именно расстоя- ние между соседними энергетическими уровнями равно причем минималь- ное значение энергии =

Строгое решение задачи о квантовом осцилляторе приводит еще к одному значительному отличию от классиче

В развитие идеи де-Бройля о волновых свойствах вещества Э. Шрёдингер получил в 1926 г. свое знаменитое уравнение. Шрёдингер сопоставил движению микрочастицы комплексную функцию координат и времени, которую он назвал волновой функцией и обозначил греческой буквой «пси» (). Мы будем называть ее пси-функцией.

Пси-функция характеризует состояние микрочастицы. Вид функции получается из решения уравнения Шрёдингера, которое выглядит следующим образом:

Здесь - масса частицы, i - мнимая единица, - оператор Лапласа, результат действия которого на некоторую функцию представляет собой сумму вторых частных производных по координатам:

Буквой U в уравнении (21.1) обозначена функция координат и времени, градиент которой, взятый с обратным знаком, определяет силу, действующую на частицу. В случае, когда функция U не зависит явно от времени, она имеет смысл потенциальной энергии частицы.

Из уравнения (21.1) следует, что вид пси-функции определяется функцией U, т. е. в конечном счете характером сил, действующих на частицу.

Уравнение Шрёдингера является основным уравнением нерелятивистской квантовой механики. Оно не может быть выведено из других соотношений. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия самым точным образом согласуются с опытными фактами.

Шрёдингер установил свое уравнение, исходя из оптико-механической аналогии. Эта аналогия заключается в сходстве уравнений, описывающих ход световых лучей, с уравнениями, определяющими траектории частиц в аналитической механике. В оптике ход лучей удовлетворяет принципу Ферма (см. § 115 2-го тома), в механике вид траектории удовлетворяет так называемому принципу наименьшего действия.

Если силовое поле, в котором движется частица, стационарно, то функция V не зависит явно от времени и имеет, как уже отмечалось, смысл потенциальной энергии. В этом случае решение уравнения Шрёдингера распадается на два множителя, один из которых зависит только от координат, другой - только от времени:

Здесь Е - полная энергия частицы, которая в случае стационарного поля остается постоянной. Чтобы убедиться в справедливости выражения (21.3), подставим его в уравнение (21.1). В результате получим соотношение

Сократив на общий множитель придем к дифференциальному уравнению, определяющему функцию

Уравнение (21.4) называется уравнением Шрёдингера для стационарных состояний. В дальнейшем мы будем иметь дело только с этим уравнением и для краткости будем называть его просто уравнением Шрёдингера. Уравнение, (21.4) часто пишут в виде

Поясним, как можно прийти к уравнению Шрёдингера. Для простоты ограничимся одномерным случаем. Рассмотрим свободно движущуюся частицу.

Согласно идее де-Бройля ей нужно сопоставить плоскую волну

(в квантовой механике принято показатель экспоненты брать со знаком минус). Заменив в соответствии с (18.1) и (18.2) через Е и , придем к выражению

Продифференцировав это выражение один раз по t, а второй раз дважды по х, получим

В нерелятивистской классической механике энергия Е и импульс свободной частицы связаны соотношением

Подставив в это соотношение выражения (21.7) для Е и и сократив затем на , получим уравнение

которое совпадает с уравнением (21.1), если в последнем положить

В случае частицы, движущейся в силовом поле, характеризуемом потенциальной энергией U, энергия Е и импульс связаны соотношением

Распространив и на этот случай выражения (21.7) для Е и получим

Умножив это соотношение на , перенеся член влево, придем к уравнению

совпадающему с уравнением (21.1).

Изложенные рассуждения не имеют доказательной силы и не могут рассматриваться как вывод уравнения Шрёдингера. Их цель - пояснить, каким образом можно было прийти к установлению этого уравнения.

В квантовой механике большую роль играет понятие Под оператором подразумевают правило, посредством которого одной функции (обозначим ее ) сопоставляется другая функция (обозначим ее ). Символически это записывается следующим образом:

Здесь - символическое обозначение оператора (с таким же успехом можно было взять любую другую букву с «шляпкой» над ней, например и т. д.). В формуле (21.2) роль Q играет роль - функция F, а роль f - правая часть формулы.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей