Электромагнитные волны уравнения максвелла и волновое уравнение. Уравнения максвелла и волновое уравнение

В электродинамике – это как законы Ньютона в классической механике или как постулаты Эйнштейна в теории относительности. Фундаментальные уравнения, в сущности которых мы сегодня будем разбираться, чтобы не впадать в ступор от одного их упоминания.

Полезная и интересная информация по другим темам – у нас в телеграм .

Уравнения Максвелла – это система уравнений в дифференциальной или интегральной форме, описывающая любые электромагнитные поля, связь между токами и электрическими зарядами в любых средах.

Неохотно принимались и критически воспринимались учеными-современниками Максвелла. Все потому, что эти уравнения не были похожи ни на что из известного людям ранее.

Тем не менее, и по сей день нет никаких сомнений в правильности уравнений Максвелла, они «работают» не только в привычном нам макромире, но и в области квантовой механики.

Уравнения Максвелла совершили настоящий переворот в восприятии людьми научной картины мира. Так, они предвосхитили открытие радиоволн и показали, что свет имеет электромагнитную природу.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

По порядку запишем и поясним все 4 уравнения. Сразу уточним, что записывать их будем в системе СИ.

Современный вид первого уравнения Максвелла таков:

Тут нужно пояснить, что такое дивергенция. Дивергенция – это дифференциальный оператор, определяющий поток какого-то поля через определенную поверхность. Уместным будет сравнение с краном или с трубой. Например, чем больше диаметр носика крана и напор в трубе, тем большим будет поток воды через поверхность, которую представляет собой носик.

В первом уравнении Максвелла E – это векторное электрическое поле, а греческая буква «ро » – суммарный заряд, заключенный внутри замкнутой поверхности.

Так вот, поток электрического поля E через любую замкнутую поверхность зависит от суммарного заряда внутри этой поверхности. Данное уравнение представляет собой закон (теорему) Гаусса .

Третье уравнение Максвелла

Сейчас мы пропустим второе уравнение, так как третье уравнение Максвелла – это тоже закон Гаусса , только уже не для электрического поля, но для магнитного.

Оно имеет вид:

Что это значит? Поток магнитного поля через замкнутую поверхность равен нулю. Если электрические заряды (положительные и отрицательные) вполне могут существовать по отдельности, порождая вокруг себя электрическое поле, то магнитных зарядов в природе просто не существует.

Второе уравнение Максвелла представляет собой ни что иное, как закон Фарадея . Его вид:

Ротор электрического поля (интеграл через замкнутую поверхность) равен скорости изменения магнитного потока, пронизывающего эту поверхность. Чтобы лучше понять, возьмем воду в ванной, которая сливается через отверстие. Вокруг отверстия образуется воронка. Ротор – это сумма (интеграл) векторов скоростей частиц воды, которые вращаются вокруг отверстия.

Как Вы помните, на основе закона Фарадея работают электродвигатели: вращающийся магнит порождает ток в катушке.

Четвертое - самое важное из всех уравнений Максвелла. Именно в нем ученый ввел понятие тока смещения .

Это уравнение еще называется теоремой о циркуляции вектора магнитной индукции. Оно говорит нам о том, что электрический ток и изменение электрического поля порождают вихревое магнитное поле.

Приведем теперь всю систему уравнений и кратко обозначим суть каждого из них:

Первое уравнение: электрический заряд порождает электрическое поле

Второе уравнение: изменяющееся магнитное поле порождает вихревое электрическое поле

Третье уравнение: магнитных зарядов не существует

Четвертое уравнение: электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Решая уравнения Максвелла для свободной электромагнитной волны, мы получим следующую картину ее распространения в пространстве:

Надеемся, эта статья поможет систематизировать знания об уравнениях Максвелла. А если понадобиться решить задачу по электродинамике с применением этих уравнений, можете смело обратиться за помощью в студенческий сервис . Подробное объяснение любого задания и отличная оценка гарантированы.

В основе теории Максвелла лежат рас­смотренные четыре уравнения:

1. Электрическое поле мо­жет быть как потенциальным (e q), так и вихревым (Е B), поэтому напряженность суммарного поля Е =Е Q +Е B . Так как циркуляция вектора e q равна нулю, а циркуляция вектора Е B оп­ределяется выражением, то цир­куляция вектора напряженности суммар­ного поляЭто уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н : Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами, либо переменными электрическими полями.

3. Теорема Гаусса для поля D : Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью, то формула запишется в виде

4. Теорема Гаусса для поля В: Итак,полная система уравнений Максвел­ла в интегральной форме: Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь:D = 0 E , В=  0 Н, j =E , где  0 и  0 - соответственно электриче­ская и магнитная постоянные,  и  - соответственно диэлектрическая и магнит­ная проницаемости,  - удельная прово­димость вещества.

Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го - только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса можно представитьполную систему урав­нений Максвелла в дифференциальной форме :

Уравнения Максвелла - наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

66. Дифференциальное уравнение электромагнитной волны. Плоские электромагнитные волны.

Для однородной и изотропной среды вдали от зарядов и токов, создаю­щих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженностей Е и Н переменного электро­магнитного поля удовлетворяют волново­му уравнению типа:

-оператор Лапласа.

Т.е. электро­магнитные поля могут су­ществовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением (1) v - фазовая ско­рость, где с= 1/ 0  0 ,  0 и  0 - соответственно электрическая и магнитная постоянные,  и  - соответственно электрическая и магнитная проницаемости среды.

В вакууме (при =1 и =1) скорость распространения электромагнитных волн совпадает со скоростью с. Так как > 1, то скорость распространения электро­магнитных волн в веществе всегда мень­ше, чем в вакууме.

При вычислении скорости распростра­нения электромагнитного поля по формуле (1) получается результат, достаточно хорошо совпадающий с эксперименталь­ными данными, если учитывать зависи­мость  и , от частоты. Совпадение же размерного коэффициента в со скоростью распространения света в вакуу­ме указывает на глубокую связь между электромагнитными и оптическими явле­ниями, позволившую Максвеллу создать электромагнитную теорию света, согласно которой свет представляет собой электро­магнитные волны.

Следствием теории Максвелла являет­ся поперечность электромагнитных волн: векторыЕ и Н напряженностей электриче­ского и магнитного полей волны взаимно перпендикулярны (рис. 227) и лежат в плос­кости, перпендикулярной вектору v скоро­сти распространения волны, причем векто­ры Е , Н и v образуют правовинтовую систему. Из уравнений Максвелла следует также, что в электромагнитной волне век­торы Е и Н всегда колеблются в одина­ковых фазах (см. рис. 227), причем мгно­венные значения £ и Я в любой точке связаны соотношением  0 = 0 Н. (2)

Этим уравнениям удов­летворяют, в частности, плоскиемонохро­матические электромагнитные волны (электромагнитные волны одной строго определенной частоты), описываемые уравнениями Е у 0 cos(t-kx+), (3) H z = H 0 cos (t-kx+), (4), где е 0 и Н 0 - соответственно амплитуды напряженностей электрического и магнит­ного полей волны,  - круговая частота волны, k=/v- волновое число, - начальные фазы колебаний в точках с ко­ординатой х= 0. В уравнениях (3) и (4)  одинаково, так как колебания электрического и магнитного векторов в электромагнитной волне происходят с одинаковой фазой.

Используем формулу Стокса , согласно которой циркуляция вектора по замкнутому контуру L равна потоку ротора этого вектора через поверхность, опирающуюся на этот контур. Тогда:

Пусть S произвольная неизменная во времени поверхность, ограниченная контуром L. Тогда система уравнений (1.2.7) перепишется так:

Поскольку контур интегрирования в полученных интегралах произволен, равенство нулю интегралов возможно только при равенстве нулю подынтегральных выражений. Тогда:

Уравнения (1.3.2) и есть уравнения Максвелла.

В большей части курса мы будем рассматривать поля, изменяющиеся во времени по гармоническому закону:

Для которых принята комплексная форма записи:

Где комплексная амплитуда. При комплексной форме записи гармонических полей производная по времени заменяется умножением на .

Тогда уравнения Максвелла (1.3.2) для полей, изменяющихся по гармоническому закону, принимают вид:

Найдем решение уравнений Масквелла для простейшего случая распространения электромагнитной волны в вакууме.

В вакууме , . Поэтому для вакуума уравнения Максвелла (1.3.4) принимают вид:

Исключим Из (1.3.5). Для этого применим операцию Rot К обеим частям первого уравнения: . Теперь подставим значение из второго уравнения. В результате получим:

Используем известное соотношение векторной алгебры

Вспомним, что в соответствии с теоремой Гаусса-Остроградского

И учтем, что в вакууме свободных зарядов нет (т. е. ). Подставим (1.3.8) и (1.3.7) в (1.3.6). В результате получаем:

Полученное уравнение носит название Волновое уравнение . Аналогичным образом можно получить волновое уравнение относительно вектора магнитного поля .

Наиболее наглядным решением волнового уравнения является сферическая волна, распространяющаяся вокруг точечного излучателя. Чтобы получить решение для сферической волны, нужно представить оператор Лапласа в уравнении (1.3.9) в сферической системе координат, что приведет к достаточно громоздким математическим выражениям. С целью упрощения математических процедур мы рассмотрим решение волнового уравнения для плоской волны, являющейся функцией одной координаты.

Рис.1.3.1. показана схема расположения силовых линий сферической электромагнитной волны. Рисунок иллюстрирует тот факт, что на больших расстояниях от излучателя электромагнитное поле можно рассматривать как плоскую волну, распространяющуюся вдоль направления, перпендикулярного плоскости постоянной фазы, причем характеристики волны зависят только от одной координаты вдоль направления распространения. Несмотря на то, что в общем случае волна имеет сферическую симметрию, в ограниченной области, обозначенной квадратом, можно говорить о плоской волне, характеристики которой зависят только от одной координаты.

Примем во внимание, что одномерный оператор Лапласа имеет следующий вид:

И получим одномерное волновое уравнение для плоской волны:

Рис.1.3.1. Схема силовых линий напряженности электрического и магнитного полей сферической электромагнитной волны.

Любое дифференциальное уравнение приобретает физический смысл, если заданы граничные условия для его решения. Решение уравнения (1.3.11) получается в виде двух волн, распространяющихся вдоль положительного и отрицательного направлений оси z. Примем в качестве граничных условий утверждение, что в рассматриваемой среде плоская волна может распространяться только в одном направлении. Итак, мы имеем решение уравнения (1.3.11) для плоской волны, распространяющейся вдоль положительного направления оси z:

Фаза волны:

Где K — волновое число (в общем случае волновой вектор).

Фиксированная ориентация вектора напряженности поля вдоль заданной координатной оси носит название Поляризации волны . Соотношение (1.3.12) задает поляризацию напряженности электрического поля вдоль оси Х .

На рис.1.3.2. показано положение плоскости постоянной фазы для двух моментов времени.

Рис.1.3.2. Движение плоскости постоянной фазы.

Для плоскости постоянной фазы (φ = const), которая движется вдоль оси z, ее производная по времени равна нулю:

В соответствии с (1.1.26) получаем:

Где - скорость движения поверхности неизменной фазы или Фазовая скорость.

Подставив (1.3.12) в (1.3.11) получим

И, сократив , получим Дисперсионное уравнение для плоской волны в свободном пространстве :

Или (1.3.16)

Разные знаки в выражении для K соответствуют волнам, распространяющимся вдоль оси Z в разных направлениях. В соответствии с (1.3.14):

В свободном пространстве , где C — скорость света.

Таким образом, из уравнений Максвелла следует, что скорость света в свободном пространстве определяется диэлектрической и магнитной проницаемостями вакуума:

Диэлектрическая и магнитная проницаемость вакуума – это характеристики пространства, связанные со статическими полями. Первая из них характеризует только диэлектрические свойства среды. А вторая – только магнитные свойства. Результат решения уравнений Масквелла, представленный формулой (1.3.18), связывает воедино электростатику, магнитостатику и динамический процесс распространения света.

Действительно, диэлектрическую проницаемость можно получить экспериментально путем измерения силы взаимодействия двух известных зарядов Q1 и Q2 расположенных на расстоянии R друг от друга:

(закон Кулона).

.

Магнитную проницаемость можно получить, измерив силу взаимодействия двух проводников длиной и с током и соответственно, расположенных на расстоянии R друг от друга:

(закон Био-Савара-Лапласа)

Таким образом, из статического эксперимента можно получить численное значение .

Следовательно, уравнения Максвелла позволяют выразить скорость света через характеристики, полученные с помощью статических измерений.

Уравнения Максвелла связывают воедино электрическое поле, магнитное поле и электромагнитные волны (свет). Создание концепции электромагнитного поля и формулировка уравнений, его описывающих, послужили одной из важнейших отправных точек физики XX века.

1. Уравнения Максвелла и волновое уравнение. Электромагнитное поле описывается уравнениями Максвелла: Рассмотрим однородную и изотропную, электрически нейтральную, непроводящую среду.

1. Уравнения Максвелла и волновое уравнение. В рассматриваемой среде (ε = const. , μ = const. , = 0) эти уравнения можно переписать так: (1) (2) (3) (4) Вычислим ротор от правой и левой части уравнения (1).

1. Уравнения Максвелла и волновое уравнение. Согласно уравнению (4) После вычисления ротора от левой части уравнения (1) получаем:

1. Уравнения Максвелла и волновое уравнение. Вычислим ротор от правой части уравнения (1). Согласно уравнению (3) После вычисления ротора от правой и левой части уравнения (1) получаем:

1. Уравнения Максвелла и волновое уравнение. Сравним полученное уравнение с общим видом дифференциального волнового уравнения: где v – фазовая скорость распространения волны. Полученное нами уравнение для напряжённости электрического поля совпадает волновым уравнением, если Решениями волнового уравнения являются плоские волны вида

1. Уравнения Максвелла и волновое уравнение. Решениями волнового уравнения для вектора напряжённости электрического поля также являются плоские волны. В данном случае в пространстве распространяются колебания напряжённости электрического поля. Фазовая скорость распространения в пространстве таких колебаний:

1. Уравнения Максвелла и волновое уравнение. Аналогично можно вывести волновое уравнение, рассматривая напряжённость магнитного поля. В рассматриваемой среде (ε = const. , μ = const. , = 0): (1) (2) (3) (4) Вычислим ротор от правой и левой части уравнения (3). Выполним преобразования, как и в воспользуемся уравнением (2) и получим: предыдущем случае,

1. Уравнения Максвелла и волновое уравнение. Это уравнение можно переписать так: где - фазовая скорость волны. - решение волнового уравнения, уравнение плоской волны. Отметим, что решения одинаковы как для электрического поля, так и для магнитного. Колебания напряжённостей электрического и одновременно происходят поле магнитного одинаковой скоростью. Эти колебания совпадают по фазе. Колебания напряжённостей электрического и магнитного полей, распространяющиеся в пространстве, называются электромагнитными волнами.

1. Уравнения Максвелла и волновое уравнение. Фазовая скорость электромагнитной волны В вакууме, когда ε = 1 и μ = 1, В некоторой среде, когда ε > 1 и μ > 1, В оптике величина n называется показателем преломления. Физический смысл показателя преломления - он показывает, во сколько раз скорость света (ЭМВ) в данной среде меньше, чем в вакууме.

1. Уравнения Максвелла и волновое уравнение. Основные выводы: 1. Уравнения Максвелла допускают волновые решения. 2. Электромагнитная полна представляет собой колебания напряженностей электрического и магнитного полей, распространяющихся в пространстве. 3. Скорость распространения ЭМВ в вакууме 4. Скорость распространения ЭМВ в любой диэлектрической среде меньше, чем в вакууме: n – показатель преломления среды.

2. Экспериментальное открытие электромагнитных волн. Схема опыта Герца. Джеймс Кларк Максвелл (18311879) Генрих Рудольф Герц (1857 - 1894)

3. Поперечность ЭМВ. Некоторые свойства ЭМВ мы уже отметили: 1. Скорость распространения ЭМВ в вакууме 2. Скорость распространения ЭМВ в любой диэлектрической среде меньше, чем в вакууме: n – показатель преломления среды. Ещё одним важнейшим свойством ЭМВ является её поперечность.

3. Поперечность ЭМВ. Если плоская ЭМВ распространяется вдоль оси OX выбранной нами системы отсчёта, то её уравнение можно записать так: Здесь ω – циклическая (круговая) частота колебаний волны, k – волновое число. Известно, что волновые поверхности плоской волны - плоскости. Если волна распространяется вдоль оси OX, то её волновые поверхности есть плоскости, параллельные плоскости YZ (перпендикулярные OX).

3. Поперечность ЭМВ распространяется вдоль оси OX, изменение векторов E и H описывается уравнениями Каждая из волновых поверхностей характеризуется одним значением координаты X. Поэтому в пределах одной волновой поверхности в данный момент времени значения вектора напряжённости одинаковы. Это справедливо и для вектора E и для вектора H. Значения всех трёх компонент вектора E и всех трёх компонент вектора H зависят только от координаты X и не зависят от координат Y и Z.

3. Поперечность ЭМВ. Рассмотрим уравнение, распространение ЭМВ: В левой части этого уравнения То же по компонентам: описывающее

3. Поперечность ЭМВ. В направлениях, перпендикулярных направлению распространения волны, производные по времен от H нулю не равны, следовательно, в этих направлениях может существовать переменное магнитное поле. В направлении, параллельном направлению распространения волны, может существовать только стационарное магнитное поле.

3. Поперечность ЭМВ. Если рассмотреть уравнение, описывающее распространение ЭМВ и, как и в предыдущем случае, переписать его в виде проекций на оси координат, и учесть, что все компоненты вектора H зависят только от координаты x, получим В направлениях, перпендикулярных направлению распространения волны, может существовать переменное электрическое поле. В направлении, параллельном направлению распространения волны, может существовать только стационарное электрическое поле.

4. Поляризация ЭМВ. Если колебания вектора напряжённости электрического поля в волне каким-либо образом упорядочены, волна называется поляризованной. Если колебания вектора напряжённости электрического поля в волне происходят в одной плоскости, волна называется линейно поляризованной. Если плоскость, в которой происходят колебания вектора напряжённости электрического поля в волне вращается, волна называется поляризованной по кругу (по эллипсу).

5. Соотношение между E и H в ЭМВ. Рассмотрим уравнение, описывающее распространение ЭМВ: В левой части этого уравнения

5. Соотношение между E и H в ЭМВ. Учтём, что вектор E зависит только от координаты x Рассмотрим уравнение, описывающее распространение ЭМВ: В левой части этого уравнения

5. Соотношение между E и H в ЭМВ. Учтём, что вектор H зависит только от координаты x Решениями волнового уравнения являются плоские волны (волна распространяется вдоль OX, векторы напряжённостей перпендикулярны)

5. Соотношение между E и H в ЭМВ. Как мы установили ранее, Подставим в это уравнение выражения дл напряжённостей полей. Это соотношение должно выполняться в любой момент времени и в точке с любой координатой x.

5. Соотношение между E и H в ЭМВ. Волновое число k связано с циклической частотой ω соотношением

6. Вектор Умова-Пойнтинга. Известно, что плотность энергии электрического поля а плотность энергии магнитного поля Эти выражения можно получить из уравнений Максвелла. Рассмотрим уравнения: (1) (2) Умножим уравнение (1) на вектор H скалярно, а уравнение (2) умножим скалярно на вектор E.

6. Вектор Умова-Пойнтинга. Аналогично преобразуем второе уравнение: Мы рассматриваем непроводящую среду, поэтому j = 0. Итого, мы получили два уравнения: Вычтем из второго уравнения первое:

6. Вектор Умова-Пойнтинга. Выясним физический смысл полученного выражения. Обозначим - вектор Умова-Пойнтинга. - плотность энергии электромагнитного поля. Преобразуем левую часть уравнения:

6. Вектор Умова-Пойнтинга. Применим к левой части уравнения теорему Остроградского-Гаусса: Здесь - поверхность, окружающая объём V. Чтобы равенство не нарушилось, вычислим интеграл по объёму V и в правой части: Здесь Wэм - энергия электромагнитного поля в объёме V. Итого, получилось:

6. Вектор Умова-Пойнтинга. Таким образом, поток вектора Умова-Пойнтинга через некоторую замкнутую поверхность равен убыли энергии электромагнитного поля в объёме, ограниченном этой замкнутой поверхностью. Согласно определению, Таким образом, Эти векторы образуют правую тройку. E и H лежат в плоскости, перпендикулярной направлению распространения волны, направление S совпадает с направлением распространения волны.

7. Энергия, переносимая электромагнитной волной. Известно, что плотность энергии электромагнитного поля Если в пространстве распространяется электромагнитная волна, то в данной точке пространства Плотность энергии магнитного поля В любой момент времени

7. Энергия, переносимая электромагнитной волной. Введём новую величину, S, и назовём её модулем плотности потока энергии. То есть эта величина будет равна энергии, проходящей через единицу площади в единицу времени W – энергия, - площадь, t – время. Модуль плотности потока энергии (эта величина равна энергии, проходящей через единицу площади в единицу времени) равен модулю вектора Умова – Пойнтинга.

7. Энергия, переносимая электромагнитной волной. Энергия электромагнитной волны, проходящая через единицу площади в единицу времени, равна модулю вектора Умова – Пойнтинга.

Общая форма записи волнового процесса

Определение 1

Допустим, что физическая величина $s$ распространяется в направлении $X$ со скоростью $v$. Данная величина ($s$) может быть смещением, скоростью кусочков резинового шнура, когда в шнуре проходит механическая волна. Если мы имеем дело с электромагнитной волной, то под $s$ можно понимать напряженность электрического поля или индукцию магнитного поля и т.д. Общая форма записи волнового процесса представляется как:

где $t$ -- время, $x$ -- координата точки, которую рассматривают, $f$ - символ функции.

Любая произвольная функция, имеющая исключительно аргумент $\left(t-\frac{x}{v}\right)$, отражает волновой процесс.

Положим, что наблюдатель перемещается по $оси X$ со скоростью $v$. Его координата может быть определена как:

Подставим правую часть выражения (2) в формулу (1) вместо переменной $x$, получим:

Из выражения (3) следует, что функция $f\left(-\frac{x_0}{v}\right)$ не зависит от времени, что означает $s$ распространяется со скоростью $v$.

Аналогично можно получить, что если процесс записан как:

то $s$ распространяется против избранной $оси X$. Если положить, что $t=0$, то из выражений (1) и (4) имеем:

Выражение (5) определяет распределение $s$ в начальный момент времени. В том случае, если $s$ напряженность магнитного поля в электромагнитной волне, то формула (5) - задает распределение магнитного поля в пространстве при $t=0$. Получается, что вид функции $f$ зависит от начальных условий процесса.

Итак, выражения (1) и (4) являются общим выражением для волны, которая распространяется вдоль $оси X$.

Волновое уравнение

Определение 2

Функция $s$ удовлетворяет простому дифференциальному уравнению. Для его нахождения продифференцируем выражения (1) и (4), объединив их, используя знак $\mp $, дважды по координате $x$:

\[\frac{{\partial }^2s}{\partial x^2}=\frac{1}{v^2}f^{""}\left(6\right).\]

Вторая частная производная по времени будет иметь вид:

\[\frac{{\partial }^2s}{\partial t^2}=f^{""}\left(7\right).\]

Используя выражения (6) и (7) запишем:

\[\frac{{\partial }^2s}{\partial t^2}=v^2\frac{\partial^2s}{\partial x^2}\left(8\right).\]

Уравнение (8) называют волновым . В том случае, если волна распространяется не в одном, во всех направлениях пространства, то волновое уравнение примет вид:

\[\frac{{\partial }^2s}{\partial t^2}=v^2\left(\frac{{\partial }^2s}{\partial x^2}+\frac{{\partial }^2s}{\partial y^2}+\frac{{\partial }^2s}{\partial z^2}\right)\left(9\right).\]

Замечание

В том случае, если физическая величина распространяется в виде волны, то она должна удовлетворять волновому уравнению. Справедливо обратное утверждение: Если какая - либо величина подчиняется волновому уравнению, то она распространяется как волна. Скорость распространения волны будет равна квадратному корню из коэффициента, который стоит при сумме пространственных производных.

Электромагнитные волны

Рассмотрим электромагнитное поле в однородном диэлектрике ($j_x=j_y=j_z=0$). Причем будем считать задачу одномерной, то есть предположим, что векторы $\overrightarrow{E}\ и\ \overrightarrow{H}$ зависят только от одной координаты $x$ и времени $t$. Такая ситуация означает, что все пространство мы можем разделить на тонике слои (толщина слоя стремится к нулю), плоские слои, внутри них $\overrightarrow{E}\ и\ \overrightarrow{H}$ принимают одно и тоже значение во всех точках. Данная задача соответствует плоской электромагнитной волне. Для описания электромагнитного поля используем систему уравнений Максвелла:

Для одномерного случая система уравнений Максвелла существенно упрощается, так как все производные по $y$ и $z$ равны нулю. Записав уравнение (10) в скалярном представлении:

Становится очевидным, что в однородной среде для одномерного случая:

Аналогично из уравнения (11) получаем, что:

Выражения (15) и (16) означают, что данные составляющие электромагнитного поля не зависят от времени. А из уравнений (12) и (13) следует, что $D_x$и $B_x$ - не зависят от координаты. В результате мы имеем, что $D_x=const,\ B_x=const$.

Остальные уравнения из группы (14) примут вид:

От группы уравнений в скалярной форме, которые представляют выражение (11), остаются:

Уравнения (17) и (18) сгруппируем как две независимые части. Первая - связывающая $y$-составляющую электрического поля и $z$-составляющую магнитного поля:

Вторая часть связывает $z$-компоненту электрического поля и $y$-компоненту магнитного поля:

Получается, что переменное (во времени) электрическое поле ($D_y$) порождает одну $z$-составляющую магнитного поля ($H_z$), переменное магнитное поле $B_z$ вызывает появление электрического поля направленного по $оси Y$ ($E_y$) (уравнения 19). То есть в электромагнитном поле электрическое и магнитные поля перпендикулярны друг другу. Аналогичный вывод можно сделать из пары (20).

Для одномерного случая систему уравнений Максвелла можно записать в виде:

Электрическое и магнитные поля могут существовать как волны, так как из уравнения Максвелла следует существование этих волн. Так как для напряженности электрического поля выполняется уравнение вида:

Следовательно, решение этого уравнения можно представить как:

Так как для напряженности магнитного поля выполняется уравнение вида:

следовательно, решение этого уравнения можно представить как:

Пример 1

Задание: Покажите, на примере одномерного случая электромагнитного поля, что из уравнений Максвелла следует волновой характер электромагнитного поля.

Решение:

В качестве основы для решения задачи используем уравнения Максвелла для одномерного случая:

\[\frac{\partial D}{\partial t}=-\frac{\partial H}{\partial x},\ \frac{\partial B}{\partial t}=-\frac{\partial E}{\partial x}\left(1.1\right).\]

Исключим из уравнений (1.1) магнитное поле $H$. С этой целью умножим первое уравнение на $\mu {\mu }_0$ и возьмем частную производную по времени от обеих частей равенства и, используя выражение: $D=\varepsilon_0\varepsilon E$, заменим электрическую индукцию на напряженность соответствующего поля, получим:

\[{\mu {\mu }_0\varepsilon }_0\varepsilon \ \frac{{\partial }^2E}{\partial t^2}=-\mu {\mu }_0\frac{{\partial }^2H}{\partial x\partial t}\left(1.2\right).\]

Второе уравнение в группе (1.1) продифференцируем по $x$, заменим индукцию магнитного поля на его напряженность, используя выражение: $B=\mu {\mu }_0H$, при этом имеем:

\[\frac{{\partial }^2E}{\partial x^2}=-\mu {\mu }_0\frac{{\partial }^2H}{\partial x\partial t}\left(1.3\right).\]

Как мы видим, правые части выражений (1.2) и (1.3) одинаковы, следовательно, можно считать, что:

\[\frac{{\partial }^2E}{\partial x^2}={\mu {\mu }_0\varepsilon }_0\varepsilon \ \frac{{\partial }^2E}{\partial t^2}\to \frac{{\partial }^2E}{\partial t^2}=\frac{1}{{\mu {\mu }_0\varepsilon }_0\varepsilon }\frac{{\partial }^2E}{\partial x^2}\left(1.4\right).\]

Аналогичное уравнение легко получить для напряженности магнитного поля, если исключить напряженность электрического поля. Уравнение (1.4) -- есть волновое уравнение.

Ответ: Волновое уравнение для напряженности электрической составляющей электромагнитного поля получено непосредственно из уравнений Максвелла для одномерной задачи.

Пример 2

Задание: Чему равна скорость ($v$) распространения электромагнитной волны ?

Решение:

За основу решения примем волновое уравнение для напряженности электрического поля в плоской электромагнитной волне:

\[\frac{{\partial }^2E}{\partial t^2}=\frac{1}{{\mu {\mu }_0\varepsilon }_0\varepsilon }\frac{{\partial }^2E}{\partial x^2}\left(2.1\right).\]

Скоростью распространения волны является корень квадратный из коэффициента, который находится перед $\frac{{\partial }^2E}{\partial x^2}$ в волновом уравнении, следовательно:

где $c$ -- скорость распространения света в вакууме.

Ответ: $v=\frac{c}{\sqrt{\mu \varepsilon}}.$

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей