Важнейшие свойства кристаллов.

Теория решётчатого строения кристаллов была создана в середине 19 века французским кристаллографом О. Бравэ, а затем русский кристаллограф академик Е. С. Фёдоров и немецкий учёный А. Шенфлис завершили математическую разработку этой теории. При создании и разработке теории решетчатого строения кристаллов Бравэ, Фёдоров и др. кристаллографы основывались исключительно на некоторых важных свойствах кристаллического вещества.

Основными свойствами кристаллов являются их однородность, анизотропность, способность самоограняться и симметричность.

Однородным обычно называют тело, которое обнаруживает одинаковые свойства во всех своих частях. Кристаллическое тело однородно, т. к. различные участки его имеют одинаковое строение, т. е. одинаковую ориентировку слагающих частиц, принадлежащих одной и той же пространственной решётке. Однородность кристалла следует отличать от однородности жидкости или газа, которая имеет статистический характер.

Анизотропным называется такое однородное тело, которое обладает неодинаковыми свойствами по непараллельным направлениям. Кристаллическое тело анизотропно, т. к. строение пространственной решётки, а значит и самого кристалла, в общем случае неодинаково по непараллельным направлениям. По параллельным же направлениям частицы слагающие кристалл, как и узлы его пространственной решётки, расположены строго одинаковым образом, поэтому и свойства кристалла по таким направлениям должны быть одними и теми же.

Характерный пример резко выраженной анизотропности представляет слюда, кристаллы которой легко расщепляются лишь по одному определённому направлению. В качестве другого яркого примера анизотропности можно привести минерал дистен (AlOAl), у кристаллов которого боковые грани имеют сильно различающиеся значения твердости в продольном и поперечном направлениях. Если из кристалла каменной соли, имеющего форму куба, вырезать стерженьки по разным направлениям, то для разрыва этих стерженьков потребуются разные усилия. Стерженёк, перпендикулярный граням куба, разорвётся при усилии около 570 Г/мм 2 ; для стерженька, параллельного гранным диагоналям, разрывающее усилие составит 1150 Г/мм 2 , а разрыв стерженька, параллельного телесной диагонали куба, произойдет при усилии 2150 Г/мм 2 .

Приведенные примеры, конечно, исключительны по своей характерности. Однако точными исследованиями установлено, что абсолютно все кристаллы в том или ином отношении обладают анизотропностью.

Однородностью и в некоторой степени анизотропностью могут обладать также и аморфные тела. Но ни при каких условиях аморфные вещества не могут сами по себе принимать форму многогранников. Образовываться в виде плоскостных многогранников могут лишь кристаллические тела. В способности самоограняться , т. е. принимать многогранную форму, проявляется наиболее характерный внешний признак кристаллического вещества.

Правильная геометрическая форма кристаллов с давних пор привлекала внимание человека, и её загадочность вызывала в прошлом у людей различные суеверия. Кристаллы таких веществ, как алмаз, изумруд, рубин, сапфир, аметист, топаз, бирюза, гранат и др., ещё в 18 в. считались носителями сверхъестественных сил и использовались не только как драгоценные украшения, но и как талисманы или средство от многих болезней и укусов ядовитых змей.

На самом же деле способность самоограняться, как и первые два свойства, является следствием правильного внутреннего строения кристаллического вещества. Внешние границы кристаллов как бы отражают эту правильность их внутреннего строения, ибо каждый кристалл можно рассматривать как часть его пространственной решётки, ограниченной плоскостями (гранями).

Необходимо вместе с тем отметить, что способность кристаллического вещества самоограняться проявляется не всегда, а только при особо-благоприятных условиях, когда внешняя окружающая среда не мешает образованию и свободному росту кристаллов. При отсутствии таких условий получаются или совершенно неправильные или частично деформированные кристаллы. Несмотря на это они сохраняют все свои внутренние свойства, в том числе и причины, заставляющие кристаллы принимать форму многогранника. Поэтому, если кристаллическое зерно неправильной формы поместить в определённые условия, в которых кристалл сможет свободно расти, то оно примет через некоторое время форму плоскостного многогранника, присущую данному веществу.

Симметрия кристаллов также является отражением их закономерного внутреннего строения. Все кристаллы в той или иной степени симметричны, т. е. состоят из закономерно повторяющихся равных частей, так как их строение выражается пространственной решёткой, которая по своей природе всегда симметрична.

Открытие мюнхенским физиком М. Лауэ в 1912 г. явления дифракции рентгеновских лучей при их прохождении через кристалл явилось первым экспериментальным подтверждением правильности теории решетчатого строения кристаллического вещества. С этого момента стало возможным, с одной стороны, посредством кристаллов исследовать рентгеновские лучи, а с другой - с помощью рентгеновских лучей исследовать внутреннее строение кристаллов. Таким путём было доказано, что абсолютно все кристаллы состоят из частиц, расположенных друг относительно друга закономерно, наподобие узлов пространственной решётки.

После опытов Лауэ теория решетчатого строения кристаллов перестала быть только лишь умозрительным построением и приобрела форму закона.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Общие свойства кристаллов

Введение

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц.

В основе физики твердого тела лежит представление о кристалличности вещества. Все теории физических свойств кристаллических твердых тел основываются на представлении о совершенной периодичности кристаллических решеток. Используя это представление и вытекающие из него положения о симметрии и анизотропии кристаллов, физики разработали теорию электронной структуры твердых тел. Эта теория позволяет дать строгую классификацию твердых тел, определяя их тип и макроскопические свойства. Однако она позволяет классифицировать только известные, исследованные вещества и не позволяет предопределить состав и структуру новых сложных веществ, которые обладали бы заданным комплексом свойств. Эта последняя задача является особо важной для практики, так как ее решение позволило бы создавать материалы по заказу для каждого конкретного случая. При соответствующих внешних условиях свойства кристаллических веществ определяются их химическим составом и типом кристаллической решетки. Изучение зависимости свойств вещества от его химического состава и кристаллической структуры обычно разбивается на следующие отдельные этапы 1) общее изучение кристаллов и кристаллического состояния вещества 2) построение теории химических связей и ее применение к изучению различных классов кристаллических веществ 3) изучение общих закономерностей изменения структуры кристаллических веществ при изменении их химического состава 4) установление правил, позволяющих предопределять химический состав и структуру веществ, обладающих определенным комплексом физических свойств.

Основные свойства кристаллов - анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления.

1. Анизотропность

кристалл анизотропность самоогоранение

Анизотропность - выражается она в том, что физические свойства кристаллов неодинаковы по разным направлениям. К физическим величинам можно отнести такие параметры - прочность, твердость, теплопроводность, скорость распространения света, электропроводность. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки слюды - легко расщепляются лишь по плоскостям. В поперечных же направлениях расщепить пластинки этого минерала значительно труднее.

Примером анизотропности-является кристалл минерала дистена. В продольном направлении, у дистена твердость равняется 4,5, в поперечном - 6. Минерал дистен (Al 2 O), отличающийся резко различной твердостью по неодинаковым направлениям. Вдоль удлинения кристаллы дистена легко царапаются лезвием ножа, в направлении перпендикулярном удлинению, нож не оставляет никаких следов.

Рис. 1 Кристалл дистена

Минерал кордиерит (Mg 2 Al 3 ). Минерал, алюмосиликат магния и железа. Кристалл кордиерита по трем различным направлениям представляется различно окрашенным. Если из такого кристалла вырезать куб с гранями, то можно заметить следующее. Перпендикулярными этим направлениям, то по диагонали куба (от вершины к вершине наблюдается серовато-синяя окраска, в направлении вертикальном - индигово-синяя окраска, и в направлении поперек куба - желтая.

Рис. 2 Куб, вырезанный из кордиерита.

Кристалл поваренной соли, которая имеет форму куба. Из такого кристалла можно вырезать стерженьки по различным направлениям. Три из них перпендикулярно граням куба, параллельно диагонали

Каждый из примеров исключительны по своей характерности. Но путём точных исследований, ученым пришли к такому выводу, что все кристаллы в том или ином отношении обладают анизотропностью. Так же твёрдые аморфные образования могут быть и однородными и даже анизотропными (анизотропность, к примеру, может наблюдаться при растягивании или сдавливании стёкол), но аморфные тела не могут сами по себе принимать многогранную форму, ни при каких условиях.

Рис. 3 Выявление анизотропии теплопроводности на кварце (а) и ее отсутствия на стекле (б)

В качестве примера (рис. 1) анизотропных свойств кристаллических веществ прежде всего следует упомянуть про механическую анизотропность, которая заключается в следующем. Все кристаллические вещества раскалываются не одинаково вдоль различных направлений (слюда, гипс, графит и др.). Аморфные же вещества-во всех направлениях раскалываются одинаково, потому что аморфность характеризуются изотропностью (равносвойственностью) - физические свойства по всем направлениям проявляются одинаково.

Анизотропию теплопроводности легко пронаблюдать на следующем простом опыте. На грань кристалла кварца нанести слой цветного воска и поднести к центру грани накаленную на спиртовке иголку. Образовавшийся талый круг воска вокруг иголки примет форму эллипса на грани призмы или же форму неправильного треугольника на одной из граней головки кристалла. На изотропном же веществе, например, стекле - форма талого воска всегда будет правильным кругом.

Анизотропность проявляется и в том, что при взаимодействии на кристалл какого-либо растворителя, скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении в итоге приобретает свои характерные формы.

В конечном итоге причиной анизотропности кристаллов - является то, что при упорядоченном расположении ионов, молекул или атомов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, электропроводность или поляризуемость) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул, хотелось бы отметить что все аминокислоты, кроме простейшей - глицина, асимметричны.

Любая частичка кристалла имеет строго определенный химический состав. Это свойство кристаллических веществ используется для получения химически чистых веществ. Например, при замораживании морской воды она становится пресной и пригодной для питья. Теперь угадайте, морской лед пресный или соленый?

2. Однородность

Однородность - выражается в том, что любые элементарные объемы кристаллического вещества, одинаково ориентированные в пространстве, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, массу, твердость и т.д. таким образом, всякий кристалл есть однородное, но в то же время и анизотропное тело. Однородным считается тело, в котором на конечных расстояниях от любой его точки найдутся другие, эквивалентные ей не только в физическом отношении, но и геометрическом. Другими словами, находятся в таком же окружении, как и исходные, поскольку размещением материальных частиц в кристаллическом пространстве «управляет» пространственная решетка, можно считать, что грань кристалла - это материализованная плоская узловая решетка, а ребро - материализованный узловой ряд. Как правило, хорошо развитые грани кристалла определяются узловыми сетками с наибольшей густотой расположения узлов. Точка, в которой сходятся три и более граней, называется вершиной кристалла.

Однородность присуща не только кристаллическим телам. Твердые аморфные образования также могут быть однородными. Но аморфные тела не могут сами по себе принимать многогранную форму.

Ведутся разработки, которые могут повысить коэффициент однородности кристаллов.

Это изобретение запатентовано нашими русскими учеными. Изобретение относится к сахарной промышленности, в частности к получению утфелей. Изобретение обеспечивает повышение коэффициента однородности кристаллов в утфеле, а также способствует увеличениею скорости роста кристаллов на завершающем этапе наращивания за счет постепенного роста коэффициента пересыщения.

Недостатками известного способа являются низкий коэффициент однородности кристаллов в утфеле первой кристаллизации, значительная длительность получения утфеля.

Технический результат изобретения заключается в повышении коэффициента однородности кристаллов в утфеле первой кристаллизации и интенсификации процесса получения утфеля.

3. Способность к самоогранению

Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями. Эта особенность связана с кристаллической структурой. Стеклянный же шарик, например, такой особенностью не обладает.

К механическим свойствам кристаллов относятся свойства, связанные с такими механическими воздействиями на них, как удар, сжатие, растяжение и прочее - (спайность, пластическая деформация, излом, твердость, хрупкость).

Способность самоограняться, т.е. при определенных условиях принимать естественную многогранную форму. В этом также проявляется его правильное внутреннее строение. Именно это свойство отличает кристаллическое вещество от аморфного. Иллюстрацией этому служит пример. Два выточенных из кварца и стекла шарика опускают в раствор кремнезема. В результате шарик кварца покроется гранями, а стеклянный останется круглым.

Кристаллы одного и того же минерала могут иметь разную форму, величину и число граней, но углы между соответствующими гранями всегда будут постоянными (рис. 4 а-г) - это закон постоянства гранных углов в кристаллах. При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры. Углы между гранями кристаллов измеряются при помощи гониометра (угломера). Закон постоянства гранных углов объясняется тем, что все кристаллы одного вещества тождественны по внутреннему строению, т.е. имеют одну и ту же структуру.

Согласно этому закону кристаллы определенного вещества характеризуются своими определенными углами. Поэтому измерением углов можно доказать принадлежность исследуемого кристалла к тому или иному веществу.

У идеально образованных кристаллов наблюдается симметрия, которая у природных кристаллов встречается чрезвычайно редко из-за опережающего роста граней (рис. 4 д).

Рис. 4 закон постоянства гранных углов в кристаллах (а-г) и рост опережающих граней 1,3 и 5 растущего на стенке полости кристалла (д)

Спайностью называется такое свойство кристаллов при котором раскалываться или расщепляться по определенным кристаллографическим направлениям в итоге образовываются ровные гладкие плоскости, называемые плоскостями спайности.

Плоскости спайности ориентированы параллельно действительным или возможным граням кристаллов. Это свойство всецело зависит от внутреннего строения минералов и проявляется в тех направлениях, в которых силы сцепления между материальными частицами кристаллических решеток наименьшие.

Можно выделить в зависимости от степени совершенства несколько видов спайности:

Весьма совершенная - минерал легко расщепляется на отдельные тонкие пластинки или листочки, расколоть его в другом направлении очень трудно (слюды, гипс, тальк, хлорит).

Рис. 5 Хлорит (Mg, Fe) 3 (Si, Al) 4 O 10 (OH) 2 ·(Mg, Fe) 3 (OH) 6)

Совершенная - минерал сравнительно легко раскалывается преимущественно по плоскостям спайности, причем отбитые кусочки часто напоминают отдельные кристаллы (кальцит, галенит, галит, флюорит).

Рис. 6 Кальцит

Средняя - при раскалывании образуются как плоскости спайности, так и неровные изломы по случайным направлениям (пироксены, полевые шпаты).

Рис. 7 Полевые шпаты ({К, Na, Ca, иногда Ba} {Al 2 Si 2 или AlSi 3 } О 8))

Несовершенная - минералы раскалываются по произвольным направлениям с образованием неровных поверхностей излома, отдельные плоскости спайности обнаруживаются с трудом (самородная сера, пирит, апатит, оливин).

Рис. 8 Кристаллы апатита (Са 5 3 (F, Cl, ОН))

У некоторых минералов при раскалывании образуются только неровные поверхности, в этом случае говорят о весьма несовершенной спайности или отсутствии ее (кварц).

Рис. 9 Кварц(SiO 2)

Спайность может проявляться в одном, двух, трех, редко более направлениях. Для более детальной характеристики ее указывают направление, в котором проходит спайность, например по ромбоэдру - у кальцита, по кубу - у галита и галенита, по октаэдру - у флюорита.

Плоскости спайности нужно отличать от граней кристаллов: Плоскость, как правило, обладает более сильным блеском, образуют ряд параллельных друг другу плоскостей и в отличие от граней кристаллов на которых мы не можем наблюдать штриховки.

Таким образом, спайность может прослеживаться по одному (слюды), двум (полевые шпаты), трем (кальцит, галит), четырем (флюорит) и шести (сфалерит) направлениям. Степень совершенства спайности зависит от строения кристаллической решетки каждого минерала, так как разрыв по некоторым плоскостям (плоским сеткам) этой решетки из-за более слабых связей происходит гораздо легче, чем по другим направлениям. В случае одинаковых сил сцепления между частицами кристалла, спайность отсутствует (кварц).

Излом - способность минералов раскалываться не по плоскостям спайности, а по сложной неровной поверхности

Отдельность - свойство некоторых минералов раскалываться с образованием параллельных, хотя чаще всего не совсем ровных плоскостей, не обусловленных строением кристаллической решетки, которое иногда принимают за спайность. В отличие от спайности отдельность - свойство лишь некоторых отдельных экземпляров данного минерала, а не минерального вида в целом. Главным отличием отдельности от спайности является то, что получившиеся выколки невозможно расщеплять далее на более мелкие обломки с ровными параллельными сколами.

Симметрия - наиболее общая закономерность, связанная со строением и свойствами кристаллического вещества. Она является одним из обобщающих фундаментальных понятий физики и естествознания в целом. «Симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением». Для удобства изучения пользуются моделями кристаллов, передающих формы идеальных кристаллов. Для описания симметрии кристаллов необходимо определить элементы симметрии. Таким образом, симметричным является такой объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами или (и) отражениями (рисунок 10).

1. Плоскость симметрии - это воображаемая плоскость, которая делит кристалл на две равные части, причем одна из частей является как бы зеркальным отражение другой. В кристалле может быть несколько плоскостей симметрии. Плоскость симметрии обозначается латинской буквой Р.

2. Ось симметрии - это линия, при вращении вокруг которой на 360° кристалл n-ое количество раз повторяет свое начальное положение в пространстве. Обозначается буквой L. n - определяет порядок оси симметрии, которые в природе могут быть только 2, 3, 4 и 6-го порядка, т.е. L2, L3, L4 и L6. Осей пятого и выше шестого порядка в кристаллах нет, а оси первого порядка не учитываются.

3. Центр симметрии - воображаемая точка, расположенная внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие соответствующие точки на поверхности кристалла1. Центр симметрии обозначается буквой С.

Все многообразие встречающихся в природе кристаллических форм объединяется в семь сингоний (систем): 1) кубическую; 2) гексагональную; 3) тетрагональную (квадратную); 4) тригональную; 5) ромбическую; 6) моноклинальную и 7) триклинную.

4. Постоянная температура плавления

Плавление - переход вещества из твердого состояния в жидкое.

Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки. Причиной этого явления, считается что основная часть энергия нагревателя, подводимая к твердому телу, идет на уменьшение связей между частицами вещества, т.е. на разрушение кристаллической решетки. При этом возрастает энергия взаимодействия между частицами. Расплавленное вещество обладает большим запасом внутренней энергии, чем в твердом состоянии. Оставшаяся часть теплоты плавления расходуется на совершение работы по изменению объема тела при его плавлении. Температура, при которой начинается плавление, называется температурой плавления.

При плавлении объем большинства кристаллических тел увеличивается (на 3-6%), а при отвердевании уменьшается. Но, существуют вещества, у которых при плавлении объем уменьшается, а при отвердевании - увеличивается.

К ним относятся, например, вода и чугун, кремний и некоторые другие. Именно поэтому лёд плавает на поверхности воды, а твердый чугун - в собственном расплаве.

Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления (янтарь, смола, стекло).

Рис. 12 Янтарь

Количество теплоты, необходимой для плавления вещества, равно произведению удельной теплоты плавления на массу данного вещества.

Удельная теплота плавления показывает, какое кол теплоты необходимо для полного превращения 1 кг вещества из твердого состояния в жидкое, взятого при темп плавления.

Единицей удельной теплоты плавления в СИ служит 1Дж/кг.

В процессе плавления температура кристалла остается постоянной. Эта температура называется температурой плавления. У каждого вещества своя температура плавления.

Температура плавления для данного вещества зависит от атмосферного давления.

У кристаллических тел при температуре плавления можно наблюдать вещество одновременно в твердом и жидком состояниях. На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую. По этому признаку легко отличить кристаллические вещества от аморфных.

Список литературы

1. Справочник химика 21 «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ» стр. 10 (http://chem21.info/info/1737099/)

2. Справочник по геологии (http://www.geolib.net/crystallography/vazhneyshie-svoystva-kristallov.html)

3. «УрФУ имени первого Президента России Б.Н. Ельцина», раздел Геометрическая кристаллография (http://media.ls.urfu.ru/154/489/1317/)

4. Глава 1. Кристаллография с основами кристаллохимии и минералогия (http://kafgeo.igpu.ru/web-text-books/geology/r1-1.htm)

5. Заявка: 2008147470/13, 01.12.2008; МПК C13F1/02 (2006.01) C13F1/00 (2006.01). Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (RU) (http://bd.patent.su/2371000-2371999/pat/servl/servlet939d.html)

6. Тульский государственный педагогический университет им Л.Н. Толстого Кафедра экологии Голынская Ф.А. «Понятие о минералах как о кристаллических веществах» (http://tsput.ru/res/geogr/geology/lec2.html)

7. Компьютерный обучающий курс «Общая геология» Курс лекций. Лекция 3 (http://igd.sfu-kras.ru/sites/igd.institute.sfu-kras.ru/files/kurs-geologia/%D0% BB % D0% B5% D0% BA % D1% 86% D0% B8% D0% B8/%D0% BB % D0% B5% D0% BA % D1% 86% D0% B8% D1% 8F_3.htm)

8. Класс физика (http://class-fizika.narod.ru/8_11.htm)

Подобные документы

    Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат , добавлен 26.04.2010

    Жидкие кристаллы как фазовое состояние, в которое переходят некоторые вещества при определенных условиях, их основные физические свойства и факторы, на них влияющие. История исследования, типы, использование жидких кристаллов в производстве мониторов.

    контрольная работа , добавлен 06.12.2013

    Особенности и свойства жидкокристаллического состояния вещества. Структура смектических жидких кристаллов, свойства их модификаций. Сегнетоэлектрические характеристики. Исследование геликоидальной структуры смектика C* методом молекулярной динамики.

    реферат , добавлен 18.12.2013

    История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.

    учебное пособие , добавлен 14.12.2010

    Рассмотрение истории открытия и направлений применения жидких кристаллов; их классификация на смектические, нематические и холестерические. Изучение оптических, диамагнитных, диэлектрических и акустооптических свойств жидкокристаллических веществ.

    курсовая работа , добавлен 18.06.2012

    Определение жидких кристаллов, их сущность, история открытия, свойства, особенности, классификация и направления использования. Характеристика классов термотропных жидких кристаллов. Трансляционные степени свободы колончатых фаз или "жидких нитей".

    реферат , добавлен 28.12.2009

    Кристаллы - реальные твердые тела. Термодинамика точечных дефектов в кристаллах, их миграция, источники и стоки. Исследование дислокации, линейного дефекта кристаллической структуры твёрдых тел. Двумерные и трехмерные дефекты. Аморфные твердые тела.

    доклад , добавлен 07.01.2015

    презентация , добавлен 29.09.2013

    Понятие и основные черты конденсированного состояния вещества, характерные процессы. Кристаллические и аморфные тела. Сущность и особенности анизотропии кристаллов. Отличительные черты поликристаллов и полимеров. Тепловые свойства и структура кристаллов.

    курс лекций , добавлен 21.02.2009

    Оценка вязкостно-температурных свойств (масел). Зависимость температуры вспышки от давления. Дисперсия, оптическая активность. Лабораторные методы перегонки нефти и нефтепродуктов. Теплота плавления и сублимации. Удельная и молекулярная рефракция.

Кристаллы - твердые тела, имеющие многогранную форму, а слагающие их частицы (атомы, молекулы, ионы) расположены закономерно. Поверхность кристаллов ограничена плоскостями, которые носят название граней. Места соединения граней называются рёбрами, точки пересечения которых называются вершинами или углами.

Грани, рёбра и вершины кристаллов связаны зависимостью: число граней + число вершин = число рёбер + 2. В большинстве случаев кристаллические вещества не имеют ясно огранённой формы, хотя и обладают закономерным внутренним кристаллическим строением.

Установлено, что кристаллы построены из материальных частиц - ионов, атомов или молекул, геометрически правильно расположенных в пространстве.

Основные свойства кристаллических веществ следующие:

1. Анизотропность (т.е. неравносвойственность).

Анизотропными называются такие вещества, которые имеют одинаковые свойства в параллельных направлениях, и неодинаковые - в непараллельных.

Различные физические свойства кристаллов, такие, как теплопроводность, твердость, упругость, распространение света и др., изменяются с изменением направления. В противоположность анизотропным, изотропные тела имеют одинаковые свойства во всех направлениях.

2. Способность самоограняться.

Этой специфической особенностью обладают только кристаллические вещества. При свободном росте кристаллы ограничиваются плоскими гранями и прямыми рёбрами, принимая многогранную форму.

3. Симметрия.

Симметрией называется закономерная повторяемость в расположении предметов или их частей на плоскости или в пространстве. Все кристаллы являются телами симметричными.

Структура кристалла, т.е. расположение в нём отдельных частиц, является симметричной. Следовательно, и сам кристалл будет обладать плоскостями и осями симметрии.

Материальные частицы (атомы, ионы, молекулы) в кристаллическом веществе размещаются не хаотично, а в определённом строгом порядке. Они расположены параллельными рядами, причём расстояния между материальными частицами этих рядов одинаковы. Эта закономерность в строении кристаллов выражается геометрически в виде пространственной решётки, являющейся как бы скелетом вещества.

Представить пространственную решётку можно как бесконечно большое число одинаковых по форме и размеру параллелепипедов, сдвинутых относительно другого и сложенных так, что они выполняют пространство без промежутков.

Вершины параллелепипедов, в которых находятся атомы, ионы или молекулы, называются узлами пространственной решётки, а прямые линии, проведённые через них, - рядами. Любая плоскость, которая проходит через три узла пространственной решётки (не лежащих на одной прямой), называется плоской сеткой. Элементарный параллелепипед, в вершинах которого находятся узлы решётки, носит название ячейки данной пространственной решётки.

Таким образом, кристаллическое вещество имеет строго закономерное (ретикулярное) строение. На приведенном ниже рисунке можно увидеть кристаллические решетки: а) - Алмаза, б) - графита.

Все важнейшие свойства кристаллических веществ являются следствием их внутреннего закономерного строения. Так, например, анизотропность кристаллов можно легко уяснить, если вести измерение каких-либо свойств в различных направлениях. Особенно чётко анизотропия выявляется в оптических свойствах кристаллов, на чём основан один из важнейших методов их изучения, применяемый в минералогии и петрографии.

Способность кристаллов самоограняться также является естественным следствием их внутреннего строения. Грани кристаллов соответствуют плоским сеткам, рёбра - рядам, а вершины углов - узлам пространственной решётки.

Пространственная решётка имеет бесконечное множество плоских сеток, рядов и узлов. Но реальным граням могут соответствовать лишь те плоские сетки решётки, которые имеют наибольшую ретикулярную плотность, т.е. на которых на единицу площади будет приходиться наибольшее число составляющих её частиц (атомов, ионов). Таких плоских сеток сравнительно немного, отсюда и кристаллы имеют вполне определённое число граней.

Твердые тела разделяют на аморфные тела и кристаллы. Отличие вторых от первых состоит в том, что атомы кристаллов располагаются согласно некоторому закону, образуя тем самым трехмерную периодическую укладку, что называется – кристаллическая решетка.

Примечательно, что название кристаллов происходит от греческих слов «застывать» и «холод», и во времена Гомера этим словом называли горный хрусталь, который тогда считался «застывшим льдом». Сперва данным термином называли лишь ограненные прозрачные образования. Но позже, кристаллами стали звать также непрозрачные и не ограненные тела природного происхождения.

Кристаллическая структура и решетка

Идеальный кристалл представляется в виде периодически повторяющихся одинаковых структур – так называемых элементарных ячеек кристалла. В общем случае, форма такой ячейки – косоугольный параллелепипед.

Следует различать такие понятия как кристаллическая решетка и кристаллическая структура. Первая – это математическая абстракция, изображающая регулярное расположение неких точек в пространстве. В то время как кристаллическая структура – это реальный физический объект, кристалл, в котором с каждой точкой кристаллической решетки связана определенная группа атомов или молекул.

Кристаллическая структура граната — ромб и додекаэдр

Основным фактором, определяющим электромагнитные и механические свойства кристалла, является строение элементарной ячейки и атомов (молекул), связанных с ней.

Анизотропия кристаллов

Главное свойство кристаллов, отличающее их от аморфных тел – это анизотропия. Это означает, что свойства кристалла различны, в зависимости от направления. Так, например, неупругая (необратимая) деформация осуществляется лишь по определенным плоскостям кристалла, и в определенном направлении. В связи с анизотропией кристаллы по-разному реагируют на деформацию в зависимости от ее направления.

Однако, существуют кристаллы, которые не обладают анизотропией.

Виды кристаллов

Кристаллы разделяют на монокристаллы и поликристаллы. Монокристаллами называют вещества, кристаллическая структура которых распространяется на все тело. Такие тела являются однородными и имеют непрерывную кристаллическую решетку. Обычно, такой кристалл обладает ярко выраженной огранкой. Примерами природного монокристалла являются монокристаллы каменной соли, алмаза и топаза, а также кварца.

Немало веществ имеют кристаллическую структуру, хотя обычно не имеют характерной для кристаллов формы. К таким веществам относятся, например, металлы. Исследования показывают, что такие вещества состоят из большого количества очень маленьких монокристаллов — кристаллических зерен или кристаллитов. Вещество, состоящее из множества таких разноориентированных монокристаллов, называется поликристаллическим. Поликристаллы зачастую не имеют огранки, а их свойства зависят от среднего размера кристаллических зерен, их взаимного расположения, а также строения межзеренных границу. К поликристаллам относятся такие вещества как металлы и сплавы, керамики и минералы, а также другие.

Основные свойства кристаллов

Кристаллы вырастают многогранными, поскольку скорости их роста по различным направлениям различны. Если бы они были одинаковыми, то получилась бы единственная форма – шар.

Не только скорость роста, но и практически все их свойства различны по разным направлениям, т.е. кристаллам присуща анизотропия («ан» - не, «низос» - одинаковый, «тропос» - свойство), неравносвойственность по направлениям.

Например, кальцит при нагревании в продольном направлении растягивается (a=24,9·10 -6 о С -1), а в поперечном - сжимается (a=-5,6·10 -6 о С -1). В нем же есть направление, в котором тепловое расширение и сжатие компенсируют друг друга (направление нулевого расширения). Если вырезать пластинку, перпендикулярную этому направлению, то при нагревании толщина ее не будет изменяться, и она может быть использована для изготовления деталей в точном машиностроении.

У графита расширение вдоль вертикальной оси в 14 раз больше, чем в направлениях, поперечных к этой оси.

Особенно наглядна анизотропия механических свойств кристаллов. Кристаллы со слоистой структурой – слюда, графит, тальк, гипс – в направлении слоев совсем легко расщепляются на тонкие листочки, расколоть их в других направлениях несравненно труднее. Соль разбивается на мелкие кубики, испанский шпат - на ромбоэдры (явление спайности).

В кристаллах имеет место также анизотропия оптических свойств, теплопроводности, электропроводности, упругости и др.

В поликристалле , состоящем из ориентированных случайно многих монокристальных зерен, анизотропия свойств отсутствует.

Еще раз необходимо подчеркнуть, что аморфные вещества также изотропны .

В некоторых кристаллических веществах может проявляться и изотропность. Например, распространение света в кристаллах кубической сингонии происходит с одинаковой скоростью в разных направлениях. Можно сказать, что такие кристаллы оптически изотропны, хотя в этих кристаллах может наблюдаться анизотропия механических свойств.

Однородность – свойство физического тела быть одинаковыми во всем объеме. Однородность кристаллического вещества выражается в том, что любые участки кристалла одинаковой формы и одинаково ориентированные, характеризуются одними и теми же свойствами.

Способность самоограняться – способность кристалла в благоприятных условиях принимать многогранную форму. Описывается законом постоянства углов Стенона.

Плоскогранность и прямобедренность . Поверхность кристалла ограничена плоскостями или гранями, которые, пересекаясь, образуют прямые линии – ребра. Точки пересечения ребер образуют вершины.

Грани, ребра, вершины, а также двухгранные углы (прямые, тупые, острые) являются элементами внешнего ограничения кристаллов. Двухгранные углы (это две пересекающиеся плоскости), как указывалось выше, для данного типа вещества являются константой.

Формула Эйлера устанавливает взаимосвязь между элементами ограничения (только простые закрытые формы):

Г + В = Р + 2,

Г – количество граней,

В – количество вершин,

Р – количество ребер.

Например, для куба 6+8=12+2

Ребра кристаллов соответствуют рядам решетки, грани – плоским сеткам.

Симметрия кристаллов .

«Кристаллы блещут своей симметрией», - писал великий русский кристаллограф Е.С. Федоров.

Симметрия – закономерная повторяемость равных фигур или равных частей одной и той же фигуры. «Симметрия» - с греч. «соразмерность» соответственных точек в пространстве.

Если геометрический объект в трехмерном пространстве повернут, смещен или отражен и, при этом, он в точности совместился сам с собой (преобразовался в себя), т.е. остался инвариантен к приложенному к нему преобразованию, то объект является симметричным, а преобразование симметрическим.

При этом могут быть случаи совмещения:

1. Совмещение равных треугольников (или других фигур) происходит путем поворота их по часовой стрелке на 180 о и наложении одного на другой. Такие фигуры называются совместимо-равные. Пример – одинаковые перчатки (левые или правые).

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей