Движение отдельных заряженных частиц и их потоков. Движение в неоднородном магнитном поле

ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ в плазме, относительно медленное направленное перемещение заряженных частиц под действием различных причин, налагающееся на их основное движение (регулярное или беспорядочное). Дрейф заряженных частиц возникает под действием сил электрического поля и обычно накладывается на тепловое (беспорядочное) движение частиц. Средняя скорость υ ср теплового движения гораздо больше скорости дрейфа υ д. Отношение υ д /υ ср характеризует степень направленности движения заряженных частиц и зависит от типа заряженных частиц и величины сил, вызывающих дрейф.

Для плазмы, находящейся в магнитном поле, характерен дрейф заряженных частиц в скрещенных магнитном и каком-либо другом (электрическом, гравитационном) полях. Заряженная частица, находящаяся в однородном магнитном поле при отсутствии других сил, описывает так называемую ларморовскую окружность радиусом r H = υ/ω Н = cm υ/qH, здесь Н - напряжённость магнитного поля, q - заряд частицы, m и υ - масса и скорость частицы, ω Н - ларморовская (циклотронная) частота, с - скорость света. При наличии каких-либо внешних сил F (электрических, гравитационных, градиентных) на быстрое ларморовское вращение накладывается плавное смещение орбиты в направлении, перпендикулярном магнитному полю и действующей силе. Скорость дрейфа υ д = c/qH 2 .

Т.к. в знаменателе выражения стоит заряд q частицы, то если сила F действует одинаково на ионы и электроны, они будут дрейфовать под действием этой силы в противоположных направлениях - возникает дрейфовый ток плотностью j д = nqυ д = nc/H 2 , где n - концентрация частиц.

В зависимости от вида сил различают несколько типов дрейфа заряженных частиц: электрический, гравитационный, градиентный. Электрическим дрейфом называется дрейф заряженных частиц в однородном постоянном электрическом поле Е, перпендикулярном магнитному полю (скрещенные электрическое и магнитное поля). В случае электрического дрейфа F = qE отсюда υ д Е = c/H 2 т. е. скорость электрического дрейфа не зависит ни от знака и величины заряда, ни от массы частицы и одинакова для ионов и электронов. Таким образом, электрический дрейф заряженных частиц в магнитном поле приводит к движению всей плазмы и не возбуждает дрейфовых токов. Однако сила тяжести и центробежная сила, которые при отсутствии магнитного поля действуют одинаково на все частицы независимо от их заряда, в магнитном поле заставляют электроны и ионы дрейфовать в разные стороны, приводя к появлению дрейфовых токов.

В скрещенных гравитационном и магнитном полях возникает гравитационный дрейф со скоростью υ д г = /gH 2 где g - ускорение силы тяжести. Т. к. υ дг зависит от массы и знака заряда, возникают дрейфовые токи и неустойчивости.

В неоднородном магнитном поле могут возникнуть два вида дрейфа заряженных частиц. Поперечная неоднородность магнитного поля приводит к так называемому градиентному дрейфу со скоростью υ дгр = r H υ ⊥ H/2H, где υ ⊥ - скорость частицы поперёк магнитного поля. При движении частицы со скоростью υ | вдоль искривлённой магнитной силовой линии с радиусом кривизны R возникает дрейф под действием центробежной силы инерции mυ | 2 /R (так называемый центробежный дрейф) со скоростью υ дц = υ | 2 /Rω Н.

Скорости градиентного и центробежного дрейфа заряженных частиц имеют противоположные направления для ионов и электронов, т. е. возникают дрейфовые токи.

Дрейф в неоднородном магнитном поле затрудняет удержание плазмы в тороидальной магнитной ловушке, поскольку он приводит к разделению зарядов, и возникающее электрическое поле заставляет всю плазму двигаться к наружной стенке тора (так называемый тороидальный дрейф).

Лит.: Брагинский С. И. Явления переноса в плазме // Вопросы теории плазмы. М., 1963. Вып. 1; Франк-Каменецкий Д. А. Плазма - четвертое состояние вещества. 4-е изд. М., 1975; Павлов Г. А. Процессы переноса в плазме с сильным кулоновским взаимодействием. М., 1995.

Мы хотим описать поведение одной или нескольких молекул, которые чем-то отличаются от огромного большинства остальных молекул газа. Будем называть «большинство» молекул молекулами «фона», а отличающиеся от них молекулы получат название «особых» молекул, или (для краткости) S-молекул. Молекула может быть особой по целому ряду причин: она может быть, скажем, тяжелее молекул фона. Может она отличаться от них также химическим составом. А, может быть, особые молекулы несут электрический заряд — тогда это будет ион на фоне нейтральных молекул. Из-за необычности масс или зарядов на S-молекулы действуют силы, отличающиеся от сил между молекулами фона. Изучая поведение S-молекул, можно понять основные эффекты, которые вступают в игру во многих разнообразных явлениях. Перечислим некоторые из них: диффузия газов, электрический ток в батарее, осаждение, разделение при помощи центрифуги и т. д.

Начнем с изучения основного процесса: на S-молекулу в газе из молекул фона действуют какая-то особая сила F (это может быть сила тяжести или электрическая сила) и, кроме того, более обычные силы, обусловленные столкновениями с молекулами фона. Нас интересует общий характер поведения S-молекулы. Детальное описание ее поведения — это непрерывные стремительные удары и следующие одно за другим столкновения с другими молекулами. Но если проследить внимательно, то станет ясно, что молекула неуклонно движется по направлению силы F. Мы говорим, что дрейф накладывается на беспорядочное движение. Но нам хотелось бы знать, как зависит скорость дрейфа от силы F.

Если в какой-то произвольный момент времени начать наблюдать за S-молекулой, то можно надеяться, что попали мы как раз где-то между двумя столкновениями. Это время молекула употребит на то, чтобы в дополнение к скорости, оставшейся у нее после всех столкновений, увеличить составляющую скорости вдоль силы F. Немного погодя (в среднем через время τ) она снова испытает столкновение и начнет двигаться по новому отрезку своей траектории. Стартовая скорость, конечно, будет другой, а ускорение от силы F останется неизменным.

Чтобы упростить сейчас дело, предположим, что после каждого столкновения наша S-молекула выходит на совершенно «свободный» старт. Это значит, что у нее не осталось никаких воспоминаний о прежних ускорениях под действием силы F. Такое предположение было бы разумным, если бы наша S-молекула была намного легче молекул фона, но это, конечно, не так. Позднее мы обсудим более разумное предположение.

А пока предположим, что все направления скорости S-молекулы после каждого столкновения равновероятны. Стартовая скорость имеет любое направление и не может дать никакого вклада в результирующее движение, поэтому мы не будем принимать во внимание начальную скорость после каждого столкновения. Но, кроме случайного движения, каждая S-молекула в любой момент имеет дополнительную скорость в направлении силы F, которая увеличивается со времени последнего столкновения. Чему равно среднее значение этой части скорости? Оно равно произведению ускорения F/m (где m — масса S-молекулы) на среднее время, прошедшее с момента последнего столкновения. Но среднее время, протекшее после последнего столкновения, должно быть равно среднему времени перед следующим столкновением, которое мы уже обозначили буквой τ. Средняя скорость, порождаемая силой F,— это как раз скорость дрейфа; таким образом, мы пришли к соотношению

Это наше основное соотношение, главное во всей главе. При нахождении τ могут появиться всякого рода усложнения, но основной процесс определяется уравнением (43.13).

Обратите внимание, что скорость дрейфа пропорциональна силе. К сожалению, о названии для постоянной пропорциональности еще не договорились. Коэффициент перед силой каждого сорта имеет свое название. В задачах, связанных с электричеством, силу можно представить как произведение варяда на электрическое поле: F=qE; в этом случае постоянную пропорциональности между скоростью и электрическим полем Е называют «подвижностью». Несмотря на возможные недоразумения, мы будем применять термин подвижность для отношения скорости дрейфа к силе любого сорта. Будем писать

и называть µ подвижностью. Из уравнения (43.13) следует

Подвижность пропорциональна среднему времени между столкновениями (редкие столкновения слабо тормозят S-молекулу) и обратно пропорциональна массе (чем больше инерция, тем медленнее набирается скорость между столкновениями).

Чтобы получить правильный численный коэффициент в уравнении (43.13) (а у нас он верен), нужна известная осторожность. Во избежание недоразумений нужно помнить, что мы используем коварные аргументы, и употреблять их можно только после осторожного и детального изучения. Чтобы показать, какие бывают трудности, хотя по виду вроде все благополучно, мы снова вернемся к тем аргументам, которые привели к выводу уравнения (43.13), но эти аргументы, которые выглядят вполне убедительно, приведут теперь к неверному результату (к сожалению, такого рода рассуждения можно найти во многих учебниках!).

Можно рассуждать так: среднее время между столкновениями равно τ. После столкновения частица, начав двигаться со случайной скоростью, набирает перед следующим столкновением дополнительную скорость, которая равна произведению времени на ускорение. Поскольку до следующего столкновения пройдет время τ, то частица наберет скорость (F/m)τ. В момент столкновения эта скорость равна нулю. Поэтому средняя скорость между двумя столкновениями равна половине окончательной скорости, а средняя скорость дрейфа равна 1 / 2 Fτ/m. (Неверно!) Этот вывод неверен, а уравнение (43.13) правильно, хотя, казалось бы, в обоих случаях мы рассуждали одинаково убедительно. Во второй результат вкралась довольно коварная ошибка: при его выводе мы фактически предположили, что все столкновения отстоят друг от друга на время τ. На самом деле некоторые из них наступают раньше, а другие позже этого времени. Более короткие времена встречаются чаще, но их вклад в скорость дрейфа невелик, потому что слишком мала в этом случае вероятность «реального подталкивания вперед». Если принять во внимание существование распределения свободного времени между столкновениями, то мы увидим, что множителю 1 / 2 , полученному во втором случае, неоткуда взяться. Ошибка произошла из-за того, что мы, обманувшись простотой аргументов, попытались слишком просто связать среднюю скорость со средней конечной скоростью. Связь между ними не столь уж проста, поэтому лучше подчеркнуть, что нам нужна средняя скорость сама по себе. В первом случае мы с самого начала искали среднюю скорость и нашли ее верное значение! Быть может, теперь вам понятно, почему мы не пытались найти точного значения всех численных коэффициентов в наших элементарных уравнениях?

Вернемся к нашему предположению о том, что каждое столкновение полностью стирает из памяти молекулы все о былом ее движении и что после каждого столкновения для молекулы начинается новый старт. Предположим, что наша S-молекула — это тяжелый объект на фоне более легких молекул. Тогда уже недостаточно одного столкновения, чтобы отобрать у S-молекулы ее направленный «вперед» импульс. Только несколько последовательных столкновений вносят в ее движение «беспорядок». Итак, вместо нашего первоначального рассуждения предположим теперь, что после каждого столкновения (в среднем через время τ) S-молекула теряет определенную часть своего импульса. Мы не будем исследовать детально, к чему приведет такое предположение. Ясно, что это эквивалентно замене времени τ (среднего времени между столкновениями) другим, более длинным τ, соответствующим среднему «времени забывания», т. е. среднему времени, за которое S-молекула забудет о том, что у нее когда-то был импульс, направленный вперед. Если понимать τ так, то можно использовать нашу формулу (43.15) для случаев, не столь простых, как первоначальный.

Лекция № 3.
Движение в неоднородном магнитном поле. Дрейфовое приближение - условия применимости, дрейфовая скорость. Дрейфы в неоднородном магнитном поле. Адиабатический инвариант. Движение в скрещенных электрическом и магнитном полях. Общий случай скрещенных поля любой силы и магнитного поля.
III. Дрейфовое движение заряженных частиц
§3.1. Движение в скрещенных однородных полях.
Рассмотрим движение заряженных частиц в скрещенных полях
в дрейфовом приближении. Дрейфовое приближение применимо в случае, если можно выделить некоторую одинаковую для всех частиц одного сорта постоянную скорость дрейфа, не зависящую от направления скоростей частиц:
, где
- скорость дрейфа. Покажем, что это можно сделать для движения заряженных частиц в скрещенных
полях. Как было показано ранее, магнитное поле не влияет на движение частиц в направлении магнитного поля. Поэтому скорость дрейфа может быть направлена только перпендикулярно магнитному, т. е. пусть:
, причем
, где
. Уравнение движения:
(по-прежнему в СГС пишем множитель ). Тогда для поперечной составляющей скорости:
, подставляем разложение через скорость дрейфа:
, т.е.
. Заменим это уравнение на два для каждой компоненты и с учетом
, т.е.,
, получим уравнение для скорости дрейфа:
. Домножим векторно на магнитное поле, получим:
. С учетом правила , получим
, откуда:

- скорость дрейфа. (3.1)

.
Скорость дрейфа не зависит от знака заряда и от массы, т.е. плазма смещается как целое. Из соотношения (3.1) видно, что при
скорость дрейфа становится больше скорости света, а значит, теряет смысл. И дело не в том, что необходимо учитывать релятивистские поправки. При
будет нарушено условие дрейфового приближения. Условие дрейфового приближения для дрейфа заряженных частиц в магнитном поле заключается в том, что влияние силы, вызывающей дрейф, должно быть незначительно в течение периода обращения частицы в магнитном поле, только в этом случае скорость дрейфа будет постоянна. Это условие можно записать в виде:
, откуда получим условие применимости дрейфового движения в
полях:
.

Для определения возможных траекторий заряженных частиц в
полях рассмотрим уравнение движения для вращающейся компоненты скорости :
, откуда
. Пусть плоскость (x ,y ) перпендикулярна магнитному полю. Вектор вращается с частотой
(электрон и ион вращаются в разные стороны) в плоскости (x ,y ), оставаясь постоянным по модулю.

Если начальная скорость частицы попадет в этот круг, то частица будет двигаться по эпициклоиде.

Область 2. Окружность, задаваемая уравнением
, соответствует циклоиде. При вращении вектора вектор скорости на каждом периоде будет проходит через начало координат, то есть, скорость будет равна нулю. Эти моменты соответсвуют точкам в основании циклоиды. Траектория аналогична той, что описывает точка, находящаяся на ободе колеса радиуса
. Высота циклоиды равна , то есть пропорциональна массе частицы, поэтому ионы будут двигаться по гораздо более высокой циклоиде, чем электроны, что не соответствует схематическому изображению на рис.3.2.

Область 3. Область вне круга, в которой
, соответсвует трохоиде с петлями (гипоциклоида), высота которой
. Петли соответствуют отрицательным значениям компоненты скорости , когда частицы движутся в обратном направлении.

Область 4: Точка
(
) соответсвует прямой. Ели запустить частицу с начальной скоростью
, то сила действие электрической и магнитной силы в каждый момент времени уравновешено, поэтому частица движется прямолинейно. Можно представить, что все эти траектории соответствуют движению точек находящихся на колесе радиуса
, поэтому для всех траекторий продольный пространственный период
. За период
для всех траекторий происходит взаимная компенсация действия электрического и магнитного поля. Средняя кинетическая энергия частицы остается постоянной
. Важно еще раз отметить, что


Рис. 3.2. Характерные траектории частиц в
полях: 1) трохоида без петель; 2) циклоида; 3) трохоида с петлями; 4) прямая.
не зависимо от траектории, скорость дрейфа одинакова, следовательно, плазма в
полях дрейфует как целое в направлении, перпендикулярном полям. В случае невыполнения условия дрейфового приближения, то есть при
действие электрического поля не компенсируется действием магнитного, поэтому частица переходит в режим непрерывного ускорения (рис.3.3). Направляющая движения будет являться параболой. В случае наличия у электрического поля продольной (вдоль магнитного поля) составляющей дрейфовое движение также нарушается, и заряженная частица будет ускоряться в направлении, параллельном магнитному полю. Направляющая движения будет также параболой.

Все выводы, сделанные выше, верны, если вместо электрической силы
использовать произвольную силу , действующую на частицу, причем
. Скорость дрейфа в поле произвольной силы:

(3.2)

зависит от заряда. Например, для гравитационной силы
:
- скорость гравитационного дрейфа.

§3.2. Дрейфовое движение заряженных частиц в неоднородном магнитном поле.

Если магнитное поле медленно меняется в пространстве, то движущаяся в нем частица совершит множество ларморовских оборотов, навиваясь на силовую линию магнитного поля с медленно меняющимся ларморовским радиусом. Можно рассматривать движение не собственно частицы, а её мгновенного центра вращения, так называемого ведущего центра. Описание движения частицы как движение ведущего центра, т.е. дрейфовое приближение, применимо, если изменение ларморовского радиуса на одном обороте будет существенно меньше самого ларморовского радиуса. Это условие, очевидно, будет выполнено, если характерный пространственный масштаб изменения полей будет значительно превышать ларморовский радиус:
, что равносильно условию:
. Очевидно, это условие выполняется тем лучше, чем больше величина напряженности магнитного поля, так как ларморовский радиус убывает обратно пропорционально величине магнитного поля. Рассмотрим некоторые случаи, представляющие общий интерес, так как к ним можно свести многие виды движения заряженных частиц в неоднородных магнитных полях.


п. 3.2.1. Дрейф заряженных частиц вдоль плоскости скачка магнитного поля. Градиентный дрейф.

Рассмотрим задачу о движении заряженной частицы в магнитном поле со скачком, слева и справа от плоскости которого магнитное поле однородно и одинаково направлено, но имеет разную величину (см. рис. 3.5), пусть справа будет H 2 > H 1 . При движении частицы её ларморовская окружность пересекает плоскость скачка. Траектория состоит из ларморовских окружностей с переменным ларморовским радиусом, в результате чего происходит «снос» частицы вдоль плоскости скачка. Как видно из рисунка 3.5, дрейф перпендикулярен направлению магнитного поля и его градиента, причем, разноименно заряженные частицы дрейфуют в разные стороны. Пусть для простоты частица пересекает плоскость скачка по нормали. Тогда за время, равное сумме ларморовских полупериодов




Рис.3.5. Градиентный дрейф на границе со скачком величины магнитного поля.


для области слева и справа:
частица смещается вдоль этой плоскости на длину

.

Скорость дрейфа можно определить как

. где H H 2 H 1  величина скачка магнитного поля, а H  H 2 + H 1   его среднее значение.

Дрейф возникает и том случае, когда слева и справа от некоторой плоскости магнитное поле по величине не меняется, но изменяет направление (см. рис.3.6). Слева и справа от границы частицы вращаются по ларморовским окружностям одинакового радиуса, но с противоположным направлением вращения. Дрейф возникает, когда ларморовская окружность пересекает плоскость раздела. Пусть пересечение плоскости слоя частицей происходит по нормали, тогда ларморовскую окружность следует «разрезать» вдоль






Рис.3.6. Градиентный дрейф при смене направления магнитного поля

вертикального диаметра и затем, правую половину следует отразить зеркально вверх для электрона, и вниз для иона, как это изображено на рис.3.6. При этом за ларморовский период смещение вдоль слоя, очевидно, составляет два ларморовских диаметра, так что скорость дрейфа для этого случая:
.


§3.3. Дрейф в магнитном поле прямого тока.
Дрейф заряженных частиц в неоднородном магнитном поле прямого проводника тока связан, прежде всего с тем, что магнитное поле обратно пропорционально расстоянию от тока, поэтому будет существовать градиентный дрейф движущейся в нем заряженной частицы. Кроме этого дрейф связан с кривизной магнитных силовых линий. Рассмотрим две составляющие этой силы, вызывающей дрейф, и соответственно получим две составляющие дрейфа.
п. 3.3.1. Диамагнитный (градиентный) дрейф.
Механизм градиентного дрейфа состоит в том, что частица имеет различные радиусы вращения в разных точках траектории: часть времени она проводит в более сильном поле, часть в более слабом поле. Изменение радиуса вращения и создает дрейф (рис.3.7). Вращающуюся вокруг силовой линии заряженную частицу можно рассматривать как магнитный диполь эквивалентного кругового тока. Выражение для скорости градиентного дрейфа можно получить из известного выражения для силы, действующей на магнитный диполь в неоднородном поле:
- диамагнитная сила, выталкивающая магнитный диполь из сильного поля, где
,
, где поперечная к магнитному полю составляющая кинетической энергии частицы. Для магнитного поля, как можно показать, справедливо соотношение:
, где R кр - радиус кривизны силовой линии, - единичный вектор нормали.





Скорость диамагнитного (градиентного) дрейфа, где - бинормаль к силовой линии. Направление дрейфа по бинормали различно для электронов и ионов.

>> Том 6 >> Глава 29. Движение зарядов в электрическом и магнитном полях

Движение в скрещенных электрическом и магнитном полях

До сих пор мы говорили о частицах, находящихся только в электрическом или только в магнитном поле. Но есть интересные эффекты, возникающие при одновременном действии обоих полей. Пусть у нас имеется однородное магнитное поле В и направленное к нему под прямым углом электрическое поле Е. Тогда частицы, влетающие перпендикулярно полю В, будут двигаться по кривой, подобной изображенной на фиг. 29.18. (Это плоская кривая, а не спираль.) Качественно это движение понять нетрудно. Если частица (которую мы считаем положительной) движется в направлении поля Е, то она набирает скорость, и магнитное поле загибает ее меньше. А когда частица движется против поля Е, то она теряет скорость и постепенно все больше и больше загибается магнитным полем. В результате же получается «дрейф» в направлении (ЕхВ).

Мы можем показать, что такое движение есть по существу суперпозиция равномерного движения со скоростью v d = E / B и кругового, т. е. на фиг. 29.18 изображена просто циклоида. Представьте себе наблюдателя, который движется направо с постоянной скоростью. В его системе отсчета наше магнитное поле преобразуется в новое магнитное поле плюс электрическое поле, направленное вниз. Если его скорость подобрана так, что полное электрическое поле окажется равным нулю, то наблюдатель будет видеть электрон, движущийся по окружности. Таким образом, движение, которое мы видим, будет круговым движением плюс перенос со скоростью дрейфа v d = E / B . Движение электронов в скрещенных электрическом и магнитном полях лежит в основе магнетронов, т. е. осцилляторов, применяемых при генерации микроволнового излучения.

Есть еще немало других интересных примеров движения частиц в электрическом и магнитном полях, например орбиты электронов или протонов, захваченных в радиационных поясах в верхних слоях стратосферы, но, к сожалению, у нас не хватает времени, чтобы заниматься сейчас еще и этими вопросами.

ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ

ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ

В плазме, относительно медленное направленное заряж. ч-ц (эл-нов и ионов) под действием разл. причин, налагающихся на осн. (закономерное или беспорядочное). Напр., осн. движение заряж. ч-цы в однородном магн. в отсутствии столкновений - вращение с циклотронной частотой. Наличие др. полей искажает это движение; так, совместное электрич. и магн. полей приводит к т. н. электрическому Д. з. ч. в направлении, перпендикулярном Е и H, со скоростью не зависящей от массы и заряда ч-цы.

На циклотронное вращение может также накладываться т. н. градиентный дрейф, возникающий из-за неоднородности магн. поля и направленный перпендикулярно H и DH (DH - градиент поля).

Д. з. ч., распределённых в среде неравномерно, может возникать вследствие их теплового движения в направлении наибольшего спада концентрации (см. ДИФФУЗИЯ) со скоростью vD=-Dgradn/n , где gradn - градиент концентраций n заряж. ч-ц; D - коэфф. диффузии.

В случае, когда действует неск. факторов, вызывающих Д. з. ч., напр, электрич. поле и градиент концентраций, скорости дрейфа, вызываемые в отдельности полем, vE и vD складываются.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ

- относительно медленное направленное перемещение заряж. частиц под действием разл. причин, налагающееся на их осн. движение (закономерное или беспорядочное). Напр., электрич. в к.-л. среде (металлы , газы, полупроводники, электролиты) происходит под действием сил электрич. поля и обычно накладывается на тепловое (беспорядочное) движение частиц. Тепловое движение не образует макроскопич. потока, даже если средняя v этого движения гораздо больше скорости дрейфа v д. Отношение v д /v характеризует степень направленности движения заряж. частиц и зависит от рода среды, рода заряженных частиц и интенсивности факторов, вызывающих дрейф. Д. з. ч. может возникать и при неравномерном распределении концентрации заряженных частиц ( диффузия), при неравномерном распределении скоростей заряженных частиц (термодиффузия).
Дрейф заряженных частиц в плазме. Для плазмы, обычно находящейся в магн. поле, характерен Д. з. ч. в скрещенных магнитном и к.-л. другом (электрич., гравитационном) полях. Заряж. частица, находящаяся в однородном магн. поле при отсутствии др. сил, описывает т. н. ларморовскую окружность с радиусом r Н =v/ w H =cmv /ZeH. Здесь Н - напряжённость магн. поля, е, т и v - заряд, и скорость частицы, w H =ZeH/mc - ларморовская (циклотронная) частота. Магн. поле считается практически однородным, если оно мало меняется на расстоянии порядка r H . При наличии к.-л. внеш. сил F (электрич. гравитац., градиентных) на быстрое ларморовское вращение накладывается плавное смещение орбиты с пост. скоростью в направлении, перпендикулярном к магн. полю, и действующей силе. Скорость дрейфа

Т. к. в знаменателе выражения стоит заряд частицы, то, если F действует одинаково на ионы и электроны, они будут дрейфовать под действием этой силы в противоположных направлениях (дрейфовыйток). Дрейфовый ток, переносимый частицами данного сорта:В зависимости от рода сил различают неск. типов Д. з. ч.: электрич., поляризац., гравитац., градиентный. Электрическим дрейфом наз. Д. з. ч. в однородном постоянном электрич. поле E, перпендикулярном магн. полю (скрещенные электрич. и магн. поля). Электрич. поле, действующее в плоскости ларморовской окружности, ускоряет движение частицы в тот полупериод ларморовского вращения, когда


Рис. 1. Дрейф заряженной частицы в скрещенных электрическом и магнитном полях. Магнитное поле, направленное в сторону наблюдателя. v дЕ, т. к. составляющая скорости в одном направлении (на рис. 1 движение вниз) больше составляющей скорости при движении в противоположном направлении (движение вверх). Из-за разных радиусов r H на разл. участках орбиты частицы не замкнута в направлении, перпендикулярном Eи H, т. е. в этом направлении возникает дрейф. В случае электрич. дрейфа F=ZeE, отсюда v дЕ =c/H 2 , т. е. скорость электрич. дрейфа не зависит ни от знака и величины заряда, ни от массы частицы и одинакова для ионов и электронов по величине и направлению. Т. о., электрич. Д. з. ч. в магн. поле приводит к движению всей плазмы и не возбуждает дрейфовых токов. Однако такие силы, как , центробежная сила, к-рые в отсутствие магн. поля действуют одинаково на все частицы независимо от их заряда, в магн. поле вызывают не дрейфовое движение плазмы в целом, но, заставляя электроны и ионы дрейфовать в разные стороны, приводят к появлению дрейфовых токов. ускорение, то их движение происходит так, как будто на них действовала . При изменении электрич. поля во времени на частицы действует инерционная сила, связанная с изменением (ускорением) электрич. дрейфа F Е =тv дЕ = тс [ Н]/Н 2 . Используя (1), получим выражение для скорости этого дрейфа, называемого поляризационным, v др =mc 2 Е/ZeH 2 . Направление поляризац. Д. з. ч. совпадает с направлением электрич. поля. Скорость поляризац. дрейфа зависит от знака заряда, и это приводит к появлению дрейфового поляризац. тока В скрещенных гравитац. и магн. полях возникает гравитационный дрейф со скоростью v дG = тс /ZeH 2 , где g - ускорение силы тяжести. Т. к. v дG зависит от массы и знака заряда, то возникают дрейфовые токи, приводящие к разделению зарядов в плазме. В результате гравитац. дрейфового движения возникают неустойчивости. F rр, пропорциональной градиенту магн. поля (т. н. градиентный Д. з. ч.). Если частицу, вращающуюся на ларморовской окружности, рассматривать как "магнитик" с магнитным моментом


Рис. 2. Градиентный дрейф. Магнитное поле возрастает вверх. Дрейфовый ток направлен влево.

Скорость градиентного дрейфа

При движении частицы со скоростью v || вдоль искривлённой силовой линии (рис. 3) с радиусом кривизны R


возникает дрейф, обязанный своим происхождением центробежной силе инерции mv 2 || /R (т. н. центробежный дрейф). Скорость

Скорости градиентного и центробежного Д. з. ч. имеют противоположные направления для ионов и электронов, т. е. возникают дрейфовые токи. Здесь необходимо подчеркнуть, что рассматриваемые дрейфы есть именно смещения центров ларморовских окружностей (мало отличающихся от смещений самих частиц) за счёт сил, перпендикулярных магн. полю. Для системы частиц (плазмы) такое различие существенно. Напр., если и темп-pa частиц не зависят от координат, то потока частиц внутри плазмы нет (в полном соответствии с тем, что магн. поле не влияет на максвелловское ), но поток центров есть, если магн. поле неоднородно (градиентный и центробежный дрейфовые токи).


Рис. 4. Дрейф и плазмы в тороидальной ловушке. удержание плазмы в тороидальной магн.. ловушке. Градиентный и центробежный дрейфы в торе, расположенном горизонтально, вызывают вертикальные дрейфовые токи, разделение зарядов и поляризацию плазмы (рис. 4). Возникающее злектрич. поле заставляет уже всю плазму двигаться к наружной стенке тора (т. н. тороидальный дрейф). Лит.: Франк-Каменецкий Д. А., Плазма - четвертое состояние вещества, 2 изд., М., 1963: Брагинский С. И., Явления в плазме, в сб.: Вопросы теории плазмы, в. 1, М., 1063: О Раевский В. Н., Плазма на Земле и в космосе, , К., 1980. С. С. Моисеев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ" в других словарях:

    Медленное (по сравнению с тепловым движением) направленное движение заряженных частиц (электронов, ионов и т. д.) в среде под внешним воздействием, например электрических полей. * * * ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ, медленное (по … Энциклопедический словарь

    Медленное (по сравнению с тепловым движением) направленное движение заряженных частиц (электронов, ионов и т. д.) в среде под внешним воздействием, напр. электрических полей … Большой Энциклопедический словарь

    дрейф заряженных частиц - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN charged particle drift … Справочник технического переводчика

    Относительно медленное направленное перемещение заряженных частиц под действием различных причин, налагающееся на основное движение. Так, например, при прохождении электрического тока через ионизованный газ электроны, помимо скорости их… … Большая советская энциклопедия

    Медленное (по сравнению с тепловым движением) направленное движение заряженных частиц (электронов, ионов и т. д.) в среде под внеш. воздействием, напр. электрич. полей … Естествознание. Энциклопедический словарь

    В электрическом и магнитном полях перемещение частиц в пространстве под действием сил этих полей. Ниже рассмотрены движения частиц плазмы, хотя нек рые положения являются общими и для плазмы твёрдых тел (металлов, полупроводников). Различают… … Физическая энциклопедия

    - (голланд. drift). 1) отклонение корабля от прямого пути. 2) угол между направлением движения и серединой судна; он зависит от устройства судна. 3) положение судна под парусами, расположенными так, что корабль остается на месте немного наклоняясь… … Словарь иностранных слов русского языка

    Частично или полностью ионизованный газ, в котором плотности положит. и отрицат. зарядов практически одинаковы. При сильном нагревании любое в во испаряется, превращаясь в газ. Если увеличивать темп ру и дальше, резко усилится процесс термич.… … Физическая энциклопедия

    Конфигурации магн. поля, способные длительное время удерживать заряж. частицы или плазму в ограниченном объёме. Естеств. М. л. является, напр., магн. поле Земли, захватившее плазму солнечного ветра и удерживающее её в виде радиац. лоясов Земли.… … Физическая энциклопедия

    ПРОЦЕССЫ в плазме неравновесные процессы, приводящие к выравниванию пространственных распределенийпараметров плазмы концентраций, среднемассовой скорости и парциальныхтемп р электронов и тяжёлых частиц. В отличие от П. п. нейтральных частиц … Физическая энциклопедия

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей