Мера средней кинетической энергии формула. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества

При понижении абсолютной температуры идеального газа в 1,5 раза средняя кинетическая энергия теплового движения молекул

1) увеличится в 1,5 раза

2) уменьшится в 1,5 раза

3) уменьшится в 2,25 раза

4) не изменится

Решение.

При понижении абсолютной температуры в 1,5 раза средняя кинетическая энергия также уменьшится в 1,5 раза.

Правильный ответ: 2.

Ответ: 2

При уменьшении абсолютной температуры идеального газа в 4 раза средняя квадратичная скорость теплового движения его молекул

1) уменьшится в 16 раз

2) уменьшится в 2 раза

3) уменьшится в 4 раза

4) не изменится

Решение.

Абсолютная температура идеального газа пропорциональна квадрату средней квадратичной скорости: Таким образом, при уменьшении абсолютной температуры в 4 раза средняя квадратичная скорость движения его молекул уменьшится в 2 раза.

Правильный ответ: 2.

Владимир Покидов (Москва) 21.05.2013 16:37

Нам послали такую замечательную формулу как Е=3/2kT, Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна его температуре, как изменяется температура,так изменяется и средняя кинетическая энергия теплового движения молекул

Алексей

Добрый день!

Все верно, по сути температура и средняя энергия теплового движения --- это одно и тоже. Но нас в этой задаче спрашивают про скорость, а не про энергию

При повышении абсолютной температуры идеального газа в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна абсолютной температуре, например, для одноатомного газа:

При повышении абсолютной температуры в 2 раза средняя кинетическая энергия также увеличится в 2 раза.

Правильный ответ: 4.

Ответ: 4

При понижении абсолютной температуры идеального газа в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) уменьшится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна абсолютной температуре:

При понижении абсолютной температуры в 2 раза средняя кинетическая энергия также уменьшится в 2 раза.

Правильный ответ: 3.

Ответ: 3

При увеличении средней квадратичной скорости теплового движения молекул в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 4 раза

4) увеличится в 2 раза

Решение.

Следовательно, увеличение средней квадратичной скорости теплового движения в 2 раза приведет к увеличению средней кинетической энергии в 4 раза.

Правильный ответ: 2.

Ответ: 2

Алексей (Санкт-Петербург)

Добрый день!

Обе формулы имеют место. Использованная в решении формула (первое равенство) представляет собой просто математическую запись определения средней кинетической энергии: что нужно взять все молекулы, посчитать их кинетические энергии, а потом взять среднее арифметическое. Второе (тождественное) равенство в этой формуле — всего на всего определение того, что такое средняя квадратичная скорость.

Ваша формула на самом деле куда более серьезная, она показывает, что среднюю энергию теплового движения можно использовать в качестве меры температуры.

При уменьшении средней квадратичной скорости теплового движения молекул в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 4 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул пропорциональна квадрату средней квадратичной скорости теплового движения молекул:

Следовательно, уменьшение средней квадратичной скорости теплового движения в 2 раза приведет к уменьшению средней кинетической энергии в 4 раза.

Правильный ответ: 3.

Ответ: 3

При увеличении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость

1) уменьшится в 4 раза

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Следовательно, при увеличении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость увеличится в 2 раза.

Правильный ответ: 4.

Ответ: 4

Алексей (Санкт-Петербург)

Добрый день!

Знак - это тождественное равенство, то есть равенство выполняющееся всегда, по сути, когда стоит такой знак, это означает, что величины равны по определению.

Яна Фирсова (Геленджик) 25.05.2012 23:33

Юрий Шойтов (Курск) 10.10.2012 10:00

Здравствуйте, Алексей!

В Вашем решении ошибка, не влияющая на ответ. Зачем Вам понадобилось в решении говорить о квадрате среднего значения модуля скорости? В задании не такого термина. Тем более, что он вовсе не равен средне квадратичному значению, а только пропорционален. Поэтому Ваше тождество является ложным.

Юрий Шойтов (Курск) 10.10.2012 22:00

Добрый вечер, Алексей!

Если это так, в чем же состоит прикол, что Вы в одной и той же формуле одну и ту же величину обозначаете по разному?! Разве что для придания большего наукообразия. Поверьте в нашей методике преподавания физики и без Вас этого "добра" достаточно.

Алексей (Санкт-Петербург)

Никак не могу понять, что Вас смущает. У меня написано, что квадрат среднеквадратичной скорости по определению есть среднее значение квадрата скорости. В черта просто часть обозначения среднеквадратичной скорости, а в - процедура усреднения.

При уменьшении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость

1) уменьшится в 4 раза

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул пропорциональна квадрату средней квадратичной скорости:

Следовательно, при уменьшении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость уменьшится в 2 раза.

Правильный ответ: 3.

Ответ: 3

При повышении абсолютной температуры одноатомного идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул

1) уменьшится в раз

2) увеличится в раз

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Абсолютная температура идеального одноатомного газа пропорциональна квадрату средней квадратичной скорости теплового движения молекул. Действительно:

Следовательно, при повышении абсолютной температуры идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул увеличится в раз.

Правильный ответ: 2.

Ответ: 2

При понижении абсолютной температуры идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул

1) уменьшится в раз

2) увеличится в раз

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Абсолютная температура идеального газа пропорциональна квадрату средней квадратичной скорости теплового движения молекул. Действительно:

Следовательно, при понижении абсолютной температуры идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул уменьшится в раз.

Правильный ответ: 1.

Ответ: 1

Алексей (Санкт-Петербург)

Добрый день!

Не путайте, средняя величина от квадрата скорости равна не квадрату средней скорости, а квадрату средней квадратичной скорости. Средняя скорость для молекула газа вообще равна нулю.

Юрий Шойтов (Курск) 11.10.2012 10:07

Путаете все-таки Вы а не гость.

Во всей школьной физике буквой v без стрелки обозначается модуль скорости. Если над этой буквой стоит черта, то это обозначает среднее значение модуля скорости, которое вычисляется из распределения Максвелла, и оно равно 8RT/пи*мю. Корень же квадратный из средней квадратичной скорости равен 3RT/пи*мю. Как видите никакого равенства в Вашем тождестве нет.

Алексей (Санкт-Петербург)

Добрый день!

Даже не знаю, что возразить, это, наверное, вопрос, обозначений. В учебнике Мякишева средняя квадратичная скорость обозначается именно так, Сивухин использует обозначение . А Вы как привыкли обозначать эту величину?

Игорь (Кому надо тот знает) 01.02.2013 16:15

Почему температуру идеального газа вы расчитывали по формуле кинетической энергии? Ведь средняя квадратичная скорость находится по формуле: http://reshuege.ru/formula/d5/d5e3acf50adcde572c26975a0d743de1.png = Корень из (3kТ/m0)

Алексей (Санкт-Петербург)

Добрый день!

Если Вы приглядитесь внимательно, то увидите, что Ваше определение средней квадратичной скорости совпадает с тем, что использовано в решении.

По определению, квадрат средней квадратичной скорости равен среднему квадрату скорости, а именно через последний определяется температура газа.

При уменьшении средней кинетической энергии теплового движения молекул в 2 раза абсолютная температура

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна абсолютной температуре:

Следовательно, при уменьшении средней кинетической энергии теплового движения в 2 раза абсолютная температура газа также уменьшится в 2 раза.

Правильный ответ: 3.

Ответ: 3

В результате нагревания неона, температура этого газа увеличилась в 4 раза. Средняя кинетическая энергия теплового движения его молекул при этом

1) увеличилась в 4 раза

2) увеличилась в 2 раза

3) уменьшилась в 4 раза

4) не изменилась

Таким образом, при результате нагревания неона в 4 раза средняя кинетическая энергия теплового движения его молекул увеличивается в 4 раза.

Правильный ответ: 1.

МКТ поведение молекул в телах можно охарактеризовать средними значениями тех или иных величин, которые относятся не к отдельным молекулам, а ко всем молекулам в целом. T, V, P

МКТ МЕХАНИЧЕСКИЕ ВЕЛИЧИНЫ V T P величина, характеризующая внутреннее состояние тела (в механике ее нет)

МКТ МАКРОСКОПИЧЕСКИЕ ПАРАМЕТРЫ Величины, характеризующие состояние макроскопических тел без учета молекулярного строения тел (V, P, T) называют макроскопическими параметрами.

Температура Степень нагретости тел. холодное Т 1 теплое

Температура Почему термометр не показывает температуру тела сразу после того как он соприкоснулся с ним?

Тепловое равновесие - это такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными Устанавливается с течением времени между телами, имеющими различную температуру.

Температура Важное свойство тепловых явлений Любое макроскопическое тело (или группа макроскопических тел) при неизменных внешних условиях самопроизвольно переходит в состояние теплового равновесия.

Температура Неизменные условия значит, что в системе 1 Не изменяются объем и давление 2 Отсутствует теплообмен 3 Температура системы остается постоянной

Температура Микроскопические процессы внутри тела не прекращаются и при тепловом равновесии 1 Меняются скорости молекул при столкновениях 2 Изменяется положение молекул

Температура Система может находиться в различных состояниях. В любом состоянии температура имеет свое строго определенное значение. Другие физические величины могут иметь разные значения, которые не изменяются со временем.

Измерение температуры Можно использовать любую физическую величину, которая зависит от температуры. Чаще всего: V = V(T) Температурные шкалы Цельсия абсолютная (шкала Кельвина) Фаренгейта

Измерение температуры Температурные шкалы Шкала Цельсия = международная практическая шкала 0°С Температура таяния льда Реперные точки P 0 = 101325 Па 100°С Температура кипения воды Реперные точки – точки, на которых основывается измерительная шкала

Измерение температуры Температурные шкалы Абсолютная шкала (шкала Кельвина) Нулевая температура по шкале Кельвина соответствует абсолютному нулю, а каждая единица температуры по этой шкале равна градусу по шкале Цельсия. 1 К = 1 °С Уильям Томсон (лорд Кельвин) Единица температуры = 1 Кельвин = К

Измерение температуры Абсолютная температура = мера средней кинетической энергии движения молекул Θ = κT [Θ] = Дж [T] = К κ – постоянная Больцмана Устанавливает связь между температурой в энергетических единицах с температурой в кельвинах

Представляем формулу основного уравнения молекулярно-кинетической теории (МКТ) газов:

(где n = N V – это концентрация частиц в газе, N – это число частиц, V – это объем газа, 〈 E 〉 – это средняя кинетическая энергия поступательного движения молекул газа, υ k v – это средняя квадратичная скорость, m 0 – это масса молекулы) связывает давление – макропараметр, достаточно просто измеряющийся с такими микропараметрами, как средняя энергия движения отдельной молекулы (или в другом выражении), как масса частицы и ее скорость. Но находя только лишь давление, нельзя установить кинетические энергии частиц отдельно от концентрации. Поэтому для нахождения в полном объеме микропараметров нужно знать еще какую-то физическую величину, связанную с кинетической энергией частиц, составляющих газ. За данную величину можно взять термодинамическую температуру.

Газовая температура

Для определения газовой температуры нужно вспомнить важное свойство, которое сообщает о том, что в условиях равновесия средняя кинетическая энергия молекул в смеси газов одинаковая для различных компонентов данной смеси. Из данного свойства следует то, что если 2 газа в различных сосудах находятся в тепловом равновесии, тогда средние кинетические энергии молекул данных газов одинаковые. Это свойство мы и будем использовать. К тому же в ходе экспериментов доказано, что для любых газов (при неограниченном числе), которые находятся в состоянии теплового равновесия, справедливо следующее выражение:

С учетом вышесказанного, используем (1) и (2) и получаем:

Из уравнения (3) следует, что величина θ , которой мы обозначили температуру, вычисляется в Д ж, в чем измеряется также и кинетическая энергия. В лабораторных работах температура в системе измерения вычисляется в кельвинах. Поэтому введем коэффициент, который уберет данное противоречие. Он обозначается k , измеряется в Д ж К и равняется 1 , 38 · 10 - 23 . Данный коэффициент называется постоянной Больцмана. Таким образом:

Определение 1

θ = k T (4) , где T – это термодинамическая температура в кельвинах .

Связь термодинамической температуры и средней кинетической энергией теплового движения молекул газа выражается формулой:

E = 3 2 k T (5) .

Из уравнения (5) видно, что средняя кинетическая энергия теплового движения молекул прямо пропорциональна температуре газа. Температура является абсолютной величиной. Физический смысл температуры заключается в том, что она, с одной стороны, определяется средней кинетической энергией, которая приходится на 1 молекулу. А с другой стороны, температура – это характеристика системы в целом. Таким образом, уравнение (5) показывает связь параметров макромира с параметрами микромира.

Определение 2

Известно, что температура – это мера средней кинетической энергии молекул.

Можно установить температуру системы, а затем рассчитать энергию молекул.

В условиях термодинамического равновесия все составляющие системы характеризуются одинаковой температурой.

Определение 3

Температура, при которой средняя кинетическая энергия молекул равняется 0 , давление идеального газа равняется 0 , называется абсолютным нулем температур . Абсолютная температура никогда не является отрицательной.

Пример 1

Необходимо найти среднюю кинетическую энергию поступательного движения молекулы кислорода, если температура T = 290 K . А также найти среднюю квадратичную скорость капельки воды диаметра d = 10 - 7 м, взвешенной в воздухе.

Решение

Найдем среднюю кинетическую энергию движения молекулы кислорода по уравнению, связывающему энергию и температуру:

E = 3 2 k T (1 . 1) .

Поскольку все величины заданы в системе измерения, проведем вычисления:

E = 3 2 · 1 , 38 · 10 - 23 · 10 - 7 = 6 · 10 - 21 Д ж.

Перейдем ко второй части задания. Положим, что капелька, взвешенная в воздухе, – это шар (рисунок 1 ). Значит, массу капельки можно рассчитать как:
m = ρ · V = ρ · π d 3 6 .

Рисунок 1

Найдем массу капельки воды. Согласно справочных материалов, плотность воды в нормальных условиях равняется ρ = 1000 к г м 3 , тогда:

m = 1000 · 3 , 14 6 10 - 7 3 = 5 , 2 · 10 - 19 (к г) .

Масса капельки чрезмерно маленькая, поэтому, сама капелька сравнима с молекулой газа, и тогда можно использовать при расчетах формулу средней квадратичной скорости капли:

E = m υ k υ 2 2 (1 . 2) ,

где 〈 E 〉 мы уже установили, а из (1 . 1) понятно, что энергия не зависит от разновидности газа, а зависит только лишь от температуры. Значит, мы можем применить полученную величину энергии. Найдем из (1 . 2) скорость:

υ k υ = 2 E m = 6 · 2 E π ρ d 3 = 3 2 k T π ρ d 3 (1 . 3) .

Рассчитаем:

υ k υ = 2 · 6 · 10 - 21 5 , 2 · 10 - 19 = 0 , 15 м с

Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равняется 6 · 10 - 21 Д ж. Средняя квадратичная скорость капельки воды при заданных условиях равняется 0 , 15 м / с.

Пример 2

Средняя энергия поступательного движения молекул идеального газа равняется 〈 E 〉 , а давление газа p . Необходимо найти концентрацию частиц газа.

Решение

В основу решения задачи положим уравнение состояния идеального газа:

p = n k T (2 . 1) .

Прибавим к уравнению (2 . 1) уравнение связи средней энергии поступательного движения молекул и температуры системы:

E = 3 2 k T (2 . 2) .

Из (2 . 1) выражаем необходимую концентрацию:

n = p k T 2 . 3 .

Из (2 . 2) выражаем k T:

k T = 2 3 E (2 . 4) .

Подставляем (2 . 4) в (2 . 3) и получаем:

Ответ: Концентрацию частиц можно найти по формуле n = 3 p 2 E .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Основное уравнение молекулярно-кинетической теории (МКТ) газов:

(где $n=\frac{N}{V}$ -- концентрация частиц в газе, N -- количество частиц, V- объем газа, $\left\langle E\right\rangle \ $-средняя кинетическая энергия поступательного движения молекул в газе, $\left\langle v_{kv}\right\rangle $- средняя квадратичная скорость, $m_0$- масса молекулы) связывает давление - макропараметр, который довольно легко измерять с микропараметрами -- средней энергией движения отдельной молекулы или, в другом написании, массой частицы и ее скоростью. Однако, измеряя только давление, невозможно определить кинетические энергии частиц в отдельности от концентрации. Следовательно, для того, чтобы в полном объеме мы имели возможность находить микропараметры, необходимо знание еще какой-то физической величины, которая связана с кинетической энергией частиц, составляющих газ. Таковой является термодинамическая температура.

Газовая температура

Для того, чтобы определить, что такое газовая температура, необходимо вспомнить важное свойство, которое говорит о том, что при равновесии средняя кинетическая энергия молекул в смеси газов одна и та же для различных компонент этой смеси. Из этого свойства вытекает то, что если два газа в разных сосудах находятся в тепловом равновесии, то средние кинетические энергии молекул этих газов одинаковы. Это свойство и используем. Кроме того, эксперименты доказали, что для любых газов (количество газов не ограничено), которые находятся в состоянии теплового равновесия, выполняется следующее соотношение:

Учитывая выше сказанное, используем (1) и (2), получим:

Из уравнения (3) получается, что величина $\theta $, которую мы вводим как температуру, измеряется, как и энергия, в Дж. На практике температура в системе СИ измеряется в кельвинах. Следовательно, введем коэффициент, который устранит это противоречие, его размерность будет $\frac{Дж}{К}$, обозначение k равен он $1,38\cdot {10}^{-23}$. Этот коэффициент называют постоянной Больцмана. Так:

\[\theta =kT\ \left(4\right),\]

где T -- термодинамическая температура в кельвинах.

И ее связь со средней кинетической энергией движения молекул газа очевидна:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(5\right).\]

Уравнение (5) показывает, что средняя энергия теплового движения молекул прямо пропорциональна температуре газа. Температуру назвали абсолютной. Ее физический смысл в том, что она определяется средней кинетической энергией приходящейся на одну молекулу. Это с одной стороны. С другой, температура является характеристикой системы в целом. Так уравнение (5) связывает параметры макромира с параметрами микромира. Говорят, что температура является мерой средней кинетической энергии молекул. Мы можем измерить температуру системы, а за тем вычислить энергию молекул.

Абсолютный ноль температур

В состоянии термодинамического равновесия все части системы имеют одинаковую температуру. Температура, при которой средняя кинетическая энергия молекул равна нулю, давление идеального газа равно нулю, называют абсолютным нулем температур. Абсолютная температура не может быть отрицательной.

Пример 1

Задание: Вычислить среднюю кинетическую энергию поступательного движения молекулы кислорода при температуре T=290K. Среднюю квадратичную скорость капельки воды диаметра d=${10}^{-7}м$, взвешенной в воздухе.

Найти среднюю кинетическую энергию движения молекулы кислорода можно используя уравнение, связывающее ее (энергию) и температуру:

\[\left\langle E\right\rangle =\frac{3}{2}kT\left(1.1\right).\]

Поведем расчет, так как все величины заданы в СИ:

\[\left\langle E\right\rangle =\frac{3}{2}\cdot 1,38\cdot {10}^{-23}\cdot {10}^{-7}=6\cdot {10}^{-21}\left(Дж\right).\]

Приступим ко второй части задачи. Капельку воды, которая взвешена в воздухе, можно считать шаром (рис.1). Следовательно, массу капельки найдем как $m=\rho \cdot V=\rho \cdot \pi {\frac{d}{6}}^3.$

Рассчитаем массу капельки воды, из справочных материалов плотность воды при нормальных условиях равна $\rho =1000\frac{кг}{м^3}$:$\ тогда$

Масса капельки очень мала, следовательно, саму капельку можно сравнить с молекулой газа и применить для расчета средней квадратичной скорости капли формулу:

\[\left\langle E\right\rangle =\frac{m{\left\langle v_{kv}\right\rangle }^2}{2}\ \left(1.2\right),\]

где $\left\langle E\right\rangle $ мы уже рассчитали, а из (1.1) очевидно, энергия не зависит от вида газа, зависит только от температуры, следовательно, мы можем использовать полученное значение энергии. Выразим из (1.2) скорость:$\ \cdot $

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\left\langle E\right\rangle }{m}}=\sqrt{\frac{6\cdot 2\left\langle E\right\rangle }{\pi \rho d^3}}=3\sqrt{\frac{2kT}{\pi \rho d^3}}\ \left(1.3\right)\]

Проведем расчёт:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\cdot 6\cdot {10}^{-21}}{5,2\cdot {10}^{-19}}}=0,15\ \left(\frac{м}{с}\right)\]

Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равна $6\cdot {10}^{-21}\ Дж$. Средняя квадратичная скорость капельки воды при заданных условиях равна 0,15 м/с.

Пример 2

Задание: Средняя энергия поступательного движения молекул идеального газа равна $\left\langle E\right\rangle .\ $Давление газа p. Найдите концентрацию частиц газа.

К нему добавим уравнение связи средней энергии поступательного движения молекул и температуры системы:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(2.2\right)\]

Из (2.1) выразим искомую концентрацию:

Из $\left(2.2\right)\ $выразим $kT$:

Подставим (2.4) в (2.3):

Ответ: Концентрация частиц газа может быть найдена как $n=\frac{3p}{2\left\langle E\right\rangle }$.

На этом уроке мы будем разбирать физическую величину, уже знакомую нам из курса восьмого класса - температуру. Мы дополним её определение как меру теплового равновесия и меру средней кинетической энергии. Опишем недостатки одних и преимущества других методов измерения температур, введём понятие шкалы абсолютных температур и, наконец, выведем зависимость кинетической энергии молекул газа и давления газа от температуры.

Причины этому две:

  1. Различные термометры используют различные вещества в качестве индикатора, поэтому на одно и то же изменение температуры в зависимости от свойств конкретного вещества термометры реагируют по-разному;
  2. Произвольность выбора начала отсчёта шкалы температур.

Поэтому для любых точных замеров температур такие термометры не годятся. И начиная с восемнадцатого века, используются более точные термометры, коими является газовые термометры (см. рис. 2)

Рис. 2. Газовый термометр ()

Причиной этого является тот факт, что газы расширяются одинаково при изменении температуры на одинаковые значения. Для газовых термометров справедливо следующее:

То есть для измерения температуры либо фиксируется изменение давления при постоянном объёме, либо объём при постоянном давлении.

В газовых термометрах часто используют разреженный водород, который, как мы помним, очень хорошо подходит под модель идеального газа.

Кроме неидеальности бытовых термометров имеет место быть неидеальность многих шкал, которые используются в быту. В частности, шкала Цельсия, как наиболее нам знакомая. Как и в случае с термометрами эти шкалы выбирают случайным образом начальный уровень (для шкалы Цельсия это температура плавления льда). Поэтому для работы с физическими величинами необходима другая, абсолютная шкала.

Эту шкалу ввёл в 1848 г английский физик Уильям Томпсон (лорд Кельвин) (рис. 3). Зная, что при росте температур тепловая скорость движения молекул и атомов тоже растёт, нетрудно установить, что при уменьшении температур скорость будет падать и при определённой температуре рано или поздно станет нулём, как и давление (исходя и основного уравнения МКТ). Эту температуру и выбрали за начало отсчёта. Совершенно очевидно, что температура не может достигнуть значения меньше этого значения, поэтому оно получило название «абсолютный ноль температур». Для удобства же 1 градус по шкале Кельвина был приведён в соответствии с 1 градусом по шкале Цельсия.

Итак, получаем следующее:

Обозначение температуры - ;

Единица измерения - К, «кельвин»

Перевод к шкале Кельвина:

Следовательно, абсолютный ноль температур - это температура

Рис. 3. Уильям Томпсон ()

Теперь для определения температуры как меры средней кинетической энергии молекул имеет смысл обобщить те рассуждения, которые мы приводили в определении абсолютной шкалы температур:

Итак, как видим, температура и правда является мерой средней кинетической энергией поступательного движения. Конкретное же формульное соотношение вывел австрийский физик Людвиг Больцман (рис. 4):

Здесь - так называемый коэффициент Больцмана. Это константа, численно равная:

Как мы видим, размерность этого коэффициента - , то есть это своего рода коэффициент пересчёта из шкалы температур в шкалу энергий, ведь мы понимаем теперь, что, по сути, должны были измерять температуру в единицах энергии.

Теперь рассмотрим, как будет зависеть давление идеального газа от температуры. Для этого запишем основное уравнение МКТ в следующем виде:

и подставим в эту формулу выражение для связи средней кинетической энергии с температурой. Получим:

Рис. 4. Людвиг Больцман ()

На следующем занятии мы сформулируем уравнение состояния идеального газа.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Большая Энциклопедия Нефти Газа ().
  2. youtube.com ().
  3. E-science.ru ().

Домашнее задание

  1. Стр. 66: № 478-481. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Как определяют шкалу температур по Цельсию?
  3. Укажите температурный диапазон по шкале Кельвина для вашего города летом и зимой.
  4. Воздух состоит в основном из азота и кислорода. Кинетическая энергия молекул какого газа больше?
  5. *Чем отличается расширение газов от расширения жидкостей и твёрдых тел?
kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей