Направление магнитных линий вокруг проводника с током. Магнитная индукция прямолинейного проводника

Темы кодификатора ЕГЭ : взаимодействие магнитов, магнитное поле проводника с током.

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс . Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим . Об этом свидетельствуют следующие опытные факты.

Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей . Изолированных магнитных полюсов (так называемых магнитных монополей - аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля .А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий -так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии - это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии .

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии .

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства .

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс - красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году - в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и - северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи .

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас .

Правило винта (или правило буравчика , или правило штопора - это уж кому что ближе;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока .

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки - вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля , или магнитной индукцией . Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции . Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.

Правило часовой стрелки . Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки .

Правило винта . Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока .

Как видите, ток и поле меняются ролями - по сравнению с формулировками этих правил для случая прямого тока.

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 - изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом .

Рис. 5. Катушка (соленоид)

Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).

Рис. 6. поле катушки с током

На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец - к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.

1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля - параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.

2. Вне катушки поле близко к нулю. Чем больше витков в катушке - тем слабее поле снаружи неё.

Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.

Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.

А теперь - главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6 ) с линиями поля магнита на рис. 1 . Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!

Гипотеза Ампера. Элементарные токи

Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита - полюса всегда присутствуют в магните парами.

Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.

Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него .

Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.

Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.

Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).

Рис. 7. Элементарные токи магнита

Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).

Гипотеза Ампера оказалась справедливой - это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке - почти через сто лет после гениальной догадки Ампера.

Если к прямолинейному проводнику с током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки (рис. 67). Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными. Иными словами, если по проводнику проходит электрический ток, то вокруг проводника возникает магнитное поле. Магнитное поле можно рассматривать как особое состояние пространства, окружающего проводники с током.

Если продеть через картой толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные линии (рис. 68). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рис. 69). Это показывает, что направление магнитных линий меняется с изменением направления тока в проводнике.

Магнитное поле вокруг проводника с током обладает следующими особенностями: магнитные линии прямолинейного проводника имеют форму концентрических окружностей; чем ближе к проводнику, тем плотнее располагаются магнитные линии, тем больше магнитная индукция; магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; направление магнитных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелу по направлению тока (рис. 70), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Направление магнитных линий вокруг проводника с током можно определить по "правилу буравчика". Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных линий вокруг проводника (рис. 71).


Рис. 71. Определение направления магнитных линий вокруг проводника с током по "правилу буравчика"

Магнитная стрелка, внесенная в поле проводника с током, располагается вдоль магнитных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рис. 72).


Рис. 72. Определение направления отклонения магнитной стрелки, поднесенной к проводнику с током, по "правилу буравчика"

Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

В постоянных магнитах магнитное поле также вызывается движением электронов, входящих в состав атомов и молекул магнита.

Интенсивность магнитного поля в каждой его точке определяется величиной магнитной индукции, которую принято обозначать буквой В. Магнитная индукция является векторной величиной, т. е. она характеризуется не только определенным значением, но и определенным направлением в каждой точке магнитного поля. Направление вектора магнитной индукции совпадает с касательной к магнитной линии в данной точке поля (рис. 73).

В результате обобщения опытных данных французские ученые Био и Савар установили, что магнитная индукция В (интенсивность магнитного поля) на расстоянии r от бесконечно длинного прямолинейного проводника с током определяется выражением


где r - радиус окружности, проведенной через рассматриваемую точку поля; центр окружности находится на оси проводника (2πr - длина окружности);

I - величина тока, протекающего по проводнику.

Величина μ а, характеризующая магнитные свойства среды, называется абсолютной магнитной проницаемостью среды.

Для пустоты абсолютная магнитная проницаемость имеет минимальное значение и ее принято обозначать μ 0 и называть абсолютной магнитной проницаемостью пустоты.


1 гн = 1 ом⋅сек.

Отношение μ а / μ 0 , показывающее, во сколько раз абсолютная магнитная проницаемость данной среды больше абсолютной магнитной проницаемости пустоты, называется относительной магнитной проницаемостью и обозначается буквой μ.

В Международной системе единиц (СИ) приняты единицы измерения магнитной индукции В - тесла или вебер на квадратный метр (тл, вб/м 2).

В инженерной практике магнитную индукцию принято измерять в гауссах (гс): 1 тл = 10 4 гс.

Если во всех точках магнитного поля вектора магнитной индукции равны по величине и параллельны друг другу, то такое поле называется однородным.

Произведение магнитной индукции В на величину площадки S, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции, или просто магнитным потоком, и обозначается буквой Φ (рис. 74):

В Международной системе в качестве единицы измерения магнитного потока принят вебер (вб).

В инженерных расчетах магнитный поток измеряют в максвеллах (мкс):

1 вб = 10 8 мкс.

При расчетах магнитных полей пользуются также величиной, называемой напряженностью магнитного поля (обозначается Н). Магнитная индукция В и напряженность магнитного поля Н связаны соотношением

Единица измерения напряженности магнитного поля Н - ампер на метр (а/м).

Напряженность магнитного поля в однородной среде, так же как и магнитная индукция, зависит от величины тока, числа и формы проводников, по которым проходит ток. Но в отличие от магнитной индукции напряженность магнитного поля не учитывает влияния магнитных свойств среды.

Магнитное поле проводника с током. При прохождении тока по прямолинейному проводнику вокруг него возникает магнитное поле (рис. 38). Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.
Направление магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику. Направление магнитных силовых линий можно определить по правилу буравчика. Его формулируют следующим образом. Если поступательное движение буравчика 1 (рис. 39, а) совместить с направлением тока 2 в проводнике 3, то вращение его рукоятки укажет направление силовых линий 4 магнитного поля вокруг проводника. Например, если ток проходит по проводнику в направлении от нас за плоскость листа книги (рис. 39, б), то магнитное поле, возникающее вокруг этого проводника, направлено по часовой стрелке. Если ток по проводнику проходит по направлению от плоскости листа книги к нам, то магнитное поле вокруг проводника направлено против часовой стрелки. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле. При изменении направления тока магнитное поле также изменяет свое направление.
По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля и его напряженность уменьшаются. Напряженность магнитного поля в пространстве, окружающем проводник,

H = I/(2?r) (44)

Максимальная напряженность Н max имеет место на внешней поверхности проводника 1 (рис. 40). Внутри проводника также

возникает магнитное поле, но напряженность его линейно уменьшается по направлению от внешней поверхности к оси (кривая 2). Магнитная индукция поля вокруг и внутри проводника изменяется таким же образом, как и напряженность.

Способы усиления магнитных полей. Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют обмоткой, или катушкой.
При проводнике, согнутом в виде витка (рис. 41, а), магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются (рис. 41, б) и их силовые линии соединяются в общий магнитный поток. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается. Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки. Магнитное поле катушки, обтекаемой током, имеет такую же форму, как и поле прямолинейного постоянного магнита (см. рис. 35, а): силовые магнитные линии выходят из одного конца катушки и входят В другой ее конец. Поэтому катушка, обтекаемая током, представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такое устройство называется электромагнитом.
Электромагниты нашли чрезвычайно широкое применение в технике. Они создают магнитное поле, необходимое для работы электрических машин, а также электродинамические усилия, требуемые. Для работы различных электроизмерительных приборов и электрических аппаратов.
Электромагниты могут иметь разомкнутый или замкнутый магнитопровод (рис. 42). Полярность конца катушки электромагнита можно определить, как и полярность постоянного магнита, при помощи магнитной стрелки. К северному полюсу она поворачивается южным концом. Для определения направления магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика. Если совместить направление вращения рукоятки с направлением тока в витке или катушке, то поступательное движение буравчика укажет направление магнитного поля. Полярность электромагнита можно определить и с помощью правой руки. Для этого руку надо положить ладонью на катушку (рис. 43) и совместить четыре пальца с направлением в ней тока, при этом отогнутый большой палец покажет направление магнитного поля.

Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами. Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная э. д. с.

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся заряженные частицы, а стало быть, и на электрические токи.

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (фиг. 78). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (фиг. 79). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Направление магнитных индукционных линий вокруг проводника с током можно определить по «правилу буравчика:». Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (фиг. 81),

Магнитная стрелка, внесенная в поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться «правилом буравчика» (фиг. 82). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть

Получено независимо и отдельно от тока. Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Количественное выражение для магнитиой индукции в результате обобщения опытных данных было установлено Био и Саваром (фиг. 83). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого АВ прямо пропорциональна длине А1 этого элемента, величине протекающего тока I, синусу угла а между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиуса-вектора r:

генри (гн)-единица индуктивности; 1 гн= 1 ом сек.

- относительная магнитная проницаемость - безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости пустоты. Размерность магнитной индукции можно найти по формуле

вольт-секунда иначе называется вебером (вб):

На практике встречается более мелкая единица магнитной индукции-гаусс (гс):

Закон Био и Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где- расстояние от проводника до точки, где определяется

Магнитная индукция. Отношение магнитной индукции к произведению магнитных проницаемостей называется напряженностью магнитного поля и обозначается буквой Н:

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля. Найдем размерность Н:

Иногда пользуются другой единицей напряженности - эрстедом (эр):

1 эр = 79,6 a/м = 0,796 а/см.

Напряженность магнитного поля Н, как и магнитная индукция В, является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Размерность магнитного потока:

т. е. магнитный поток измеряется в вольт-секундах или веберах. Более мелкой единицей магнитного потока является максвелл (мкс):

1 вб = 108 мкс. 1 мкс = 1 гс см2.

Инструкция

Чтобы узнать направление магнитных для прямого проводника с , расположите его так, чтобы электрический ток шел в направлении от вас (например, в лист бумаги). Попробуйте вспомнить, как двигается бур или закручиваемый отверткой винт: по часовой и . Изобразите это движение рукой, чтобы понять направление линий . Таким образом, линии магнитного поля направлены по часовой стрелке. Отметьте их схематично на чертеже. Этот метод правилом буравчика.

Если проводник расположен не в том направлении, мысленно встаньте таким образом или поверните конструкцию так, чтобы ток от вас удалялся. Затем вспомните движение бура или винта и поставьте направление магнитных линий по часовой стрелке.

Если правило буравчика кажется вам сложным, попробуйте использовать правило правой руки. Чтобы с его помощью определить направление магнитных линий , расположите руку используйте правую руку с оттопыренным большим пальцем. Большой палец направьте по движению проводника, а 4 остальных пальца – в направлении индукционного тока. Теперь обратите внимание, силовые линии магнитного поля в вашу ладонь.

Для того, чтобы использовать правило правой руки для катушки с током, обхватите его мысленно ладонью правой руки так, чтобы пальцы были направлены вдоль тока в витках. Посмотрите, куда смотрит отставленный палец – это и есть направление магнитных линий внутри . Этот способ поможет определить ориентацию металлической болванки, если вам нужно зарядить при помощи катушки с током.

Чтобы определить направление магнитных линий при помощи магнитной стрелки, расположите несколько таких стрелок вокруг провода или катушки. Вы увидите, что оси стрелок направлены по касательным к окружности. С помощью этого метода можно найти направление линий в каждой точке пространства и их непрерывность.

Под линиями индукции понимают силовые линии магнитного поля. Для того чтобы получить информацию об этом виде материи, недостаточно знать абсолютную величину индукции, нужно знать и ее направление. Направление линий индукции можно найти при помощи специальных приборов или пользуясь правилами.

Вам понадобится

  • - прямой и круговой проводник;
  • - источник постоянного тока;
  • - постоянный магнит.

Инструкция

Подключите к источнику постоянного тока прямой проводник. Если по нему течет ток, он магнитным полем, силовые линии которого представляют собой концентрические окружности. Определите направление силовых линий, воспользовавшись правилом . Правым буравчиком называется винт, продвигающийся при вращении в правую сторону (по часовой стрелке).

Определите направление тока в проводнике, учитывая, что он протекает от положительного полюса источника к отрицательному. Шток винта расположите параллельно проводнику. Начинайте вращать его так, чтобы шток начал двигаться в направлении тока. В этом случае направление вращения рукоятки покажет направление линий индукции магнитного поля.

Найдите направление силовых линий индукции витка с током. Для этого используйте то же правого буравчика. Буравчик расположите таким образом, чтобы рукоятка вращалась в направлении протекания тока. В этом случае движение штока буравчика покажет направление линий индукции. Например, если ток протекает в витке по часовой стрелке, то линии магнитной индукции будут плоскости витка и будут уходить в его плоскость.

Если проводник двигается во внешнем магнитном поле, определите его направление, пользуясь правилом левой руки. Для этого расположите левую руку так, чтобы четыре пальца показывали направление тока, а отставленный большой палец, направление движения проводника. Тогда линии индукции однородного магнитного поля будут входить в ладонь левой руки.

Видео по теме

В процессе создания чертежа инженер сталкивается с целым спектром проблем, умение решать которые является степенью его квалификации. Определение видимости на чертежах многосложных деталей есть одна из упомянутых проблем. Самый распространенный метод определения видимости на чертеже – метод конкурирующих точек.

Вам понадобится

  • Изображения детали без определенной видимости по крайней мере в двух главных видах, захватывающих вид спереди, для этого лучше подойдут вид спереди и сверху, отмеченные ключевые точки на чертеже, в которых будет определяться видимость.

Инструкция

Найдите на чертеже точки, проекции которых на либо плоскости совпадают, не совпадая при этом на плоскости проекции. Такие точки конкурирующими и они будут использованы нами в качестве опорных точек при построении видимости, сообщая нам о нахождении в пространстве тех , к которым эти точки привязаны.

Через отмеченные вами ранее точки, предназначенные для видимости, проведите прямые таким образом, чтобы они были перпендикулярны одной из главных плоскостей проекции, при этом автоматически становясь параллельными другой плоскости проекции.

Отметьте точки пересечения , проведенных вами в предыдущем шаге, с деталью. Эти точки будут конкурирующими, поскольку их проекции на одной плоскости будут совпадать, не совпадая при этом на другой плоскости. Если проекции точек совпадают на фронтальной плоскости (П1), то точки называются фронтально конкурирующими. Если проекции точек совпадают на горизонтальной плоскости (П2), то такие точки называются горизонтально-конкурирующими.

Определите видимость. Для фронтально конкурирующих точек видимость определяется на виде сверху. Та точка, горизонтальная проекция ниже, то есть ближе к наблюдателю, будет видима на виде спереди. Соответственно другая точка, конкурирующая данной, будет невидима. Для горизонтально конкурирующих точек видимость определяется на виде спереди, при этом та точка будет видима, которая находится выше остальных, а все остальные, конкурирующие данной, будут невидимы.

Магнитное поле не воспринимается органами чувств человека. Для того чтобы его увидеть, необходим специальный прибор. Он позволяет наблюдать форму силовых линий магнитного поля в трехмерном виде.

Инструкция

Приготовьте основу прибора - пластмассовую бутылку. Применять стеклянную нежелательно, поскольку она может быть разбита в ходе опытов магнитом, инструментами или другими металлическими предметами. У бутылки должна быть наклейка только с одной стороны. Если наклейка , удалите одну из ее половин, а если ее нет вообще, закрасьте один бок бутылки белой краской. Получится фон, на котором силовые линии наиболее заметны.

Расположитесь в любом помещении, кроме кухни. Постелите на стол газету, наденьте защитные перчатки. Настригите на нее ненужными ножницами из старой металлической мочалки для мытья посуды. Заверните в пакет и этим приспособлением полностью соберите . Вставьте в горлышко бутылки воронку, а затем, поместив приспособление над воронкой, уберите магнит из пакета. Опилки отделятся от пакета и через воронку в бутылку. Ни в коем случае не допускайте попадания опилок на пол и любые окружающие предметы, особенно одежду, обувь и продукты питания! Теперь наполните бутылку почти доверху прозрачным и безопасным маслом, после чего плотно закупорьте. Тщательно вымойте готовый прибор снаружи от остатков масла.

Перемешайте опилки с маслом, вращая бутылку. Просто встряхивать ее неэффективно. Теперь поднесите к ней магнит, и опилки выстроятся в соответствии с формой силовых линий. Чтобы подготовить прибор к следующему опыту, уберите магнит и снова перемешайте опилки с маслом, как указано выше.

Попробуйте пронаблюдать силовые линии поле й магнитов различной формы. Зарисуйте или сфотографируйте их. Подумайте, они имеют именно такую форму, на этот вопрос в учебнике физики. Попробуйте объяснить, почему прибор не на переменные магнитные поля, например, от трансформаторов.

Видео по теме

Обратите внимание

Не разрешайте детям пользоваться визуализатором без наблюдения взрослых - это не игрушка, а физический прибор. Содержащиеся в нем опилки опасны при проглатывании.

Источники:

  • Трехмерный визуализатор магнитных полей в 2019

Истинным направлением тока является то, в котором движутся заряженные частицы. Оно, в свою очередь, зависит от знака их заряда. Помимо этого, техники пользуются условным направлением перемещения заряда, не зависящим от свойств проводника.

Инструкция

Для определения истинного направления перемещения заряженных частиц руководствуйтесь следующим правилом. Внутри источника они вылетают из электрода, который от этого заряжается с противоположным знаком, и движутся к электроду, который по этой причине приобретает заряд, по знаку аналогичный частиц. Во внешней же цепи они вырываются электрическим полем из электрода, заряд которого совпадает с зарядом частиц, и притягиваются к противоположно заряженному.

В металле носителями тока являются свободные электроны, перемещающиеся между узлами кристаллической . Поскольку эти частицы заряжены отрицательно, внутри источника считайте их движущимися от положительного электрода к отрицательному, а во внешней цепи - от отрицательного к положительному.

В неметаллических проводниках заряд переносят также электроны, но механизм их перемещения иной. Электрон, покидая атом и тем самым превращая его в положительный ион, заставляет его захватить электрон с предыдущего атома. Тот же электрон, который покинул атом, ионизирует отрицательно следующий. Процесс повторяется непрерывно, пока в цепи ток. Направление движения заряженных частиц в этом случае считайте тем же, что и в предыдущем случае.

В заряд всегда переносят тяжелые ионы. В зависимости от состава электролита, они могут быть как отрицательными, так и положительными. В первом случае считайте их ведущими себя аналогично электронам, а во втором - аналогично положительным ионам в газах или дыркам в полупроводниках.

При указании направления тока в электрической схеме, независимо от того, куда перемещаются заряженные частицы на самом деле, считайте их движущимися в источнике от отрицательного полюса к положительному, а во внешней цепи - от положительного к отрицательному. Указанное направление считается условным, а принято оно до строения атома.

Источники:

  • направление тока

Совет 6: Где найти проводника для похода в горы или в лес

Многих людей, собирающихся в отпуск, привлекает не бесцельное лежание на пляже, а пешие или конные походы в горы или в лес, дающие возможность побыть наедине с природой, полюбоваться красотою мест, не испорченных цивилизацией, да и проверить себя. Но, если вы отправляетесь не просто на прогулку по исхоженным тропам, а в настоящий многодневный поход по неизведанным местам, без проводника вам не обойтись.

Зачем нужен проводник в походе

Даже бывалые и опытные туристы, впрочем, особенно такие, отправляясь в горы или лес по сложному маршруту в тех местах, где они до этого не были, обязательно возьмут с собой проводника. Проводник, это человек, живущий в данной местности и прекрасно знающий ее, который занимается сопровождением профессионально или время от времени.

Такой человек не только досконально изучил здесь каждую тропу, но знает все местной погоды, особенности поведения и правила безопасности. Его присутствие станет гарантией того, что поход пройдет в максимально комфортабельных условиях и все его участники вернутся из него целыми и невредимыми.

Особенно необходим проводник в том случае, когда вы и участники вашей группы – начинающие туристы. Порою незнание элементарных правил безопасности и отсутствие первичных туристических навыков приводят к настоящим человеческим трагедиям. Проводник не только гарант безопасности, но и человек, который обучит вас правилам и покажет вам то, что сами вы просто не сможете разглядеть и увидеть.

Отправляясь в поход, тщательно изучите все особенности данной территории, просмотрите маршрут и подготовьтесь физически.

Как находить проводника для туристического похода

Если местность, куда вы направляетесь, достаточно безлюдная, договориться о сопровождении можно с местными жителями. Как правило, за небольшую (для вас) плату они с удовольствием соглашаются помочь приезжим туристам в этом вопросе. В том случае, когда рядом расположен крупный населенный пункт, можно узнать и обратиться в местные туристические клубы или службу спасения, подразделение МЧС.
Перед тем как выйти на маршрут, предупредите об этом местные спасательные службы и договоритесь о контрольных сроках вашего появления, чтобы в случае задержки помощь была выслана немедленно.

Если они не выделят проводника из рядов своих членов и сотрудников, наверняка посоветуют, к кому из местных жителей вам можно обратиться. Хороший совет и рекомендации вы можете получить и обратившись в торговую точку, где продают горное или туристическое снаряжение, обычно торгуют там люди, не понаслышке знакомые с туризмом и альпинизмом.

Всесильный интернет окажет вам помощь в поиске. Вы можете посмотреть официальные сайты тех городов, которые будут отправной точкой вашего похода, часто там имеется подобная информация. Есть специализированные сайты, предлагающие услуги профессиональных проводников, причем они могут сопровождать вас не только по России, но и за рубежом.

Источники:

  • Заказ проводников и сопровождающих по интернету в 2019

Магнитный лак для ногтей появился на рынке несколько лет назад. Правда, задолго до появления в широкой продаже это средство уже мелькало в лимитированных коллекциях некоторых брендов. Особенность продукта - широкие возможности для дизайна. С помощью специальных магнитов ногти можно украсить стилизованными звездами, снежинками, зигзагами или волнами.

Инструкция

Загадка эффекта магнитного лака в его составе. В формулу включены мельчайшие металлические частицы, которые под действием магнита выстраиваются в определенном порядке. Каждый магнит может «нарисовать» только один вид узора. Поэтому те, кто хотят разнообразия, вынуждены покупать несколько приспособлений с разными мотивами. Хорошая новость для любителей магнитных лаков - все аксессуары для создания рисунков взаимозаменяемы. Вы можете приобрести лаки одной марки и делать на них узоры магнитами другой.

Еще одна общая черта всех лаков этого типа - похожий вид покрытия. Лаки имеют плотную текстуру с перламутровым отблеском, для нанесения средства ровным слоем требуется сноровка. Палитра магнитных лаков ограничена темными сложными оттенками от черно-серого до серо-голубого. Большинство цветов имеет выраженный холодный подтон - его задают металлические частицы, присутствующие в составе.

Магнитные лаки отличаются высокой стойкостью. Однако они могут подчеркнуть все неровности ногтя. Чтобы средство лежало идеально, перед нанесением необходимо выровнять пластину полировочным бруском и нанести на нее слой защитной базы.

Если лаки марок разных ценовых категорий очень похожи, то в категории магнитов царит разнообразие. Начинающим стоит обратить внимание на , укрепленные на подставке - ими гораздо удобнее пользоваться. Достаточно поместить палец на специальную платформу начнет действовать. Пластинки, которые нужно самостоятельно держать над накрашенным ногтем, менее удобны - не всегда удается правильно рассчитать расстояние, необходимое для появления рисунка. Если же поднести пластинку слишком близко, легко смазать свеженанесенный лак.

Самый популярный рисунок для магнитного маникюра - звезда или снежинка. На втором месте разнообразные полосы. Волны и зигзаги встречаются реже, а магниты с необычными узорами вроде цветов или сердечек почти не выпускаются.

Маникюр с магнитным лаком имеет некоторые особенности. Средство наносят довольно толстым слоем, свеженакрашенный ноготь немедленно помещается под магнит. Чем дольше держать магнит над лаком и чем ближе он будет расположен, тем ярче получится рисунок. Наносить на него блестящие топы, жидкие сушки и другие средства нельзя - они размоют поверхность магнитного лака, и узор станет плохо виден. На сушку потребуется не меньше получаса, зато покрытие получится прочным и будет держаться не менее 5 дней.

Видео по теме

Полезный совет

Выбирая узор, учтите, что звезды и поперечные полосы делают ногти короче и шире, а зигзаги, продольные волны и вертикальные полоски наоборот, удлиняют пластину.

Магнитное поле Земли

Глубоко под нашими ногами, под толщей Земной коры находится то, что вот уже много миллиардов лет согревает планету Земля изнутри – огромный океан вязкой раскаленной магмы. Эта магма состоит из множества веществ, в том числе и из металлов, которые очень хорошо проводят электрический ток. На всей планете под поверхностью Земли движутся микроскопические электроны, создавая электрическое, а с ним и магнитное поле.

Перемещение геомагнитных полюсов

Магнитное поле Земли имеет два полюса: Северный геомагнитный полюс (находится в планеты) и Южный геомагнитный полюс (находится в северном полушарии планеты). Одно из самых широко известных необычных явлений, касающихся магнитного поля Земли – это географическое передвижение геомагнитных полюсов.

Дело в том, что на магнитное поле воздействует сразу несколько факторов, способствующих его нестабильному положению. Это и взаимодействие с осью вращения Земли, и различное давление земной коры на разных участках планеты, и приближение/удаление космических тел (Солнца, Луны), и, в большей степени, передвижение магмы.

Поток магмы представляет собой гигантскую мантийную реку, которая движется под воздействием солнечной радиации и вращения Земли с запада на восток. Но, поскольку размеры этой реки огромны, она, как и обычная река, не может двигаться стабильно ровно. Конечно, в идеальных условиях русло мантийной реки должно бы проходить вдоль экватора. В этом случае географические и магнитные полюса Земли совпадали бы. Но природные условия таковы, что во время движения магма ищет зоны наименьшего сопротивления потоку (зоны низкого давления коры) и продвигается к ним, сдвигая при этом магнитное поле и геомагнитные полюса.

Магнитные аномалии

Нестабильность мантийной реки влияет не только на магнитные полюса, но и на возникновение особых зон, названных «магнитными аномалиями». Магнитные аномалии не имеют постоянного месторасположения, могут становиться сильнее/слабее, различаются размерами и причинами возникновения.

Самое распространенное явление – локальные магнитные аномалии (менее 100 квадратных метров). Они встречаются везде, расположены в хаотичном порядке и возникают, в основном, под воздействием месторождений полезных ископаемых, расположенных слишком близко к поверхности Земли.

Другие магнитные аномалии – региональные (до 10 000 квадратных километров). Они возникают вследствие изменения магнитного поля. Их размер и сила зависит от строения земной коры в данной местности. Например, при переходе равнинной местности в гористую, происходит резкий подъем земной коры, как на поверхности Земли, так и под ней. При таком изменении рельефа, скорость движения потока магмы резко увеличивается, частицы вещества сталкиваются друг с другом и возникают колебания в магнитном поле. Одни из самых известных региональных аномалий – Курская и Гавайская.

Самыми крупными являются континентальные магнитные аномалии (площадью более 100 000 квадратных километров). Они обязаны своим возникновением разломами коры Земли и воздействием земной оси. Например, Восточносибирская аномалия вследствие сдвига земной оси именно в эту сторону. Вдобавок, горные хребты разделили мантийную реку на два рукава, текущих в разных направлениях, вследствие чего стрелка компаса будет иметь в этом районе в западное . У берегов Канады складывается другая ситуация. Там находится огромная площадь соприкосновения мантийной реки с корой Земли, вследствие которой возникает напряженность магнитного поля, которая, в свою очередь, оттягивает ось Земли на себя.

Однако самая интересная магнитная аномалия находится на юге Атлантического океана. Магнитная река там поворачивает в противоположную сторону, тем самым меняя магнитное поле таким образом, что эта область противоположна остальному южному полушарию. Эта аномалия знаменита тем, что несколько раз у космонавтов, пролетающих над ней, ломалась мелкая электроника.

Магнитные аномалии разбросаны по всей планете, не имеют постоянного расположения, они появляются и исчезают, становятся сильнее или слабее. Помимо всего прочего, годы исследований показали, что геомагнитное поле планеты слабеет, а магнитные аномалии становятся все сильнее.

Магнитный конструктор и развитие ребенка

Магнитные конструкторы появились на рынке сравнительно недавно. Приобретая набор из магнитов, взрослые часто плохо представляют себе, что же они купили. Для того чтобы разобраться в принципах работы , стоит почитать инструкцию. В инструкции вы найдете несколько вариантов сборки базовых моделей. Магнитные конструкторы предназначены для создания разнообразных фигур и форм, в том числе и объемных.

Главное достоинство магнитного конструктора заключается в том, что он не загоняет фантазию ребенка в рамки, а позволяет ему творить. В инструкции можно найти несколько базовых фигур, сложив которые, ребенок научится «управлять» своей новой игрушкой. Затем подключается фантазия, и малыш начинает творить, создавая новые, фантастические фигуры.

В основе действия магнитного конструктора лежит соединение различных деталей. Внутри каждой детали находятся магниты. При помощи магнитов элементы можно присоединять друг к другу любой стороной. Существует несколько модификаций магнитных наборов. Для самых маленьких – магнитные доски с плоскими элементами. Для детей постарше – детали, позволяющие создавать большие трехмерные фигуры. Большой популярностью пользуются наборы из маленьких магнитных шариков и палочек.

Применение в обучении

Использование конструкторов с магнитными элементами позволяет перенести процесс обучения на новый уровень. Создание из маленьких деталей развивает двигательные навыки, помогает открыть в ребенке новые способности. В процессе игры ребенок узнает о разнообразии форм, учится координироваться свои движения.

Учителя используют магнитные конструкторы в качестве наглядных пособий. Из деталей можно построить форму, демонстрирующую структуру молекул. Или воссоздать человеческий скелет в трехмерной проекции. Или показать детям объемные геометрические формы. Возможность осмотреть и потрогать модели различных фигур в несколько раз повышает уровень усвоения нового материала в школе.

Правила безопасности

Магнитные конструкторы содержат много мелких деталей, поэтому покупать их следует с осторожностью, учитывая возрастные особенности детей. Особенно опасны маленькие магнитные шарики, входящие в состав многих наборов. Эти детали с легкостью могут проникнуть в рот, ухо, нос ребенка. Поэтому рекомендуется покупать магнитные доски с большими деталями.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей