Сложение колебаний одинакового направления метод векторных диаграмм. Графический метод сложения колебаний

Решение ряда вопросов, в частности сложение нескольких колебаний одинакового направления (или, что то же самое, сложение нескольких гармонических функций), значительно облегчается и становится наглядным, если изображать колебания графически в виде векторов на плоскости. Полученная таким способом схема называется векторной диаграммой.

Возьмем ось, которую обозначим буквой х (рис. 55.1). Из точки О, взятой на оси, отложим вектор длины а, образующий с осью угол а.

Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора будет перемещаться по оси х в пределах от -а до +а, причем координата этой проекции будет изменяться со временем по закону

Следовательно, проекция конца вектора на ось будет совершать гармоническое колебание с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени.

Из сказанного следует, что гармоническое колебание может быть задано с помощью вектора, длина которого равна амплитуде колебания, а направление вектора образует с осью х угол, равный начальной фазе колебания.

Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты. Смещение х колеблющегося тела будет суммой смещений , которые запишутся следующим образом:

Представим оба колебания с помощью векторов (рис. 55.2). Построим по правилам сложения векторов результирующий вектор а.

Легко видеть, что проекция этого вектора на ось х равна сумме проекций слагаемых векторов:

Следовательно, вектор а представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью как и векторы так что результирующее движение будет гармоническим колебанием с частотой амплитудой а и начальной фазой а. Из построения видно, что

Итак, представление гармонических колебаний посредством векторов дает возможность свести сложение нескольких колебаний к операции сложения векторов. Этот прием бывает особенно полезен, например, в оптике, где световые колебания в некоторой точке определяются как результат наложения многих колебаний, приходящих в данную точку от различных участков волнового фронта.

Формулы (55.2) и (55.3) можно, конечно, получить, сложив выражения (55.1) и произведя соответствующие тригонометрические преобразования. Но примененный нами способ получения этих формул отличается большей простотой и наглядностью.

Проанализируем выражение (55.2) для амплитуда. Если разность фаз обоих колебаний равна нулю, амплитуда результирующего колебания равна сумме а и . Если разность фаз равна или , т. е. оба колебания находятся в противофазе, то амплитуда результирующего колебания равна

Если частоты колебаний неодинаковы, векторы а и будут вращаться с различной скоростью. В этом случае результирующий вектор а пульсирует по величине и вращается с непостоянной скоростью. Следовательно, результирующим движением будет в этом случае не гармоническое колебание, а некоторый сложный колебательный процесс.



Вынужденные колебания. Резонанс.

До сих пор мы рассматривали собственные колебания, колебания, происходящие в отсутствие внешних воздействий. Внешнее воздействие было нужно лишь для того, чтобы вывести систему из состояния равновесия, после чего она предоставлялась самой себе. Дифференциальное уравнение собственных колебаний вообще не содержит следов внешнего воздействия на систему: это воздействие отражается лишь в начальных условиях.



Установление колебаний.

Но очень часто приходится сталкиваться с колебаниями, которые происходят при постоянно присутствующем внешнем воздействии. Особенно важен и в то же время достаточно прост для изучения случай, когда внешняя сила имеет периодический характер. Общей чертой вынужденных колебаний, происходящих под действием периодической внешней силы, является то, что спустя некоторое время после начала действия внешней силы система полностью «забывает» свое начальное состояние, колебания приобретают стационарный характер и не зависят от начальных условий. Начальные условия проявляются только в период установления колебаний, который обычно называют переходным процессом.


Синусоидальное воздействие.

Рассмотрим вначале наиболее простой случай вынужденных колебаний осциллятора под действием внешней силы, изменяющейся по синусоидальному закону.

Такое внешнее воздействие на систему можно осуществить различными способами. Например, можно взять маятник в виде шарика на длинном стержне и длинную пружину с малой жесткостью и прикрепить ее к стержню маятника недалеко от точки подвеса, как показано на рис. 178. Другой конец горизонтально расположенной пружины следует заставить двигаться по закону В с помошью кривошипно-шатунного механизма, приводимого в движение электромотором. Действующая на маятник со стороны пружины вынуждающая сила будет практически синусоидальна, если размах движения левого конца пружины В будет много больше амплитуды колебаний стержня маятника в точке закрепления пружины.



Уравнение движения.

У равнение движения для этой и других подобных систем, в которых наряду с возвращающей силой и силой сопротивления на осциллятор действует вынуждающая внешняя сила, синусоидально изменяющаяся со временем, можно записать в видеЗдесь левая часть в соответствии со вторым законом Ньютона, является произведением массы на ускорение. Первый член в правой части представляет собой возвращающую силу, пропорциональную смещению из положения равновесия. Для подвешенного на пружине груза это упругая сила, а во всех других случаях, когда ее физическая природа иная, эту силу называют квазиупругой. Второе слагаемое есть сила трения, пропорциональная скорости, например сила сопротивления воздуха или сила трения в оси. Амплитуду и частоту со раскачивающей систему вынуждающей силы будем считать постоянными.Разделим обе части уравнения на массу и введем обозначенияВ отсутствие вынуждающей силы правая часть уравнения обращается в нуль и оно, как и следовало ожидать, сводится к уравнению собственных затухающих колебаний.Опыт показывает, что во всех системах под действием синусоидальной внешней силы в конце концов устанавливаются колебания, которые также происходят по синусоидальному закону с частотой вынуждающей силы со и с постоянной амплитудой а, но с некоторым сдвигом по фазе относительно вынуждающей силы. Такие колебания называются установившимися вынужденными колебаниями.Установившиеся колебания. Рассмотрим вначале именно установившиеся вынужденные колебания, причем для простоты пренебрежем трением. В этом случае в уравнении не будет члена, содержащего скорость.Попробуем искать решение, соответствующее установившимся вынужденным колебаниям, в видеВычислим вторую производную и подставим ее вместе в уравнениеЧтобы это равенство было справедливо в любой момент времени, коэффициенты при слева и справа должны быть одинаковы. Из этого условия находим амплитуду колебаний. Исследуем зависимость амплитуды а от частоты со вынуждающей силы. График этой зависимости показан на рис. 179. Подставив сюда значения, видим, что постоянная во времени сила просто смещает осциллятор в новое положение равновесия, сдвинутое от старого. Из следует, что при смещениеФазовые соотношения. По мере роста частоты со вынуждающей силы от установившиеся коле- рис. 179. график зависимости происходят в фазе с вынуждающей силой, а их амплитуда постоянно увеличивается, сначала медленно, а по мере приближения к все быстрее и быстрее при амплитуда колебаний неограниченно возрастает.При значениях, превосходящих частоту собственных колебаний, формула дает для а отрицательное значение (рис. 179). Из формулы ясно, что при колебания происходят в противофазе с вынуждающей силой: когда сила действует в одну сторону, осциллятор смещен в противоположную. При неограниченном увеличении частоты вынуждающей силы амплитуда колебаний стремится к нулю.

Амплитуду колебаний во всех случаях удобно считать положительной, чего легко добиться, вводя сдвиг фаз между вынуждающей Здесь а по-прежнему дается формулой, а сдвиг фазы равен нулю при. Графики зависимости от частоты вынуждающей силы показаны на рис. 180.



Резонанс.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы имеет немонотонный характер. Резкое увеличение амплитуды вынужденных колебаний при приближении частоты со вынуждающей силы к собственной частоте со0 осциллятора называется резонансом.Формула дает выражение для амплитуды вынужденных колебаний в пренебрежении трением. Именно с этим пренебрежением связано обращение амплитуды колебаний в бесконечность при точном совпадении частот. Реально амплитуда колебаний в бесконечность, конечно же, обращаться не может.Это означает, что при описании вынужденных колебаний вблизи резонанса учет трения принципиально необходим. При учете трения амплитуда вынужденных колебаний при резонансе получается конечной. Она будет тем меньше, чем больше трение в системе. Вдали от резонанса формулой можно пользоваться для нахождения амплитуды колебаний и при наличии трения, если оно не слишком сильное. Более того, эта формула, полученная без учета трения, имеет физический смысл только тогда, когда трение все же есть. Дело в том, что само понятие установившихся вынужденных колебаний применимо только к системам, в которых есть трение.

Если бы трения совсем не было, то процесс установления колебаний продолжался бы бесконечно долго. Реально это означает, что полученное без учета трения выражение для амплитуды вынужденных колебаний будет правильно описывать колебания в системе только спустя достаточно большой промежуток времени после начала действия вынуждающей силы. Слова «достаточно большой промежуток времени» означают здесь, что уже закончился переходный процесс, длительность которого совпадает с характерным временем затухания собственных колебаний в системе. При малом трении установившиеся вынужденные колебания происходят в фазе с вынуждающей силой при со и в противофазе при, как и в отсутствие трения. Однако вблизи резонанса фаза меняется не скачком, а непрерывно, причем при точном совпадении частот смещение отстает по фазе от вынуждающей силы на (на четверть периода). Скорость изменяется при этом в фазе с вынуждающей силой, что обеспечивает наиболее благоприятные условия для передачи энергии от источника внешней вынуждающей силы к осциллятору.

Какой физический смысл имеет каждый из членов в уравнении, описывающем вынужденные колебания осциллятора?

Что такое установившиеся вынужденные колебания?

При каких условиях можно использовать формулу для амплитуды установившихся вынужденных колебаний, полученную без учета трения?

Что такое резонанс? Приведите известные вам примеры проявления и использования явления резонанса.

Опишите сдвиг по фазе между вынуждающей силой и смешением при разных соотношениях между частотой в вынуждающей силы и собственной частотой осциллятора.

Чем определяется длительность процесса установления вынужденных колебаний? Дайте обоснование ответа.



Векторные диаграммы.

Убедиться в справедливости приведенных выше утверждений можно, если получить решение уравнения, описывающее установившиеся вынужденные колебания при наличии трения. Поскольку установившиеся колебания происходят с частотой вынуждающей силы со и некоторым сдвигом по фазе, то решение уравнения, соответствующее таким колебаниям, следует искать в видеПри этом скорость и ускорение, очевидно, тоже будут изменяться со временем по гармоническому закону.Амплитуду а установившихся вынужденных колебаний и сдвиг фазы удобно определять с помощью векторных диаграмм. Воспользуемся тем обстоятельством, что мгновенное значение любой изменяющейся по гармоническому закону величины можно представить как проекцию вектора на некоторое заранее выбранное направление, причем сам вектор равномерно вращается в плоскости с частотой со, а его неизменная длина равна амплитудному значению этой осциллирующей величины. В соответствии с этим сопоставим каждому члену уравнения вращающийся с угловой скоростью вектор, длина которого равна амплитудному значению этого члена.Поскольку проекция суммы нескольких векторов равна сумме проекций этих векторов, то уравнение означает, что сумма векторов, сопоставляемых членам, стоящим в левой части, равна вектору, сопоставляемому величине, стоящей в правой части. Чтобы построить эти векторы, выпишем мгновенные значения всех членов левой части уравнения, учитывая соотношения.Из формул видно, что вектор длины, сопоставляемый величине, опережает на угол вектор, сопоставляемый величине. Вектор длины, сопоставляемый члену, опережает на вектор длины. эти векторы направлены в противоположные стороны.


Взаимное расположение этих векторов для произвольного момента времени показано на рис. 181. Вся система векторов вращается как целое с угловой скоростью со против часовой стрелки вокруг точки. Мгновенные значения всех величинполучаются проецированием соответствующих векторов на заранее выбранное направление. Вектор, сопоставляемый правой части уравнения, равен сумме векторов, изображенных на рис. 181. Это сложение показано на рис. 182. Применяя теорему Пифагора, получаем откуда находим амплитуду установившихся вынужденных колебаний.Сдвиг фазы между вынуждающей силой и смещением, как видно из векторной диаграммы на рис. 182, отрицателен, так как вектор длины отстает от вектора. ПоэтомуИтак, установившиеся вынужденные колебания происходят по гармоническому закону, где определяются формулами.



Резонансные кривые.

Амплитуда установившихся вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Исследуем зависимость амплитуды колебаний от частоты со вынуждающей силы. При малом затухании у эта зависимость имеет очень резкий характер. Если, то при стремлении со к частоте свободных колебаний амплитуда вынужденных колебаний а стремится к бесконечности, что совпадает с полученным ранее результатом. При наличии затухания амплитуда колебаний в резонансе уже не обращается в бесконечность, хотя и значительно превышает амплитуду колебаний под действием внешней силы той же величины, но имеющей частоту, далекую от резонансной. Резонансные кривые при разных значениях постоянной затухания у приведены на рис. 183.

Для нахождения частоты резонанса сорез, нужно найти, при каком со подкоренное выражение в формуле имеет минимум. Приравнивая производную этого выражения по со нулю или дополняя его до полного квадрата, убеждаемся, что максимум амплитуды вынужденных колебаний имеет место при Резонансная частота оказывается меньше частоты свободных колебаний системы. При малых у резонансная частота практически совпадает. При стремлении частоты вынуждающей силы к бесконечности при, амплитуда а, как видно, стремится к нулю при действии постоянной внешней силы. Это есть статическое смещение осциллятора из положения равновесия под действием постоянной силы.Максимальная амплитуда. Амплитуду вынужденных колебаний в резонансе находим, подставляя частоту из в выражение.Амплитуда колебаний в резонансе тем больше, чем меньше постоянная затухания. При изучении вынужденных колебаний вблизи резонанса трением пренебрегать нельзя, как бы мало оно ни было: только при учете затухания амплитуда в резонансе яре, получается конечной.Интересно сравнить значение со статическим смещением под действием силы. Составляя отношение, получаем при малом затуханииПодставляя сюда и учитывая, что есть время жизни собственных затухающих колебаний для той же системы в отсутствие внешних сил, находимНо есть число колебаний, совершаемых затухающим осциллятором за время жизни колебаний. Таким образом, резонансные свойства системы характеризуются тем же параметром, что и собственные затухающие колебания.Фазовые соотношения. Формула дает возможность проанализировать изменение сдвига фазы между внешней силой и смещением, при вынужденных колебаниях. При значение д близко к нулю. Это означает, что при низких частотах смещение осциллятора происходит в фазе с внешней силой. При медленном вращении кривошипа на рис. 178 маятник движется в такт с правым концом шатуна.Если стремится к нулю со стороны отрицательных значений,сдвиг фазы равен и смещение осциллятора происходит в противофазе с вынуждающей силой. В резонансе, как видно из, смещение отстает по фазе от внешней силы. Вторая из формул показывает, что при этом внешняя сила изменяется в фазе со скоростью все время действует в направлении движения. Что именно так и должно быть, ясно из интуитивных соображений.Резонанс скорости. Из формулы видно, что амплитуда колебаний скорости при установившихся вынужденных колебаниях равна. С помощью получаемЗависимость амплитуды скорости от частоты внешней силы показана на рис. 184. Резонансная кривая для скорости хотя и похожа на резонансную кривую для смещения, но отличается от нее в некоторых отношениях. Так, при при действии постоянной силы, осциллятор испытывает статическое смещение из положенияравновесия и скорость его после того, как закончится переходный процесс, равна нулю. Из формулы видно, что амплитуда скорости при обращается в нуль. Резонанс скорости имеет место при точном совпадении частоты внешней силы с частотой свободных колебаний.

Метод комплексных амплитуд

Положение точки на плоскости можно однозначно задать комплексным числом:

Если точка ($А$) вращается, то координаты этой точки изменяются в соответствии с законом:

запишем $z$ в виде:

где $Re(z)=x$, то есть физическая величина x равна вещественной части комплексного выражения (4). При этом модуль комплексного выражения равен амплитуде колебаний -- $a$, его аргумент равен фазе (${\omega }_0t+\delta $). Иногда при взятии реальной части от $z$ знак операции Re опускают и получают символическое выражение:

Выражение (5) не следует принимать буквально. Часто формально упрощают (5):

где $A=ae^{i \delta}$ -- комплексная амплитуда колебания. Комплексный характер амплитуды $А$ обозначает, что колебание имеет начальную фазу неравную нулю.

Для того чтобы раскрыть физический смысл выражения типа (6), предположим, что частота колебаний (${\omega }_0$) имеет вещественную и мнимую части, и ее можно представить как:

Тогда выражение (6) можно записать как:

В том случае, если ${\omega }2>0,$ то выражение (8) описывает затухающие гармонические колебания с круговой частотой $\omega1$ и показателем затухания ${\omega }_2$. Если ${\omega }_2

Замечание

Над комплексными величинами можно проводить многие математические операции так, как будто величины являются вещественными. Операции возможны, если они сами линейны и вещественны (такими являются сложение, умножение, дифференцирование по вещественной переменной и другие, но не все). Надо помнить, что комплексные величины сами по себе не соответствуют никаким физическим величинам.

Метод векторных диаграмм

Пусть точка $A$ равномерно вращается по окружности радиуса $r$ (рис.1), скорость ее вращения ${\omega }_0$.

Рисунок 1.

Положение точки $А$ на окружности можно задать с помощью угла $\varphi $. Этот угол равен:

где $\delta =\varphi (t=0)$ величина угла поворота радиус-вектора $\overrightarrow{r}$ в начальный момент времени. Если точка $М$ вращается, то ее проекция на $ось X$ движется по диаметру окружности, совершая гармонические колебания между точками $М$ $N$. Абсциссу точки $А$ можно записать как:

Подобным способом можно представлять колебания любых величин.

Необходимо только принять изображение величины, которая совершает колебания абсциссой точки $А$, которая равномерно вращается по окружности. Можно, конечно использовать и ординату:

Замечание 1

Для того чтобы представлять затухающие колебания, надо брать не окружность, а логарифмическую спираль, которая приближается к фокусу. Если скорость приближения движущейся по спирали точки постоянна и очка движется к фокусу, то проекция этой точки на $ось X$ даст формулы затухающих колебаний.

Замечание 2

Вместо точки можно использовать радиус-вектор, который будет равномерно вращаться вокруг начала координат. Тогда величина, которая совершает гармонические колебания, будет изображаться как проекция этого вектора на $ось X$. При этом математические операции над величиной $x$ заменяют операциями над вектором.

Так операцию суммирования двух величин:

удобнее заменить суммированием двух векторов (используя правило параллелограмма). Векторы выбрать так, что их проекции на избранную $ось X$ являются выражениями $x_1\ и\ x_2$. Тогда результат операции суммирования векторов в проекции на ось абсцисс будет равен $x_1+\ x_2$.

Пример 1

Продемонстрируем применение метода векторных диаграмм.

Итак, представим комплексные числа векторами на комплексной плоскости. Величина, изменяющаяся по гармоническому закону, изображена вектором, который вращается с частотой ${\omega }0$ вокруг своего начала против часовой стрелки. Длина вектора равна амплитуде колебаний.

Графический метод решения, например, уравнения:

где $Z=R+i(\omega L-\frac{1}{\omega C})$ -- импеданс, представим с помощью рис.2. На этом рисунке изображена векторная диаграмма напряжений в цепи переменного тока.

Рисунок 2.

Учтем, что умножение комплексной величины на комплексную единицу означает ее поворот на угол $90^0$ против часовой стрелки, а умножение на ($-i$) на тот же угол по часовой стрелке. Из рис.2 ледует, что:

где $-\frac{\pi }{2}\le \varphi \le \frac{\pi }{2}.$ Изменение угла $\varphi $ зависит от соотношения между импедансами элементов цепи и частотами. Внешнее напряжение может изменяться по фазе, от совпадающего с напряжением на индуктивности, до совпадающего с напряжением на емкости. Выражается это обычно в виде отношения между фазами напряжений на элементах цепи и фазой внешнего напряжения:

    Фаза напряжения на индуктивности ${(U}L=i\omega LI)$ всегда опережает фазу внешнего напряжения на угол от $0$ до $\pi .$

    Фаза напряжения на емкости ${(U}C=-\frac{iI}{\omega C}$) всегда отстает от фазы внешнего напряжения на угол между $0$ и --$\ \pi .$

    При этом фаза на сопротивлении может как опережать, так и отставать от фазы внешнего напряжения на угол между- $\frac{\pi }{2}$ и $\frac{\pi }{2}$.

Векторная диаграмма (рис.2) позволяет сформулировать следующее:

    Фаза напряжения на индуктивности опережает фазу силы тока на $\frac{\pi }{2}$.

    Фаза напряжения на емкости отстает на $\frac{\eth }{2}\ $от фазы силы тока.

    Фаза напряжения на сопротивлении совпадает с фазой силы тока.

Пример 2

Задание: Продемонстрируйте то, что операцию возведения в квадрат нельзя применять к комплексным величинам как к вещественным числам.

Решение:

Допустим, что надо возвести в квадрат вещественное число $x$. Правильный ответ: $x^2$. Формально применим комплексный метод. Произведем замену:

$x\to x+iy$. Возведем полученное выражение в квадрат, получим:

\[{\left(x+iy\right)}^2=x^2-y^2+2xyi\ \left(2.1\right).\]

Вещественная часть выражения (2.1) равна:

\[{Re\left(x+iy\right)}^2=Re\left(x^2-y^2+2xyi\right)=x^2-y^2\ne x^2.\]

Причина ошибки в том, что операция возведения в квадрат не является линейной.

Векторная диаграмма. Сложение колебаний.

Решение ряда задач теории колебаний значительно облегчается и становится более наглядным, если изображать колебания графически, используя метод векторных диаграмм. Выберем некоторую ось х . Из точки 0 на оси отложим вектор длины , образующий вначале с осью угол (рис.2.14.1). Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора на ось х будет изменяться с течением времени по закону

.

Следовательно, проекция конца вектора на ось будет совершать гармоническое колебание с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, который образует вектор с осью в начальный момент времени. Угол, образованный вектором с осью в данный момент времени определяет фазу колебания в этот момент - .

Из сказанного следует, что гармоническое колебание можно представить с помощью вектора, длина которого равна амплитуде колебания, а направление его образует с некоторой осью угол, равный фазе колебания. В этом и состоит суть метода векторных диаграмм.

Сложение колебаний одинакового направления.

Рассмотрим сложение двух гармонических колебаний, направления которых параллельны:

. (2.14.1)

Результирующее смещение х будет суммой и . Это будет колебание с амплитудой .

Воспользуемся методом векторных диаграмм (рис.2.14.2). На рисунке , и - фазы результирующего и складываемых колебаний соответственно. Легко видеть, что можно найти сложением векторов и . Однако, если частоты складываемых колебаний различны, то результирующая амплитуда меняется с течением времени по величине и вектор вращается с непостоянной скоростью, т.е. колебание не будет гармоническим, а будет представлять некоторый сложный колебательный процесс. Чтобы результирующее колебание было гармоническим, частоты складываемых колебаний должны быть одинаковы

и результирующее колебание происходит с той же частотой

.

Из построения видно, что

Проанализируем выражение (2.14.2) для амплитуды результирующего колебания. Если разность фаз складываемых колебаний равна нулю (колебания синфазны), амплитуда равна сумме амплитуд складываемых колебаний , т.е. имеет максимальное из возможных значение . Если разность фаз составляет (колебания находятся в противофазе), то результирующая амплитуда равна разности амплитуд , т.е. имеет минимальное из всех возможных значение .

Сложение взаимно перпендикулярных колебаний.

Пусть частица совершает два гармонических колебания с одной и той же частотой: одно вдоль направления, которое обозначим х , другое – в перпендикулярном направлении y . В этом случае частица будет двигаться по некоторой, в общем случае, криволинейной траектории, форма которой зависит от разности фаз колебаний.

Выберем начало отсчета времени так, чтобы начальная фаза одного колебания была равна нулю:

. (2.14.3)

Чтобы получить уравнение траектории частицы, нужно из (2.14.3) исключить t . Из первого уравнения , а. значит, . Второе уравнение перепишем

или

.

Перенеся первое слагаемое из правой части уравнения в левую, возведя полученное уравнение в квадрат и проведя преобразования, получим

. (2.14.4)

Это уравнение представляет собой уравнение эллипса, оси которого повернуты относительно осей х и y на некоторый угол. Но в некоторых частных случаях получают более простые результаты.

1. Разность фаз равна нулю. Тогда из (2.14.4) получим

или . (2.14.5)

Это уравнение прямой (рис.2.14.3). Таким образом, частица совершает колебания вдоль этой прямой с частотой и амплитудой, равной .


Выберем ось . Из точки О, взятой на этой оси, отложим вектор длины , образующий с осью угол . Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора на ось будет меняться со временем по закону . Следовательно, проекция конца вектора на ось будет совершать гармонические колебания с амплитудой, равной длине вектора; с круговой частотой, равной угловой скорости вращения, и с начальной фазой, равной углу, образованному вектором с осью X в начальный момент времени.

Векторная диаграмма дает возможность свести сложение колебаний к геометрическому суммированию векторов. Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты, которые имеют следующий вид:

Представим оба колебания с помощью векторов и (рис. 7.5). Построим по правилу сложения векторов результирующий вектор . Легко увидеть, что проекция этого вектора на ось равна сумме проекций слагаемых векторов . Следовательно, вектор представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью , что и векторы , , так что результирующее движение будет гармоническим колебанием с частотой , амплитудой и начальной фазой . По теореме косинусов квадрат амплитуды результирующего колебания будет равен

Итак, представление гармонических колебаний посредством векторов дает возможность свести сложение нескольких колебаний к операции сложения векторов. Формулы (7.3) и (7.4) можно, конечно, получить, сложив выражения для и аналитически, но метод векторной диаграммы отличается большей простотой и наглядностью.

ЗАТУХАЮЩИЕ КОЛЕБАНИЯ

Во всякой реальной колебательной системе имеются силы сопротивления, действие которых приводит к уменьшению энергии системы. Если убыль энергии не восполняется за счет работы внешних сил, колебания будут затухать. В простейшем, и вместе с тем наиболее часто встречающемся, случае сила сопротивления пропорциональна величине скорости:

,

где r – постоянная величина, называемая коэффициентом сопротивления. Знак минус обусловлен тем, что сила и скорость имеют противоположные направления; следовательно, их проекции на ось X имеют разные знаки. Уравнение второго закона Ньютона при наличии сил сопротивления имеет вид:

.

Применив обозначения , , перепишем уравнение движения следующим образом:

.

Это уравнение описывает затухающие колебания системы. Коэффициент называется коэффициентом затухания.

Экспериментальный график затухающих колебаний при малом коэффициенте затухания представлен на рис. 7.6. Из рис. 7.6 видно, что график зависимости выглядит как косинус, умноженный на некоторую функцию, которая убывает со временем. Эта функция представлена на рисунке штриховыми линиями. Простой функцией, которая ведет себя подобным образом, является экспоненциальная функция . Поэтому решение можно записать в виде:

,

где – частота затухающих колебаний.

Величина x периодически проходит через нуль и бесконечное число раз достигает максимума и минимума. Промежуток времени между двумя последовательными прохождениями через нуль равен . Удвоенное его значение называется периодом колебаний .

Множитель , стоящий перед периодической функцией , называется амплитудой затухающих колебаний . Она экспоненциально убывает со временем. Скорость затухания определяется величиной . Время, по истечении которого амплитуда колебаний уменьшается в раз, называется временем затухания . За это время система совершает колебаний. Затухание колебаний принято характеризовать логарифмическим декрементом затухания. Логарифмическим декрементом затухания называется логарифм отношения амплитуд в моменты последовательных прохождений колеблющейся величины через максимум или минимум:

.

Он связан с числом колебаний соотношением:

Величина называется добротностью колебательной системы . Добротность тем выше, чем большее число колебаний успевает совершить система прежде, чем амплитуда уменьшится в раз.

Постоянные величины и , как и в случае гармонических колебаний, можно определить из начальных условий.

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными. Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил сопротивления.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω 0 . Например, если дергать груз, подвешенный на пружине с частотой , то он будет совершать гармонические колебания с частотой внешней силы , даже если эта частота не совпадает с частотой собственных колебаний пружины.

Пусть на систему действует периодическая внешняя сила . В этом случае можно получить следующее уравнение, описывающее движение такой системы:

, (7.5)

где . При вынужденных колебаниях амплитуда колебаний, а, следовательно, и энергия, передаваемая колебательной системе, зависят от соотношения между частотами и , а также от коэффициента затухания .

После начала воздействия внешней силы на колебательную систему необходимо некоторое время ωt для установления вынужденных колебаний. В начальный момент в колебательной системе возбуждаются оба процесса – вынужденные колебания на частоте ω и свободные колебания на собственной частоте ω 0 . Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте ω внешней вынуждающей силы. Время установления по порядку величины равно времени затухания ω свободных колебаний в колебательной системе. Установившиеся вынужденные колебания груза на пружине происходят по гармоническому закону с частотой, равной частоте внешнего воздействия. Можно показать, что в установившемся режиме решение уравнения (7.6) записывается в виде:

,

,
.

Таким образом, вынужденные колебания представляют собой гармонические колебания с частотой, равной частоте вынуждающей силы. Амплитуда вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Для данной колебательной системы (то есть системы с определенными значениями и ) амплитуда зависит от частоты вынуждающей силы. Вынужденные колебания отличаются по фазе от вынуждающей силы. Сдвиг по фазе зависит от частоты вынуждающей силы.

РЕЗОНАНС

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы приводит к тому, что при некоторой определенной для данной системы частоте амплитуда колебаний достигает максимального значения. Колебательная система оказывается особенно отзывчивой на действие вынуждающей силы при этой частоте. Это явление называется резонансом , а соответствующая частота – резонансной частотой. Графически зависимость амплитуды x m вынужденных колебаний от частоты ω вынуждающей силы описывается резонансной кривой (рис. 7.9).

Исследуем поведение амплитуды вынужденных колебаний в зависимости от частоты . Оставляя амплитуду вынуждающей силы неизменной, будем менять ее частоту. При получаем статическое отклонение под действием постоянной силы :

При возрастании частоты амплитуда смещения сначала также возрастает, затем проходит через максимум и, наконец, асимптотически стремится к нулю. Из рис. 7.9 видно также, что чем меньше , тем выше и правее лежит максимум данной кривой. Кроме того, чем меньше , тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем острее получается максимум.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей внешней силы. С явлением резонанса приходится считаться при конструировании машин и различного рода сооружений. Собственная частота этих устройств ни в коем случае не должна быть близка к частоте возможных внешних воздействий.

Примеры

В январе 1905г. в Петербурге обрушился Египетский мост. Повинны в этом были 9 прохожих, 2 извозчика и 3-й эскадрон Петергофского конногвардейского полка. Произошло следующее. Все солдаты ритмично шагали по мосту. Мост от этого стал раскачиваться – колебаться. По случайному стечению обстоятельств собственная частота колебаний моста совпала с частотой шага солдат. Ритмичный шаг строя сообщал мосту все новые и новые порции энергии. В результате резонанса мост настолько раскачался, что обрушился. Если бы резонанса собственной частоты колебаний моста с частотой шага солдат не было, с мостом ничего бы не случилось. Поэтому при прохождении солдат по слабым мостам принято подавать команду «сбить ногу».

Говорят, что великий тенор Энрико Карузо мог заставить стеклянный бокал разлететься вдребезги, спев в полный голос ноту надлежащей высоты. В этом случае звук вызывает вынужденные колебания стенок бокала. При резонансе колебания стенок могут достичь такой амплитуды, что стекло разбивается.

Проделайте опыты

Подойдите к какому-нибудь струнному музыкальному инструменту и громко крикните «а»: какая-то из струн отзовется – зазвучит. Та из них, которая окажется в резонансе с частотой этого звука, будет колебаться сильнее остальных струн – она-то и отзовется на звук.

Натяните горизонтально нетолстую веревку. Закрепите на ней маятник из нити и пластилина. Перекиньте через веревку еще один такой же маятник, но с более длинной ниткой. Длину подвески этого маятника можно изменять, подтягивая рукой свободный конец нитки. Приведите этот маятник в колебательное движение. При этом первый маятник тоже станет колебаться, но с меньшей амплитудой. Не останавливая колебаний второго маятника, постепенно уменьшайте длину его подвески – амплитуда колебаний первого маятника будет увеличиваться. В этом опыте, иллюстрирующем резонанс механических колебаний, первый маятник является приемником колебаний, возбуждаемых вторым маятником. Причиной, вынуждающей первый маятник колебаться, являются периодические колебания веревки с частотой, равной частоте колебаний второго маятника. Вынужденные колебания первого маятника будут иметь максимальную амплитуду лишь тогда, когда его собственная частота совпадает с частотой колебаний второго маятника.

АВТОКОЛЕБАНИЯ

Многочисленны и многообразны создания рук человеческих, в которых возникают и используются автоколебания. Прежде всего, это различные музыкальные инструменты. Уже в глубокой древности – рога и рожки, дудки, свистульки, примитивные флейты. Позже – скрипки, в которых для возбуждения звука используется сила трения между смычком и струной; различные духовые инструменты; гармонии, в которых звук производят металлические язычки, колеблющиеся под действием постоянного потока воздуха; органы, из труб которых вырываются через узкие щели резонирующие столбы воздуха.

Рис. 7.12

Хорошо известно, что сила трения скольжения практически не зависит от скорости. Однако именно благодаря очень слабой зависимости силы трения от скорости звучит скрипичная струна. Качественный вид зависимости силы трения смычка о струну показан на рис. 7.12. Благодаря силе трения покоя струна захватывается смычком и смещается из положения равновесия. Когда сила упругости превысит силу трения, струна оторвется от смычка и устремится к положению равновесия со все возрастающей скоростью. Скорость струны относительно движущегося смычка будет возрастать, сила трения увеличится и в определенный момент станет достаточной для захвата струны. Затем процесс повторится вновь. Таким образом, движущийся с постоянной скоростью смычок вызовет незатухающие колебания струны.

В струнных смычковых инструментах автоколебания поддерживаются силой трения, действующей между смычком и струной, а в духовых инструментах продувание струи воздуха поддерживает автоколебания столба воздуха в трубе инструмента.

Более чем в ста греческих и латинских документах разных времен упоминается пение знаменитого «мемнонского колосса» – величественного звучащего изваяния одного из фараонов, правившего в XIV веке до нашей эры, установленного вблизи египетского города Луксора. Высота статуи около 20 метров, масса достигает тысячи тонн. В нижней части колосса обнаружен ряд щелей и отверстий с расположенными за ними камерами сложной формы. «Мемнонский колосс» представляет собой гигантский орган, звучащий под воздействием естественных потоков воздуха. Статуя имитирует голос человека.

Природные автоколебания несколько экзотического свойства представляют собой поющие пески. Еще в XIV веке великий путешественник Марко Поло упоминал о «звучащих берегах» таинственного озера Лоб-Нор в Азии. За шесть веков поющие пески были обнаружены в различных местах всех континентов. У местного населения они в большинстве случаев вызывают страх, являются предметом легенд и преданий. Джек Лондон так описывает встречу с поющими песками персонажей романа «Сердца трех», отправившихся с проводником на поиски сокровищ древних майя.

«"Когда боги смеются, берегись!" – предостерегающе крикнул старик. Он начертил пальцем круг на песке и, пока он чертил, песок выл и визжал; затем старик опустился на колени, песок взревел и затрубил».

Есть поющие пески и даже целая поющая песчаная гора неподалеку от реки Или в Казахстане. Почти на 300 метров поднялась гора Калкан – гигантский природный орган. По-разному называют ее люди: «поющий бархан», «поющая гора». Сложена она из песка светлых тонов и на фоне темных отрогов Джунгарского Алатау Большого и Малого Калканов представляет необычайное зрелище благодаря цветовому контрасту. При ветре и даже при спуске с нее человека гора издает мелодичные звуки. После дождя и во время штиля гора безмолвствует. Туристы любят посещать Поющий бархан и, поднявшись на одну из трех его вершин, любоваться открывшейся панорамой Или и хребта Заилийского Алатау. Если гора молчит, нетерпеливые посетители «заставляют ее петь». Для этого надо быстро сбежать по наклону горы, песчаные струйки побегут из-под ног, и из недр бархана возникнет гудение.

Много веков прошло со времени обнаружения поющих песков, а удовлетворительного объяснения этому поразительному феномену не было предложено. В последние годы за дело принялись английские акустики, а также советский ученый В.И. Арабаджи. Арабаджи предположил, что излучающий звук верхний слой песка движется при каком-либо постоянном возмущении по нижнему, более твердому слою, имеющему волнистый профиль поверхности. Вследствие сил трения при взаимном перемещении слоев и возбуждается звук.


Вынужденные колебания – это незатухающие колебания. Неизбежные потери энергии на трение при вынужденных колебаниях компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными, а процесс незатухающих колебаний в таких системах – автоколебаниями. Схематично автоколебательную систему можно представить в виде источника энергии, осциллятора с затуханием и устройства обратной связи между колебательной системой и источником (рис. 7.10).

В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов). Источником энергии может служить деформированная пружина или груз в поле тяготения. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника.

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 7.11). В часах с анкерным ходом ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник – балансиром, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир, источником энергии – поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

В обыденной жизни мы, возможно, сами того не замечая, встречаемся с автоколебаниями чаще, чем с колебаниями, вызванными периодическими силами. Автоколебания окружают нас повсюду в природе и технике: паровые машины, двигатели внутреннего сгорания, электрические звонки, часы, звучащая скрипичная струна или органная труба, бьющееся сердце, голосовые связки при разговоре или пении – все эти системы совершают автоколебания.

Проделайте опыт!

Рис. 7.13

Колебательное движение обычно изучают, рассматривая поведение какого-нибудь маятника: пружинного, математического или физического. Все они представляют собой твердые тела. Можно создать устройство, демонстрирующее колебания жидких или газообразных тел. Для этого воспользуйтесь идеей, заложенной в конструкцию водяных часов. Две полуторалитровые пластиковые бутылки соединяют так же, как и в водяных часах, скрепив крышки. Полости бутылок соединяют стеклянной трубкой длиной 15 сантиметров, внутренним диаметром 4-5 миллиметров. Боковые стенки бутылок должны быть ровными и нежесткими, легко сминаться при сдавливании (см. рис. 7.13).

Для запуска колебаний бутылку с водой располагают сверху. Вода из нее начинает сразу же вытекать через трубку в нижнюю бутылку. Примерно через секунду струя самопроизвольно перестает течь и уступает проход в трубке для встречного продвижения порции воздуха из нижней бутылки в верхнюю. Порядок прохождения встречных потоков воды и воздуха через соединительную трубку определяется разницей давлений в верхней и нижней бутылках и регулируется автоматически.

О колебаниях давления в системе свидетельствует поведение боковых стенок верхней бутылки, которые в такт с выпуском воды и впуском воздуха периодически сдавливаются и расширяются. Поскольку

ОБРАЗОВАНИЕ ВОЛН

Как происходит распространение колебаний? Необходима среда для передачи колебаний или они могут передаваться без нее? Как звук от звучащего камертона доходит до слушателя? Каким образом быстропеременный ток в антенне радиопередатчика вызывает появление тока в антенне приемника? Как свет от далеких звезд достигает нашего глаза? Для рассмотрения подобного рода явлений необходимо ввести новое физическое понятие – волна. Волновые процессы представляют общий класс явлений, несмотря на их разную природу.

Источниками волн, будь то морские волны, волны в струне, волны землетрясений или звуковые волны в воздухе, являются колебания. Процесс распространения колебаний в пространстве называется волной. Например, в случае звука колебательное движение совершает не только источник звука (струна, камертон), но также и приемник звука – барабанная перепонка уха или мембрана микрофона. Колеблется и сама среда, через которую распространяется волна.

Волновой процесс обусловлен наличием связей между отдельными частями системы, в зависимости от которых мы имеем упругую волну той или иной природы. Процесс, протекающий в какой-либо части пространства, вызывает изменения в соседних точках системы, передавая им некоторое количество энергии. От этих точек возмущение переходит к смежным с ними и так далее, распространяясь от точки к точке, то есть создавая волну.

Упругие силы, действующие между элементами любого твердого, жидкого или газообразного тела, приводят к возникновению упругих волн. Примером упругих волн является волна, распространяющаяся по шнуру. Если движением руки вверх-вниз возбудить колебания конца шнура, то соседние участки шнура, за счет действия упругих сил связи, также придут в движение, и вдоль шнура будет распространяться волна. Общим свойством волн является то, что они могут распространяться на большие расстояния, а частицы среды совершают колебания лишь в ограниченной области пространства. Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. В зависимости от направления колебаний частиц среды по отношению к направлению распространения волны различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны; в поперечной – перпендикулярно к направлению распространения волны. Упругие поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн.

На рис. 8.1 показано движение частиц при распространении в среде поперечной волны и расположение частиц в волне в четыре фиксированных момента времени. Номерами 1, 2 и т.д. обозначены частицы, отстоящие друг от друга на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1 , вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения; одновременно начинает смещаться из положения равновесия частица 2 . По прошествии еще четверти периода первая частица будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнет смещаться вверх из положения равновесия. В момент времени, равный , первая частица закончит полное колебание и будет находиться в таком же состоянии движения, как и в начальный момент. Волна к моменту времени достигнет частицы 5 .

На рис. 8.2 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведения частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево. Из рис. 8.2 видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разрежения частиц, перемещающиеся в направлении распространения волны со скоростью .

Тела, которые воздействуют на среду, вызывая колебания, называются источниками волн. Распространение упругих волн не связано с переносом вещества, но волны переносят энергию, которой обеспечивает волновой процесс источник колебаний.

Геометрическое место точек, до которых доходят возмущения к данному моменту времени, называется фронтом волны. То есть фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченного в волновой процесс, от области, которую возмущения еще не достигли.

Геометрическое место точек, колеблющихся в одинаковых фазах, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновые поверхности могут иметь любую форму. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей; в сферической волне – множество концентрических сфер.

Расстояние, на которое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны. Очевидно, что , где – скорость распространения волны.

На рис. 8.3, выполненным с помощью компьютерной графики, приведена модель распространения поперечной волны на воде от точечного источника. Каждая частица совершает гармонические колебания около положения равновесия.

Рис. 8.3. Распространение поперечной волны от точечного источника колебаний


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей