Колебания периодические. Механические колебания

Многое из физики иногда остаётся непонятным. И дело не всегда в том, что человек просто мало прочитал по этой теме. Иногда материал дан так, что понять его человеку, не знакомому с основами физики, просто невозможно. Одним довольно интересным разделом, который не всегда люди понимают с первого раза и способны осмыслить, являются периодические колебания. Прежде чем объяснить теорию периодических колебаний, поговорим немного об истории обнаружения этого явления.

История

Теоретические основы периодических колебаний были известны ещё в древнем мире. Люди видели, как равномерно двигаются волны, как вращаются колёса, проходя через определённый промежуток времени через одну и ту же точку. Именно из этих простых, на первый взгляд, явлений пошло понятие колебаний.

Первых свидетельств описания колебаний не сохранилось, однако доподлинно известно, что один из самых распространённых их видов (а именно электромагнитные) теоретически предсказал Максвелл в 1862 году. Через 20 лет его теория получила подтверждение. Тогда провёл серию опытов, доказывающих существование электромагнитных волн и наличие определённых свойств, присущих только им. Как оказалось, свет также является электромагнитной волной и подчиняется всем соответствующим законам. За несколько лет до Герца нашёлся человек, который продемонстрировал научному обществу генерацию электромагнитных волн, но в силу того, что он не был силён в теории так же, как Герц, не смог доказать, что успех опыта объясняется именно колебаниями.

Мы немного отошли от темы. В следующем разделе рассмотрим основные примеры периодических колебаний, которые мы можем встретить в повседневной жизни и в природе.

Виды

Эти явления происходят везде и постоянно. И кроме уже приведённых в пример волн и вращения колёс, мы можем заметить периодические колебания в нашем организме: сокращения сердца, движение лёгких и так далее. Если увеличивать масштаб и переходить к более крупным объектам, чем наши органы, можно увидеть колебания и в такой науке, как биология.

Примером могут служить периодические колебания численности популяций. В чём смысл этого явления? В любой популяции всегда происходит то её увеличение, то уменьшение. И связано это бывает с разными факторами. В силу ограниченности пространства и многих других факторов популяция не может бесконечно расти, поэтому с помощью естественных механизмов природа научилась уменьшать численность. При этом и происходят периодические колебания численности. То же самое происходит и с человеческим обществом.

Теперь обсудим теорию этого понятия и разберём немного формул, касающихся такого понятия, как периодические колебания.

Теория

Периодические колебания - очень интересная тема. Но, как и в любой другой, чем дальше погружаешься - тем больше непонятного, нового и сложного. В этой статье мы не будем углубляться, лишь расскажем кратко об основных свойствах колебаний.

Основными характеристиками периодических колебаний являются период и частота показывает, какое время требуется волне, чтобы вернуться в исходное положение. Фактически это время, за которое волна проходит расстояние между её соседними гребнями. Есть ещё одна величина, которая тесно связана с предыдущей. Это частота. Частота обратна периоду и имеет такой физический смысл: это количество гребней волн, которые прошли через определённую область пространства за единицу времени. Частота периодических колебаний, если представить её в математическом виде, имеет формулу: v=1/T, где T - период колебаний.

Перед тем как перейти к заключению, расскажем немного о том, где наблюдаются периодические колебания и как знания о них могут быть полезны в жизни.

Применение

Выше мы уже рассмотрели виды периодических колебаний. Если даже руководствоваться перечнем того, где они встречаются, легко понять, что они окружают нас везде. излучают все наши электроприборы. Более того, связь телефона с телефоном или прослушивание радио были бы невозможны без них.

Звуковые волны также представляют собой колебания. Под действием электрического напряжения специальная мембрана в каком-либо генераторе звука начинает вибрировать, создавая волны определённой частоты. Вслед за мембраной начинают колебаться молекулы воздуха, которые в конце концов и доходят до нашего уха и воспринимаются как звук.

Заключение

Физика - очень интересная наука. И даже если кажется, что вы вроде как знаете в ней всё, что может пригодится в повседневной жизни, всё равно найдётся такая вещь, в которой будет нелишним разобраться получше. Мы надеемся, что эта статья помогла вам понять или вспомнить материал по физике колебаний. Это действительно очень важная тема, практическое применение теории из которой сегодня встречается повсеместно.

Колебания. Типы колебаний. Характеристики

Колебания и волны

Колебаниями называются процессы, в той или иной мере повторяющиеся во времени. Колебания бывают механические, электромагнитные, численности животных и т.д. Здесь важно отметить, что независимо от типа колебаний, все они описываются одинаковым образом с математической точки зрения, т.е., одинаковыми уравнениями. Поэтому колеблющуюся величину мы будем часто называть колебательной системой .

Иногда колебания играют отрицательную роль в технике – например, вибрация (что означает колебания со звуковой частотой) корпуса автомобиля, корабля, самолёта…. В других случаях колебания не просто играют положительную роль, но на колебаниях основаны самые различные отрасли техники – например радиовещание, телевидение да и вообще вся инфраструктура передачи информации.

В зависимости от характера внешнего воздействия на колебательную систему различают свободные и вынужденные колебания.

Свободными, или собственными называются колебания системы, выведенной из положения устойчивого равновесия внешней силой и затем предоставленной самой себе. Колебания при этом совершаются за счёт внутренних сил системы.

Вынужденными называются колебания, происходящие под действием периодически изменяющегося внешнего воздействия на систему.

Периодическими называются такие колебания, при которых значения физических величин (например, некоторой величины S ), характеризующих колебательную систему, повторяются через равные промежутки времени, наименьший из которых называется периодом колебаний:

S(t+T)=S(t) . (4.1)

Частотой колебаний называется число полных колебаний в единицу времени: . Размерность частоты – герц: Гц = 1/с. Циклической , или круговой, частотой называется число полных колебаний за 2p секунд:

Чрезвычайно важными в теории колебаний являются гармонические колебания – это такие колебания, которые происходят по закону синуса или косинуса:

(4.3)

Во-первых, очень многие колебания, особенно малые, в технике имеют гармонический вид (4.3). Во-вторых, любые периодические процессы, которые не являются гармоническими, могут, тем не менее, быть представлены как наложение простых гармонических колебаний. Часто систему, совершающую гармонические колебания, называют гармоническим осциллятором.

В системе (4.3) A º S max – максимальное значение колеблющейся величины, называется амплитудой колебаний. Аргумент синуса или косинуса называется фазой колебаний:

(4.4)

а значение фазы в начальный момент времени называется начальной фазой. Отметим, что с изменением начала отсчёта времени изменяется и начальная фаза. Так как функции (4.3) являются периодическими с периодом 2p , то всегда можно выбрать начальную фазу по модулю меньшей p .


Хотя функции синуса и косинуса являются взаимно дополняющими друг друга, по ряду причин чаще для представления гармонических колебаний используют функцию косинуса. Например, математические выражения чаще оказываются более простыми, если представлять гармоническое колебание в комплексном виде.

Одна из наиболее интересных тем в физике - колебания. Изучение механики тесно связано именно с ними, с тем, как ведут себя тела, на которые воздействуют те или иные силы. Так, изучая колебания, мы можем наблюдать за маятниками, видеть зависимость амплитуды колебания от длины нити, на которой висит тело, от жесткости пружины, веса груза. Несмотря на кажущуюся простоту, данная тема далеко не всем дается так легко, как хотелось бы. Поэтому мы решили собрать наиболее известные сведения о колебаниях, их видах и свойствах, и составить для вас краткий конспект по данной теме. Возможно, он будет вам полезен.

Определение понятия

Прежде чем говорить о таких понятиях, как механические, электромагнитные, свободные, вынужденные колебания, об их природе, характеристиках и видах, условиях возникновения, следует дать определение данному понятию. Так, в физике колебанием называют постоянно повторяющийся процесс изменения состояния вокруг одной точки пространства. Наиболее простой пример - маятник. Каждый раз при колебании он отклоняется от некой вертикальной точки сначала в одну, затем в другую сторону. Занимается изучением явления теория колебаний и волн.

Причины и условия возникновения

Как и любое другое явление, колебания возникают только в том случае, если выполнены определенные условия. Механические вынужденные колебания, как и свободные, возникают при выполнении таких условий, как:

1. Наличие силы, выводящей тело из состояния устойчивого равновесия. К примеру, толчка математического маятника, при котором начинается движение.

2. Наличие минимальной силы трения в системе. Как известно, трение замедляет те или иные физические процессы. Чем больше сила трения, тем меньше вероятность возникновения колебаний.

3. Одна из сил должна зависеть от координат. То есть тело изменяет свое положение в определенной системе координат относительно определенной точки.

Виды колебаний

Разобравшись с тем, что такое колебание, разберем их классификацию. Есть две наиболее известные классификации - по физической природе и по характеру взаимодействия с окружающей средой. Так, по первому признаку выделяют механические и электромагнитные, а по второму - свободные и вынужденные колебания. Выделяют также автоколебания, затухающие колебания. Но мы с вами поговорим лишь о первых четырех видах. Давайте разберем подробнее каждый из них, выясним их особенности, а также дадим весьма краткое описание их основных характеристик.

Механические

Именно с механических начинается изучение колебаний в школьном курсе физики. Свое знакомство с ними ученики начинают в таком разделе физики, как механика. Отметим, что данные физические процессы протекают в окружающей среде, и мы можем наблюдать за ними невооруженным глазом. При таких колебаниях тело неоднократно совершает одно и то же движение, проходя определенное положение в пространстве. Примеры таких колебаний - те же маятники, вибрация камертона или гитарной струны, движение листьев и веток на дереве, качелей.

Электромагнитные

После того как прочно усвоено такое понятие, как механические колебания, начинается изучение электромагнитных колебаний, более сложных по своей структуре, так как данный вид протекает в различных электрических цепях. При этом процессе наблюдаются колебания в электрических, а также магнитных полях. Несмотря на то что электромагнитные колебания имеют несколько иную природу возникновения, законы для них такие же, как и для механических. При электромагнитных колебаниях может меняться не только напряжённость электромагнитного поля, но и такие характеристики, как сила заряда и тока. Важно также отметить, что существуют свободные и вынужденные электромагнитные колебания.

Свободные колебания

Данный вид колебаний возникает под воздействием внутренних сил тогда, когда система выводится из состояния устойчивого равновесия или покоя. Свободные колебания всегда являются затухающими, а значит, их амплитуда и частота со временем уменьшаются. Ярким примером подобного вида раскачиваний служит движение груза, подвешенного на нить и колеблющегося из одной стороны в другую; груза, прикрепленного к пружине, то опускающегося вниз под действием тяжести, то поднимающегося вверх под действием пружины. Кстати, именно такого рода колебаниям уделяют внимание при изучении физики. Да и большинство задач посвящено как раз-таки свободным колебаниям, а не вынужденным.

Вынужденные

Несмотря на то что такого рода процесс изучается школьниками не так подробно, именно вынужденные колебания наиболее часто встречаются в природе. Довольно ярким примером данного физического явления может быть движение веток на деревьях в ветреную погоду. Такие колебания всегда происходят под воздействием внешних факторов и сил, да и возникают они в любой момент.

Характеристики колебаний

Как и любой другой процесс, колебания имеют свои характеристики. Можно выделить шесть основных параметров колебательного процесса: амплитуду, период, частоту, фазу, смещение и циклическую частоту. Естественно, каждая из них имеет свои обозначения, а также единицы измерения. Разберем их немного подробнее, остановившись на краткой характеристике. При этом мы не будем расписывать формулы, которые используются для вычисления той или иной величины, дабы не запутать читателя.

Смещение

Первая из них - смещение. Данная характеристика показывает отклонение тела от точки равновесия в данный момент времени. Измеряется в метрах (м), общепринятое обозначение - x.

Амплитуда колебания

Даная величина обозначает наибольшее смещение тела от точки равновесия. При наличии незатухающего колебания является постоянной величиной. Измеряется в метрах, общепринятое обозначение - х м.

Период колебания

Еще одна величина, которая обозначает время, за которое совершается одно полное колебание. Общепринятое обозначение - T, измеряется в секундах (с).

Частота

Последняя характеристика, о которой мы поговорим - частота колебаний. Данная величина указывает на число колебаний в определенный промежуток времени. Измеряется в герцах (Гц) и обозначается как ν.

Виды маятников

Итак, мы с вами разобрали вынужденные колебания, поговорили о свободных, значит, нам следует также упомянуть о видах маятников, которые используются для создания и изучения свободных колебаний (в школьных условиях). Тут можно выделить два вида - математический и гармонический (пружинный). Первый представляет собой некое тело, подвешенное к нерастяжимой нити, размер которой равен l (основная значимая величина). Второй - груз прикрепленный к пружине. Тут важно знать массу груза (m) и жесткость пружины (k).

Выводы

Итак, мы с вами разобрались, что существуют механические и электромагнитные колебания, дали их краткую характеристику, описали причины и условия возникновения данных видов колебаний. Сказали пару слов об основных характеристиках данных физических явлений. Разобрались также и с тем, что бывают вынужденные колебания и свободные. Определили, в чем их отличие друг от друга. Кроме того, мы сказали пару слов о маятниках, используемых при изучении механических колебаний. Надеемся, данная информация была вам полезна.

Общая характеристика колебаний

Ритмические процессы любой природы, характеризующиеся повторяемостью во времени, называются колебаниями.

Колебание – процесс, характеризующийся повторяемостью во времени параметров, его описывающих. Единство закономерностей ритмических процессов позволило разработать единый математический аппарат для их описания – теорию колебаний. Существуют множество признаков, по которым могут быть классифицированы колебания.

По физической природе колеблющейся системы различают механические и электромагнитные колебания.

Колебания называются периодическими, если величина, характеризующая состояние системы, повторяется через равные промежутки времени – период колебания.

Период (T ) - минимальное время, через которое повторяется состояние колебательной системы, т.е. время одного полного колебания.

Для таких колебаний

x(t)=x(t+T) ;(3. 1)

Периодическими являются колебания маятника часов, переменный ток, биение сердца, а колебания деревьев под порывом ветра, курсов иностранных валют – не периодические.

Кроме периода в случае периодических колебаний определена их частота.

Частота ()т.е. число колебаний в единицу времени.

Частота -величина, обратная периоду колебания,

Единицей измерения частоты являетсяГерц: 1 Гц = 1 с -1 , частота соответствующая одному колебанию в секунду. При описании периодических колебаний также используется циклическая частота – число колебаний за 2π секунд:

При периодических колебаниях эти параметры постоянны, а при других колебаниях могут изменяться.

Закон колебаний – зависимость колеблющейся величины от времени x(t) - может быть может быть разной. Наиболее простыми являются гармонические колебания (рис3.1), для которых колеблющаяся величина меняется по закону синуса или косинуса, что позволяет использовать одну функцию для описания процесса во времени:

Здесь: x (t) – значение колеблющейся величины в данный момент времени t , А амплитуда – наибольшее отклонение колеблющейся величины от среднего значения., ω – циклическая частота, (ωt+φ ) – фаза колебания , φ – начальная фаза.

Гармоническому закону подчиняются многие известные колебательные процессы. в т.ч. упомянутые выше, но наиболее существенно что с помощью метода Фурье любая периодическая функция раскладывающаяся на гармонические составляющие (гармоники ) с кратными частотами:

f (t )= А + А 1 cos( t + )+ А cos (2 t+ )+…; (3.5)

Здесь основная частота определяется периодом процесса: .

Каждая гармоника характеризуется частотой () и амплитудой (А ). Совокупность гармоник называется спектром . Спектры периодических колебаний дискретные (линейчатые) (рис.3.1а), а не периодических непрерывные (рис.3.1б) .

Рис. 3.1 Дискретные (а) и непрерывные (б) спектры сложных колебательных

Виды колебаний

Колебательная система обладает определенной энергией, за счет которой совершаются колебания. Энергия зависит от амплитуды и частоты колебаний.

Колебания подразделяются на следующие виды: свободные или собственные, затухающие, вынужденные, автоколебания.

Свободные колебания совершаются в системе, однократно выведенной из положения равновесия и в дальнейшем предоставленной самой себе. При этом колебания происходят с собственной частотой (), которая не зависит от их амплитуды, т.е. определяется свойствами самой системы.

В реальных условиях колебания всегда являются затухающими , т.е. со временем происходит уменьшение энергии за счет ее диссипации и как следствие уменьшается амплитуда колебаний. Диссипация – необратимый переход части энергии упорядоченных процессов («энергии порядка») в энергию беспорядочных процессов («энергию хаоса»). Диссипация происходит в любой колеблющейся открытой системе.

Для создания незатухающих колебаний в реальных системах необходимо периодическое внешнее воздействие – периодическое пополнение энергии, теряемой за счет диссипации. Гармонические колебания, происходящие за счет внешнего периодического воздействия («вынуждающей силы»), называются вынужденными . Их частота совпадает с частотой вынуждающей силы (), а амплитуда оказывается зависящей от соотношения между частотой силы и собственной частотой системы. Важнейшим эффектом, осуществляющимся при вынужденных колебаниях, является резонанс – резкое возрастание амплитуды при приближении частоты вынужденных колебаний к собственной частоте колебательной системы. Резонансная частота тем ближе к собственной, а максимум амплитуды тем больше, чем меньше диссипация.

Автоколебания – незатухающие колебания, происходящие за счет источника энергии, вид и работа которого определяется самой колебательной системой. При автоколебаниях основные характеристики – амплитуда, частота – определяются самой системой. Это отличает данные колебания как от вынужденных, при которых эти параметры зависят от внешнего воздействия, так и от собственных, при которых внешнее воздействие задает амплитуду колебания. Простейшая автоколебательная система включает в себя:

колебательную систему (с затуханием),

усилитель колебаний (источник энергии),

нелинейный ограничитель (клапан),

звено обратной связи

При автоколебаниях для их установления важна нелинейность, управляющая поступлениями и тратами энергии источника, и позволяющая установить колебания определенной амплитуды. Примерами автоколебательных систем являются: механической - маятниковые часы, термодинамической – тепловой двигатель, электромагнитной – ламповый генератор, оптической – лазер (оптический квантовый генератор). Схема лазера представлена на рис.4.5. Здесь колебательная система – оптически активная среда, заполняющая оптический резонатор, имеется внешний источник энергии, обеспечивающий процесс «накачки», клапан и обратная связь – полупрозрачное зеркало на выходе оптического резонатора, нелинейность определяется условиями вынужденного излучения.

Во всех автоколебательных системах обратная связь регулирует включение внешнего источника и поступление в колебательную систему энергии: пока поступление энергии (вклад) выше потери, происходит самовозбуждение (раскачка), колебания в системе усиливаются; когда потеря энергии становится равной ее поступлению, клапан закрывается. Система колеблется в стационарном режиме с постоянной амплитудой; при возрастании потери амплитуда уменьшается, и вновь открывается клапан, возрастает вклад, амплитуда восстанавливается, клапан закрывается.

1. Колебания. Периодические колебания. Гармонические колебания.

2. Свободные колебания. Незатухающие и затухающие колебания.

3. Вынужденные колебания. Резонанс.

4. Сопоставление колебательных процессов. Энергия незатухающих гармонических колебаний.

5. Автоколебания.

6. Колебания тела человека и их регистрация.

7. Основные понятия и формулы.

8. Задачи.

1.1. Колебания. Периодические колебания.

Гармонические колебания

Колебаниями называют процессы, отличающиеся той или иной степенью повторяемости.

Повторяющиеся процессы непрерывно происходят внутри любого живого организма, например: сокращения сердца, работа легких; мы дрожим, когда нам холодно; мы слышим и разговариваем благодаря колебаниям барабанных перепонок и голосовых связок; при ходьбе наши ноги совершают колебательные движения. Колеблются атомы, из которых мы состоим. Мир, в котором мы живем, удивительно склонен к колебаниям.

В зависимости от физической природы повторяющегося процесса различают колебания: механические, электрические и т.п. В настоящей лекции рассматриваются механические колебания.

Периодические колебания

Периодическими называют такие колебания, при которых все характеристики движения повторяются через определенный промежуток времени.

Для периодических колебаний используют следующие характеристики:

период колебаний Т, равный времени, в течение которого совершается одно полное колебание;

частота колебаний ν, равная числу колебаний, совершаемых за одну секунду (ν = 1/Т);

амплитуда колебаний А, равная максимальному смещению от положения равновесия.

Гармонические колебания

Особое место среди периодических колебаний занимают гармонические колебания. Их значимость обусловлена следующими причинами. Во-первых, колебания в природе и в технике часто имеют характер, очень близкий к гармоническому, и, во-вторых, периодические процессы иной формы (с другой зависимостью от времени) могут быть представлены как наложение нескольких гармонических колебаний.

Гармонические колебания - это колебания, при которых наблюдаемая величина изменяется во времени по закону синуса или косинуса:

В математике функции этого вида называют гармоническими, поэтому колебания, описываемые такими функциями, тоже называют гармоническими.

Положение тела, совершающего колебательное движение, характеризуется смещением относительно равновесного положения. В этом случае величины, входящие в формулу (1.1), имеют следующий смысл:

х - смещение тела в момент времени t;

А - амплитуда колебаний, равная максимальному смещению;

ω - круговая частота колебаний (число колебаний, совершаемых за 2π секунд), связанная с частотой колебаний соотношением

φ = (ωt +φ 0) - фаза колебаний (в момент времени t); φ 0 - начальная фаза колебаний (при t = 0).

Рис. 1.1. Графики зависимости смещения от времени для х(0) = А и х(0) = 0

1.2. Свободные колебания. Незатухающие и затухающие колебания

Свободными или собственными называются такие колебания, которые происходят в системе, предоставленной самой себе, после того как она была выведена из положения равновесия.

Примером могут служить колебания шарика, подвешенного на нити. Для того чтобы вызвать колебания, нужно либо толкнуть шарик, либо, отведя в сторону, отпустить его. При толчке шарику сообщается кинетическая энергия, а при отклонении - потенциальная.

Свободные колебания совершаются за счет первоначального запаса энергии.

Свободные незатухающие колебания

Свободные колебания могут быть незатухающими только при отсутствии силы трения. В противном случае первоначальный запас энергии будет расходоваться на ее преодоление, и размах колебаний будет уменьшаться.

В качестве примера рассмотрим колебания тела, подвешенного на невесомой пружине, возникающие после того, как тело отклонили вниз, а затем отпустили (рис. 1.2).

Рис. 1.2. Колебания тела на пружине

Со стороны растянутой пружины на тело действует упругая сила F, пропорциональная величине смещения х:

Постоянный множитель k называется жесткостью пружины и зависит от ее размеров и материала. Знак «-» указывает, что сила упругости всегда направлена в сторону, противоположную направлению смещения, т.е. к положению равновесия.

При отсутствии трения упругая сила (1.4) - это единственная сила, действующая на тело. Согласно второму закону Ньютона (ma = F):

После переноса всех слагаемых в левую часть и деления на массу тела (m) получим дифференциальное уравнение свободных колебаний при отсутствии трения:

Величина ω 0 (1.6) оказалась равной циклической частоте. Эту частоту называют собственной.

Таким образом, свободные колебания при отсутствии трения являются гармоническими, если при отклонении от положения равновесия возникает упругая сила (1.4).

Собственная круговая частота является основной характеристикой свободных гармонических колебаний. Эта величина зависит только от свойств колебательной системы (в рассматриваемом случае - от массы тела и жесткости пружины). В дальнейшем символ ω 0 всегда будет использоваться для обозначения собственной круговой частоты (т.е. частоты, с которой происходили бы колебания при отсутствии силы трения).

Амплитуда свободных колебаний определяется свойствами колебательной системы (m, k) и энергией, сообщенной ей в начальный момент времени.

При отсутствии трения свободные колебания, близкие к гармоническим, возникают также и в других системах: математический и физический маятники (теория этих вопросов не рассматривается) (рис. 1.3).

Математический маятник - небольшое тело (материальная точка), подвешенное на невесомой нити (рис. 1.3 а). Если нить отклонить от положения равновесия на небольшой (до 5°) угол α и отпустить, то тело будет совершать колебания с периодом, определяемым по формуле

где L - длина нити, g - ускорение свободного падения.

Рис. 1.3. Математический маятник (а), физический маятник (б)

Физический маятник - твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной горизонтальной оси. На рисунке 1.3 б схематически изображен физический маятник в виде тела произвольной формы, отклоненного от положения равновесия на угол α. Период колебаний физического маятника описывается формулой

где J - момент инерции тела относительно оси, m - масса, h - расстояние между центром тяжести (точка С) и осью подвеса (точка О).

Момент инерции - это величина, зависящая от массы тела, его размеров и положения относительно оси вращения. Вычисляется момент инерции по специальным формулам.

Свободные затухающие колебания

Силы трения, действующие в реальных системах, существенно изменяют характер движения: энергия колебательной системы постоянно убывает, и колебания либо затухают, либо вообще не возникают.

Сила сопротивления направлена в сторону, противоположную движению тела, и при не очень больших скоростях пропорциональна величине скорости:

График таких колебаний представлен на рис. 1.4.

В качестве характеристики степени затухания используют безразмерную величину, называемую логарифмическим декрементом затухания λ.

Рис. 1.4. Зависимость смещения от времени при затухающих колебаниях

Логарифмический декремент затухания равен натуральному логарифму отношения амплитуды предыдущего колебания к амплитуде последующего колебания.

где i - порядковый номер колебания.

Нетрудно видеть, что логарифмический декремент затухания находится по формуле

Сильное затухание. При

выполнении условия β ≥ ω 0 система возвращается в положение равновесия, не совершая колебаний. Такое движение называется апериодическим. На рисунке 1.5 показаны два возможных способа возвращения в положение равновесия при апериодическом движении.

Рис. 1.5. Апериодическое движение

1.3. Вынужденные колебания, резонанс

Свободные колебания при наличии сил трения являются затухающими. Незатухающие колебания можно создать с помощью периодического внешнего воздействия.

Вынужденными называются такие колебания, в процессе которых колеблющаяся система подвергается воздействию внешней периодической силы (ее называют вынуждающей силой).

Пусть вынуждающая сила изменяется по гармоническому закону

График вынужденных колебаний представлен на рис. 1.6.

Рис. 1.6. График зависимости смещения от времени при вынужденных колебаниях

Видно, что амплитуда вынужденных колебаний достигает установившегося значения постепенно. Установившиеся вынужденные колебания являются гармоническими, а их частота равна частоте вынуждающей силы:

Амплитуда (А) установившихся вынужденных колебаний находится по формуле:

Резонансом называется достижение максимальной амплитуды вынужденных колебаний при определенном значении частоты вынуждающей силы.

Если условие (1.18) не выполнено, то резонанс не возникает. В этом случае при увеличении частоты вынуждающей силы амплитуда вынужденных колебаний монотонно убывает, стремясь к нулю.

Графическая зависимость амплитуды А вынужденных колебаний от круговой частоты вынуждающей силы при разных значениях коэффициента затухания (β 1 > β 2 > β 3) показана на рис. 1.7. Такая совокупность графиков называется резонансными кривыми.

В некоторых случаях сильное возрастание амплитуды колебаний при резонансе является опасным для прочности системы. Известны случаи, когда резонанс приводил к разрушению конструкций.

Рис. 1.7. Резонансные кривые

1.4. Сопоставление колебательных процессов. Энергия незатухающих гармонических колебаний

В таблице 1.1 представлены характеристики рассмотренных колебательных процессов.

Таблица 1.1. Характеристики свободных и вынужденных колебаний

Энергия незатухающих гармонических колебаний

Тело, совершающее гармонические колебания, обладает двумя видами энергии: кинетической энергией движения Е к = mv 2 /2 и потенциальной энергией Е п, связанной с действием упругой силы. Известно, что при действии упругой силы (1.4) потенциальная энергия тела определяется формулой Е п = кх 2 /2. Для незатухающих колебаний х = А cos(ωt), а скорость тела определяется по формуле v = - А ωsin(ωt). Отсюда получаются выражения для энергий тела, совершающего незатухающие колебания:

Полная энергия системы, в которой происходят незатухающие гармонические колебания, складывается из этих энергий и остается неизменной:

Здесь m - масса тела, ω и A - круговая частота и амплитуда колебаний, k - коэффициент упругости.

1.5. Автоколебания

Существуют такие системы, которые сами регулируют периодическое восполнение потерянной энергии и поэтому могут колебаться длительное время.

Автоколебания - незатухающие колебания, поддерживаемые внешним источником энергии, поступление которой регулируется самой колебательной системой.

Системы, в которых возникают такие колебания, называются автоколебательными. Амплитуда и частота автоколебаний зависят от свойств самой автоколебательной системы. Автоколебательную систему можно представить следующей схемой:

В данном случае сама колебательная система каналом обратной связи воздействует на регулятор энергии, информируя его о состоянии системы.

Обратной связью называется воздействие результатов какоголибо процесса на его протекание.

Если такое воздействие приводит к возрастанию интенсивности процесса, то обратная связь называется положительной. Если воздействие приводит к уменьшению интенсивности процесса, то обратная связь называется отрицательной.

В автоколебательной системе может присутствовать как положительная, так и отрицательная обратная связь.

Примером автоколебательной системы являются часы, в которых маятник получает толчки за счет энергии поднятой гири или закрученной пружины, причем эти толчки происходят в те моменты, когда маятник проходит через среднее положение.

Примером биологических автоколебательных систем являются такие органы, как сердце, легкие.

1.6. Колебания тела человека и их регистрация

Aнализ колебаний, создаваемых телом человека или его отдельными частями, широко используется в медицинской практике.

Колебательные движения тела человека при ходьбе

Ходьба - это сложный периодический локомоторный процесс, возникающий в результате координированной деятельности скелетных мышц туловища и конечностей. Aнализ процесса ходьбы дает много диагностических признаков.

Характерной особенностью ходьбы является периодичность опорного положения одной ногой (период одиночной опоры) или двух ног (период двойной опоры). В норме соотношение этих периодов равно 4:1. При ходьбе происходит периодическое смещение центра масс (ЦМ) по вертикальной оси (в норме на 5 см) и отклонение в сторону (в норме на 2,5 см). При этом ЦМ совершает движение по кривой, которую приближенно можно представить гармонической функцией (рис. 1.8).

Рис. 1.8. Вертикальное смещение ЦМ тела человека во время ходьбы

Сложные колебательные движения при поддержании вертикального положения тела.

У человека, стоящего вертикально, происходят сложные колебания общего центра масс (ОЦМ) и центра давления (ЦД) стоп на плоскость опоры. На анализе этих колебаний основана статокинезиметрия - метод оценки способности человека сохранять вертикальную позу. Посредством удержания проекции ОЦМ в пределах координат границы площади опоры. Данный метод реализуется с помощью стабилометрического анализатора, основной частью которого является стабилоплатформа, на которой в вертикальной позе находится испытуемый. Колебания, совершаемые ЦД испытуемого при поддержании вертикальной позы, передаются стабилоплатформе и регистрируются специальными тензодатчиками. Сигналы тензодатчиков передаются на регистрирующее устройство. При этом записывается статокинезиграмма - траектория перемещения ЦД испытуемого на горизонтальной плоскости в двумерной системе координат. По гармоническому спектру статокинезиграммы можно судить об особенностях вертикализации в норме и при отклонениях от нее. Данный метод позволяет анализировать показатели статокинетической устойчивости (СКУ) человека.

Механические колебания сердца

Существуют различные методы исследования сердца, в основе которых лежат механические периодические процессы.

Баллистокардиография (БКГ) - метод исследования механических проявлений сердечной деятельности, основанный на регистрации пульсовых микроперемещений тела, обусловленных выбрасыванием толчком крови из желудочков сердца в крупные сосуды. При этом возникает явление отдачи. Тело человека помещают на специальную подвижную платформу, находящуюся на массивном неподвижном столе. Платформа в результате отдачи приходит в сложное колебательное движение. Зависимость смещения платформы с телом от времени называется баллистокардиограммой (рис. 1.9), анализ которой позволяет судить о движении крови и состоянии сердечной деятельности.

Апекскардиография (AKГ) - метод графической регистрации низкочастотных колебаний грудной клетки в области верхушечного толчка, вызванных работой сердца. Регистрация апекскардиограммы производится, как правило, на многоканальном электрокарди-

Рис. 1.9. Запись баллистокардиограммы

ографе при помощи пьезокристаллического датчика, являющегося преобразователем механических колебаний в электрические. Перед записью на передней стенке грудной клетки пальпаторно определяют точку максимальной пульсации (верхушечный толчок), в которой и фиксируют датчик. По сигналам датчика автоматически строится апекскардиограмма. Проводят амплитудный анализ АКГ - сравнивают амплитуды кривой при разных фазах работы сердца с максимальным отклонением от нулевой линии - отрезок ЕО, принимаемый за 100%. На рисунке 1.10 представлена апекскардиограмма.

Рис. 1.10. Запись апекскардиограммы

Кинетокардиография (ККГ) - метод регистрации низкочастотных вибраций стенки грудной клетки, обусловленных сердечной деятельностью. Кинетокардиограмма отличается от апекскардиограммы: первая фиксирует запись абсолютных движений грудной стенки в пространстве, вторая регистрирует колебания межреберий относительно ребер. В данном методе определяются перемещение (ККГ х), скорость перемещения (ККГ v) а также ускорение (ККГ а) для колебаний грудной клетки. На рисунке 1.11 представлено сопоставление различных кинетокардиограмм.

Рис. 1.11. Запись кинетокардиограмм перемещения (х), скорости (v), ускорения (а)

Динамокардиография (ДКГ) - метод оценки перемещения центра тяжести грудной клетки. Динамокардиограф позволяет регистрировать силы, действующие со стороны грудной клетки человека. Для записи динамокардиограммы пациент располагается на столе лежа на спине. Под грудной клеткой находится воспринимающее устройство, которое состоит из двух жестких металлических пластин размером 30x30 см, между которыми расположены упругие элементы с укрепленными на них тензодатчиками. Периодически меняющаяся по величине и месту приложения нагрузка, действующая на воспринимающее устройство, слагается из трех компонент: 1) постоянная составляющая - масса грудной клетки; 2) переменная - механический эффект дыхательных движений; 3) переменная - механические процессы, сопровождающие сердечное сокращение.

Запись динамокардиограммы осуществляют при задержке дыхания исследуемым в двух направлениях: относительно продольной и поперечной оси воспринимающего устройства. Сравнение различных динамокардиограмм показано на рис. 1.12.

Сейсмокардиография основана на регистрации механических колебаний тела человека, вызванных работой сердца. В этом методе с помощью датчиков, установленных в области основания мечевидного отростка, регистрируется сердечный толчок, обусловленный механической активностью сердца в период сокращения. При этом происходят процессы, связанные с деятельностью тканевых механорецепторов сосудистого русла, активирующихся при снижении объема циркулирующей крови. Сейсмокардиосигнал формирует форма колебаний грудины.

Рис. 1.12. Запись нормальной продольной (а) и поперечной (б) динамокардиограмм

Вибрация

Широкое внедрение различных машин и механизмов в жизнь человека повышает производительность труда. Однако работа многих механизмов связана с возникновением вибраций, которые передаются человеку и оказывают на него вредное влияние.

Вибрация - вынужденные колебания тела, при которых либо все тело колеблется как единое целое, либо колеблются его отдельные части с различными амплитудами и частотами.

Человек постоянно испытывает различного рода вибрационные воздействия в транспорте, на производстве, в быту. Колебания, возникшие в каком-либо месте тела (например, руке рабочего, держащего отбойный молоток), распространяются по всему телу в виде упругих волн. Эти волны вызывают в тканях организма переменные деформации различных видов (сжатие, растяжение, сдвиг, изгиб). Действие вибраций на человека обусловлено многими факторами, характеризующими вибрации: частотой (спектр частот, основная частота), амплитудой, скоростью и ускорением колеблющейся точки, энергией колебательных процессов.

Продолжительное воздействие вибраций вызывает в организме стойкие нарушения нормальных физиологических функций. Может возникнуть «вибрационная болезнь». Эта болезнь приводит к ряду серьезных нарушений в организме человека.

Влияние, которое вибрации оказывают на организм, зависит от интенсивности, частоты, длительности вибраций, места их приложения и направления по отношению к телу, позе, а также от состояния человека и его индивидуальных особенностей.

Колебания с частотой 3-5 Гц вызывают реакции вестибулярного аппарата, сосудистые расстройства. При частотах 3-15 Гц наблюдаются расстройства, связанные с резонансными колебаниями отдельных органов (печень, желудок, голова) и тела в целом. Колебания с частотами 11-45 Гц вызывают ухудшение зрения, тошноту, рвоту. При частотах, превышающих 45 Гц, возникают повреждение сосудов головного мозга, нарушение циркуляции крови и т.д. На рисунке 1.13 приведены области частот вибрации, оказывающие вредное действие на человека и системы его органов.

Рис. 1.13. Области частот вредного воздействия вибрации на человека

В то же время в ряде случаев вибрации находят применение в медицине. Например, при помощи специального вибратора стоматолог готовит амальгаму. Использование высокочастотных вибрационных аппаратов позволяет высверлить в зубе отверстие сложной формы.

Вибрация используется и при массаже. При ручном массаже массируемые ткани приводятся в колебательное движение при помощи рук массажиста. При аппаратном массаже используются вибраторы, в которых для передачи телу колебательных движений служат наконечники различной формы. Вибрационные аппараты подразделяются на аппараты для общей вибрации, вызывающие сотрясение всего тела (вибрационные «стул», «кровать», «платформа» и др.), и аппараты местного вибрационного воздействия на отдельные участки тела.

Механотерапия

В лечебной физкультуре (ЛФК) используются тренажеры, на которых осуществляются колебательные движения различных частей тела человека. Они используются в механотерапии - форме ЛФК, одной из задач которой является осуществление дозированных, ритмически повторяющихся физических упражнений с целью тренировки или восстановления подвижности в суставах на аппаратах маятникового типа. Основу этих аппаратов составляет балансирующий (от фр. balancer - качать, уравновешивать) маятник, который представляет собой двуплечный рычаг, совершающий колебательные (качательные) движения около неподвижной оси.

1.7. Основные понятия и формулы

Продолжение таблицы

Продолжение таблицы

Окончание таблицы

1.8. Задачи

1. Привести примеры колебательных систем у человека.

2. У взрослого человека сердце делает 70 сокращений в минуту. Определить: а) частоту сокращений; б) число сокращений за 50 лет

Ответ: а) 1,17 Гц; б) 1,84х10 9 .

3. Какую длину должен иметь математический маятник, чтобы период его колебаний был равен 1 секунде?

4. Тонкий прямой однородный стержень длиной 1 м подвешен за конец на оси. Определить: а) чему равен период его колебаний (малых)? б) какова длина математического маятника, имеющего такой же период колебаний?

5. Тело массой 1 кг совершает колебания по закону х = 0,42 cos(7,40t), где t - измеряется в секундах, а х - в метрах. Найти: а) амплитуду; б) частоту; в) полную энергию; г) кинетическую и потенциальную энергии при х = 0,16 м.

6. Оценить скорость, с которой идет человек при длине шага l = 0,65 м. Длина ноги L = 0,8 м; центр тяжести находится на расстоянии H = 0,5 м от ступни. Для момента инерции ноги относительно тазобедренного сустава использовать формулу I = 0,2mL 2 .

7. Каким образом можно определить массу небольшого тела на борту космической станции, если в вашем распоряжении имеются часы, пружина и набор гирь?

8. Амплитуда затухающих колебаний убывает за 10 колебаний на 1/10 часть своей первоначальной величины. Период колебаний Т = 0,4 с. Определить логарифмический декремент и коэффициент затухания.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей