Уравнение шредингера для стационарных состояний имеет вид. Уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики

  • § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
  • § 219. Движение свободной частицы
  • § 220. Частица в одномерной прямоугольной «потенциальной ям*» с бесконечно высокими «стенками*
  • § 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
  • § 222. Линейный гармонический осциллятор квантовой механике
  • Глава 29
  • § 223. Атом водорода в квантовой механике
  • 2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредин-гера (223.2) удовлетворяют собственные функцииопределяемые тремя
  • § 225. Спин электрона. Спиновое квантовое число
  • § 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
  • § 227. Принцип Паули. Распределение электронов в атома по состояниям
  • § 228. Периодическая система элементов Менделеева
  • § 229. Рентгеновские спектры
  • § 230. Молекулы: химические связи, понятие об энергетических уровнях
  • § 231. Молекулярные спектры. Комбинационное рассеяние света
  • § 232. Поглощение. Спонтанное и вынужденное излучения
  • § 233. Оптические квантовые генераторы (лазеры) .
  • Глава 30 Элементы квантовой статистики
  • § 234. Квантовая статистика. Фазовое пространство. Функция распределения
  • § 235. Понятие о квантовой статистика Бозе - Эйнштейна и Ферми - Дирака
  • § 236. Вырожденный электронный газ в металлах
  • § 237. Понятие о квантовой теории теплоемкости. Фононы
  • § 238. Выводы квантовой теории электропроводности металлов
  • § 239. Сверхпроводимость. Понятие об эффекте Джозефсона
  • Глава 31 Элементы физики твердого тела
  • § 240. Понятие о зонной теории твердых тел
  • § 241. Металлы, диэлектрики и полупроводники по зонной теории
  • § 242. Собственная проводимость полупроводников
  • § 243. Примесная проводимость полупроводников
  • § 244. Фотопроводимость полупроводников
  • § 245. Люминесценция твердых тел
  • § 246. Контакт двух металлов по зонной теории
  • 1. Контактная разность потенциалов зависит лишь от химического состава и тем­пературы соприкасающихся металлов.
  • § 247.. Термоэлектрические явления и их применение
  • § 248. Выпрямление на контакте металл - полупроводник
  • § 249. Контакт электронного и дырочного полупроводников
  • § 250. Полупроводниковые диоды и триоды (транзисторы)
  • 7 Элементы физики атомного ядра и элементарных частиц
  • Глава 32 Элементы физики атомного ядра
  • § 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
  • § 252. Дефект массы и энергия связи ядра
  • § 253. Спин ядра и его магнитный момент
  • § 254. Ядерные силы. Модели ядра
  • 1) Ядерные силы являются силами притяжения;
  • § 255. Радиоактивное излучение и его виды
  • § 256. Закон радиоактивного распада. Правила смещения
  • § 257. Закономерности а-раепада
  • § 258.-Распад. Нейтрино
  • § 259. Гамма-излучение и его свойства
  • § 260. Резонансное поглощение-излучения (эффект Мeссбауэра**)
  • § 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
  • § 262. Ядерные реакции и их основные типы
  • 1) По роду участвующих в них частиц - реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов,частиц); реакции под действием-квантов;
  • §263. Позитрон.,-Распад. Электронный захват "-
  • § 264. Открытие нейтрона. Ядерные реакции под действием
  • § 265. Реакция деления ядра
  • § 266. Цепная реакция деления
  • § 267. Понятие о ядерной энергетике
  • § 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
  • 1) Протонно-протонный, или водородный, цикл, характерный для температур (приме­рно 107 к):
  • 2) Углеродно-азотный, или углеродный, цикл, характерный для более высоких тем­ператур (примерно 2 107 к):
  • Глава 33 Элементы физики элементарных частиц
  • § 269. Космическое излучение
  • § 270. Мюоны и их свойства
  • § 271. Мезоны и их свойства
  • § 272. Типы взаимодействий элементарных частиц
  • § 273. Частицы и античастицы
  • § 274. Гипероны. Странность и четность элементарных частиц
  • § 275. Классификация элементарных частиц. Кварки
  • § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

    Статистическое толкование волн да Бройля (см. § 216) и соотношение неопределен­ностей Гейзенберга (см. §215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у, z , t ), так как именно она, или, точнее, величина, определяет вероятность пребывания частицы в момент времени t в объеме dV , т. е. в области с координатами x и x + dx . y и y + dy . zuz + dz . Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

    Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвел­ла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью резуль­татов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредин­гера имеет вид

    (217.1)

    где, т - масса частицы,- оператор Лапласа,

    - мнимая единица, V {х, у, z , t ) - потенциальная функция частицы в силовом поле, в котором она движется, (х, у, z , t ) - искомая волновая функция частицы.

    Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью Оно дополняется условиями, накладываемыми на волновую функцию: 1) волно­вая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) произ­водныедолжны быть непрерывны; 3) функциядолжна быть

    интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

    Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, кото­рой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномер­ный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154) , или в комплексной записиСледовательно, плоская

    волна де Бройля имеет вид

    (217.2)

    (учтено, чтоВ квантовой механике показатель экспоненты берут со знаком минус,

    но поскольку физический смысл имеет только, то это (см. (217.2)) несущественно. Тогда

    откуда

    Используя взаимосвязь между энергией Е и импульсоми подставляя выражения

    (217.3), получим дифференциальное уравнение

    которое совпадает с уравнением (217.1) для случая U =0 (мы рассматривали свободную частицу).

    Если частица движется в силовом поле, характеризуемом потенциальной энергией U , то

    полная энергия Е складывается из типич еской и потенциальной энергий. Проводя аналогичные

    рассуждения и используя взаимосвязь между Е и р (для данного случаяпридем

    ° к дифференциальному уравнению, совпадающему с (217.1).

    Приведенные рассуждения не должны восприниматься как вывод уравнения Шреди-нгера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к кото­рым оно приводит.

    Уравнение (217.1) является обкщим уравнением Шредингера. Его также называют уравнением Шреднягера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем

    так что

    где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

    откуда после деления на общий множительи соответствующих преобразований

    придем к уравнению, определяющему функцию

    (217.5)

    Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчис­ленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциямиНо регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собствев-нымн. Решения же, которые соответствуют собственным значениям энергии, называют­ся собственными функциями. Собственные значения Е могут образовывать как непре-

    рывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    § 218. Принцип причинности ■ квантовой механике

    Из соотношения неопределенностей часто делают вывод о неприменимости принципа причинности к явлениям, происходящим в микромире. При этом основываются на следующих соображениях. В классической механике, согласно принципу причинно­сти - принципу классического детермизма, по известному состоянию системы в неко­торый момент времени (полностью определяется значениями координат и импульсов всех частиц системы) и силам, приложенным к ней, можно абсолютно точно задать ее состояние в любой последующий момент. Следовательно, классическая физика ос­новывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причи­на, а ее состояние в последующий момент - следствие.

    С другой стороны, микрообъекты не могут иметь одновременно и определенную координату, и определенную соответствующую проекцию импульса (задаются соот­ношением неопределенностей (215.1)), поэтому и делается вывод о том, что в началь­ный момент времени состояние системы точно не определяется. Если же состояние системы не определено в начальный момент времени, то не могут быть предсказаны и последующие состояния, т. е. нарушается принцип причинности.

    Однако никакого нарушения принципа причинности применительно к микрообъ­ектам не наблюдается, поскольку в квантовой механике понятие состояния микрообъ­екта приобретает совершенно иной смысл, чем в классической механике. В кванто­вой механике состояние микрообъекта полностью определяется волновой функцией (х,у, z , t ), квадрат модуля которой(х,у, z , t )\ 2 задает плотность вероятности нахождения частицы в точке с координатами х, у, z .

    В свою очередь, волновая функция(х,у, z , t ) удовлетворяет уравнению Шредин-гера (217.1), содержащему первую производную функции по времени. Это же означает, что задание функции(для момента времениt 0) определяет ее значение в последующие моменты. Следовательно, в квантовой механике начальное состояние

    Есть причина, а состояниев последующий момент - следствие. Это и есть форма принципа причинности в квантовой механике, т. е. задание функциипредопределяет ее значения для любых последующих моментов. Таким образом, состояние системы микрочастиц, определенное в квантовой механике, однозначно вытекает из предшест­вующего состояния, как того требует принцип причинности.

    Стационарные решения уравнения Шредингера.

    Приложение A.

    Нахождение решения уравнения Шредингера для свободного электрона в виде волнового пакета .

    Запишем уравнение Шредингера для свободного электрона

    После преобразований уравнение Шредингера принимает вид

    (A.2)

    Это уравнение решаем с начальным условием

    (A.3)

    Здесь - волновая функция электрона в начальный момент времени. Ищем решение уравнения (A.2) в виде интеграла Фурье

    (A.4)

    Подставляем (A.4) в (A.2) и получаем

    Решение (A.4) можно теперь записать в следующем виде

    (A.6)

    Используем начальное условие (A.3), и из (A.6) получаем разложение начальной волновой функции электрона в интеграл Фурье.

    (A.7)

    К выражению (A.7) применяем обратное преобразование Фурье

    (A.8)

    Подведем итог проделанным преобразованиям. Итак, если известна волновая функция электрона в начальный момент времени, то после интегрирования (A.8) находим коэффициенты . Затем после подстановки этих коэффициентов в (A.6) и интегрировании, получаем волновую функцию электрона в произвольный момент времени в любой точке пространства.

    Для некоторых распределений интегрирование можно провести в явном виде и получить аналитическое выражение для решения уравнения Шредингера. В качестве начальной волновой функции возьмем распределение Гаусса, модулированное плоской монохроматической волной.

    Здесь - средний импульс электрона. Выбор начальной волновой функции в таком виде позволят получить решение уравнения Шредингера в виде волнового пакета.

    Рассмотрим подробно свойства начальной волновой функции (A.9).

    Во-первых , волновая функция нормирована на единицу.

    (A.10)

    Нормировка (A.10) легко доказывается, если использовать следующий табличный интеграл.

    (A.11)

    Во-вторых , если волновая функция нормирована на единицу, то квадрат модуля волновой функции является плотностью вероятности, нахождения электрона в данной точке пространства.

    Здесь величину будем называть амплитудой волнового пакета в начальный момент времени. Физический смысл амплитуды пакета – это максимальное значение распределения вероятности. На Рис.1 показан график распределения плотности вероятности.

    Распределение плотности вероятности в начальный момент времени.

    Отметим некоторые особенности графика на Рис.1.

    1. Координата – это точка на оси x , в которой распределение вероятности имеет максимальное значение. Поэтому можно сказать, что с наибольшей вероятностью можно обнаружить электрон вблизи точки .

    2. Величина определят отклонение от точки , при котором величина распределения уменьшается в e раз по сравнению с максимальным значением.

    (A.13)

    В этом случае величину называют шириной волнового пакета в начальный момент времени, а величину – полушириной пакета.

    3. Вычислим вероятность нахождения электрона в интервале .

    (A.14)

    Таким образом, вероятность обнаружить электрон в области с центром и полушириной равна 0.843. Эта вероятность близка к единице, поэтому обычно, об области с полушириной говорят, как об области, где находится электрон в начальный момент времени.

    В-третьих , начальная волновая функция не является собственной функцией оператора импульса . Поэтому электрон в состоянии с волновой функцией не имеет определенного импульса, можно говорить только о среднем импульсе электрона. Вычислим средний импульс электрона.

    Поэтому, величина в формуле (A.9) является средним значением импульса электрона. Формула (A.15) легко доказывается, если использовать табличный интеграл (A.11).

    Таким образом, свойства начальной волновой функции разобраны. Теперь подставим функцию в интеграл Фурье (A.8) и найдем коэффициенты .

    В интеграле (A.16) делаем следующую замену переменной интегрирования.

    (A.17)

    В результате интеграл (A.16) принимает следующий вид.

    (A.18)

    В результате получаем следующее выражение для коэффициентов .

    (A.18)

    Подставляем коэффициенты в формулу (A.6), получаем следующее интегральное выражение для волновой функции.

    В интеграле (A.19) делаем следующую замену переменной интегрирования.

    (A.20)

    В результате интеграл (A.19) принимает следующий вид.

    Окончательно получаем формулу для волнового пакета.

    (A.22)

    Легко видеть, что для начального момента времени формула (A.22) переходит в формулу (A.9) для начальной волновой функции. Найдем плотность вероятности для функции (A.22).

    Подставляем волновой пакет (A.22) в формулу (A.23), и в результате получаем следующее выражение.

    (A.24)

    Здесь центр волнового пакета, или максимум распределения плотности вероятности, движется со скоростью , равной следующей величине.

    Полуширина волнового пакета увеличивается со временем, и определятся следующей формулой.

    (A.26)

    Амплитуда волнового пакета уменьшается со временем, и определятся следующей формулой.

    (A.27)

    Таким образом, распределение вероятности для волнового пакета можно записать в следующем виде.

    (A.28)

    На Рис.2. показано распределение вероятности в три последовательных момента времени.

    Распределение вероятности в три последовательных момента времени.

    Приложение B.

    Общие сведения о решении уравнения Шредингера .

    Введение.

    Движение квантовой частицы в общем случае описывается уравнением Шредингера:

    Здесь i – мнимая единица, h =1.0546´10 -34 (Дж×с) - постоянная Планка. Оператор Ĥ называется оператором Гамильтона. Вид оператора Гамильтона зависит от типа взаимодействия электрона с внешними полями.

    Если не учитывать спиновые свойства электрона, например, не рассматривать движение электрона в магнитном поле, то оператор Гамильтона можно представить в виде.

    (B.2)

    Здесь – оператор кинетической энергии:

    , (B.3)

    где m =9.1094´10 -31 (кг) – масса электрона. Потенциальная энергия описывает взаимодействие электрона с внешним электрическим полем.

    В данной лабораторной работе будет рассматриваться одномерное движение электрона вдоль оси x . Уравнение Шредингера в этом случае принимает следующий вид:

    . (B.4)

    Уравнение (B.4) с математической точки зрения является дифференциальным уравнение в частных производных для неизвестной волновой функции Y =Y (x,t). Известно, что такое уравнение имеет определенное решение, если заданы соответствующие начальные и граничные условия. Начальные и граничные условия выбираются исходя из конкретной физической задачи.



    Пусть, например, электрон движется слева направо с некоторым средним импульсом p 0 . Кроме того, в начальный момент времени t=0, электрон локализован в некоторой области пространства x m -d < x < x m +d. Здесь x m – центр области локализации электрона, а d – эффективная полуширина этой области.

    В этом случае начальное условие будет выглядеть следующим образом:

    . (B.5)

    Здесь Y 0 (x) – волновая функция в начальный момент времени. Волновая функция это комплексная функция, поэтому графически удобно представлять не саму волновую функцию, а плотность вероятности.

    Плотность вероятности, нахождения электрона в данном месте в данный момент времени выражается через волновую функцию следующим образом:

    Заметим, что вероятности должна быть нормирована на единицу. Отсюда получаем условие нормировки волновой функции:

    . (B.7)

    Распределение плотности вероятности в начальный момент времени

    , (B.8)

    можно изобразить графически. На Рис.3. показано возможное расположение электрона в начальный момент времени.

    Расположение электрона в момент t=0.

    Из этого рисунка видно, что с наибольшей вероятностью электрон находится в точке x m . Буквой A будем обозначать амплитуду (максимальное значение) распределения вероятности. Из этого рисунка так же видно, как определяется ширина 2d или полуширина d распределения. Если распределение имеет экспоненциальный или гауссов характер, то ширину распределения определяют на уровне в e раз меньшем, чем максимальное значение.

    На Рис.3. показан вектор среднего импульса электрона. Это означает, что электрон движется справа налево, и распределение вероятности так же будет перемещаться справа налево. На Рис.2. показано распределение вероятности в три последовательных момента времени. На Рис.2. видно, что максимум распределения x m (t) перемещается слева направо.

    На Рис.2. можно заметить, что движение электрона справа налево сопровождается деформацией распределения плотности вероятности. Амплитуда A (t) уменьшается, а полуширина d(t) растет. Все указанные детали движения электрона можно получить, если решить уравнение Шредингера (B4) с начальным условием (B.5).

    Резюме . В зависимости от постановки физической задачи может меняться вид уравнения Шредингера. При исследовании тех или иных физических явлений, описываемых уравнением Шредингера, выбираются нужные начальные и граничные условия для нахождения решения уравнения Шредингера.

    Стационарные решения уравнения Шредингера.

    Если электрон движется в постоянном по времени внешнем поле, то его потенциальная энергия не будет зависеть от времени. В этом случае одним из возможных решений уравнения Шредингера (B.4) является решение с разделяющимися переменными по времени t и по координате x.

    Применяем известный в математике прием решения дифференциальных уравнений. Ищем решение уравнения (B.4) в виде:

    . (B.9)

    Подставляем (B.9) в уравнение (B.4) и получаем следующие соотношения:

    . (B.10)

    Здесь E – константа, которой в квантовой механике придается смысл полной энергии электрона. Соотношения (B.10) эквивалентны следующим двум дифференциальным уравнениям:

    . (B.11)

    Первое уравнение в системе (B.11) имеет следующее общее решение:

    Здесь C – произвольная константа. Подставляем (B.12) в выражение (B.9) и получаем решение уравнения Шредингера (B.4) в виде:

    , (B.13)

    где функция y (x) удовлетворяет уравнению.

    (B.14)

    Константа C содержится в функции y (x).

    Решение уравнения Шредингера (B.4) в виде выражения (B.13), называется стационарным решением уравнения Шредингера . Уравнение (B.14) называют стационарным уравнение Шредингера . Функцию y (x) называют волновой функцией , независящей от времени.

    Состояние электрона, которое описывается волной функцией (B.13), называется стационарным состоянием . В квантовой механике утверждается, что в стационарном состоянии электрон обладает определенной энергией E .

    Полученные результаты можно обобщить на уравнение Шредингера (B.1) для трехмерного движения электрона. Если оператор Гамильтона Ĥ не зависит явно от времени, то одним из возможных решений уравнения Шредингера (B.1) является стационарное решение следующего вида:

    , (B.15)

    где волновая функция удовлетворяет стационарному уравнению Шредингера.

    (B.16)

    Заметим, что уравнения (B.14) и (B.16) в квантовой механике имеют еще оно название. Эти уравнения являются уравнениями на собственные функции и собственные значения оператора Гамильтона. Другими словами, решая уравнение (B.16) находят энергии E (собственные значения оператора Гамильтона) и соответствующие им волновые функции (собственные функции оператора Гамильтона).

    Резюме . Стационарные решения уравнения Шредингера являются некоторым классом решений из огромного множества других решений уравнения Шредингера. Стационарные решения существуют, если оператор Гамильтона не зависит явно от времени. В стационарном состоянии электрон имеет определенную энергию. Для нахождения возможных значений энергии надо решить стационарное уравнение Шредингера.

    Волновой пакет.

    Легко видеть, что стационарные решения уравнения Шредингера не описывают движение локализованного электрона, как показано на Рис.1 и Рис.2. Действительно, если взять стационарное решение (B.13) и найти распределение вероятности, то получится функция независящая от времени.

    (B.17)

    В этом нет ничего удивительного, стационарное решение (B.13) является одним из возможных решений дифференциального уравнения в частных производных (B.4).

    Но вот что интересно, в силу линейности уравнения Шредингера (B.4) относительно волновой функции Y (x,t), для решений этого уравнения выполняется принцип суперпозиции. Для стационарных состояний этот принцип утверждает следующее. Любая линейная комбинация стационарных решений (с разными энергиями E ) уравнения Шредингера (B.4) то же является решением уравнения Шредингера (B.4).

    Чтобы дать математическое выражение для принципа суперпозиции, нужно сказать несколько слов об энергетическом спектре электрона. Если решение стационарного уравнения Шредингера (B.14) имеет дискретный спектр, то это означает, что уравнение (B.14) можно записать в следующем виде:

    (B.18)

    где индекс n пробегает, вообще говоря, бесконечный ряд значений n=0,1,2,¼ . В этом случае решение уравнения Шредингера (B.4) можно представить в виде суммы стационарных решений.

    (B.19)

    В квантовой механике доказывается, что собственные функции y n (x) дискретного спектра можно сделать ортонормированной системой функций. Это означает, что выполняется следующее условие нормировки.

    (B.20)

    Здесь d n m – символ Кронекера.

    y n (x) ортонормированная, то коэффициенты C n в сумме (B.19) имеют простой физический смысл. Квадрат модуля от коэффициента C n равен вероятности того, что электрон в состоянии с волновой функцией (B.19) имеет энергию E n .

    Самое главное в этом утверждении, что электрон в состоянии с волновой функцией (B.19) не имеет определенной энергии. При измерении энергии, у этого электрона может быть получена любая энергия из набора с вероятностью (B.21).

    Поэтому говорят, что электрон может обладать той или иной энергией с вероятностью, определяемой формулой (B.21).

    Электрон, который находится в стационарном состоянии и имеет определенную энергию, будем называть монохроматическим электроном . Электрон, который не находится в стационарном состоянии, и поэтому не имеет определенной энергии, будем называть немонохроматическим электроном .

    Если решение стационарного уравнения Шредингера (B.14) имеет непрерывный спектр, то это означает, что уравнение (B.14) можно записать в следующем виде:

    , (B.22)

    где энергия E принимает значения на некотором непрерывном интервале [E min , E max ]. В этом случае решение уравнения Шредингера (B.4) можно представить в виде интеграла стационарных решений.

    (B.23)

    Собственные функции непрерывного спектра y E (x) в квантовой механике принято нормировать на d-функцию:

    , (B.24)

    Определение d-функции содержится в следующих интегральных соотношениях:

    Чтобы наглядно представить поведение d-функции, приводят следующее описание этой функции:

    Так вот, если система функций y E (x) нормирована на d-функцию, то квадрат модуля от коэффициента C (E ) в интеграле (B.23) равен плотности вероятности того, что электрон в состоянии с волновой функцией (B.19) имеет энергию E .

    Волновая функция Y(x,t) представленная в виде суммы (B.19) или в виде интеграла (B.23) от стационарных решений уравнения Шредингера, называется волновым пакетом .

    Таким образом, состояние не монохроматического электрона описывается волновым пакетом. Можно сказать еще так, в состояние немонохроматического электрона дают вклад состояния монохроматического электрона со своими весовыми множителями.

    На Рис.1. и Рис.2. изображены волновые пакеты электрона в разные моменты времени.

    Резюме . Состояние немонохроматического электрона описывается волновым пакетом. Немонохроматический электрон не обладает определенной энергией. Волновой пакет можно представить суммой или интегралом волновых функций стационарных состояний со своими энергиями. Вероятность того, что немонохроматический электрон имеет ту или иную энергию из этого набора энергий, определятся вкладом соответствующих стационарных состояний в волновой пакет.

    Свободное движение. Общее решение уравнения Шредингера.

    В зависимости от поля, с которым взаимодействует электрон, решение стационарного уравнения Шредингера (B.14) может иметь разный вид. В данной лабораторной работе рассматривается свободное движение. Поэтому в уравнении (B.14) положим потенциальную энергию равной нулю. В результате получим следующее уравнение:

    , (B.26)

    общее решение этого уравнения имеет следующий вид:

    . (B.27)

    Здесь C 1 и С 2 - две произвольные константы, k имеет смысл волнового числа.

    Теперь с помощью выражения (B.23) запишем общее решение уравнения Шредингера для свободного движения. Подставляем функцию (B.27) в интеграл (B.23). При этом учитываем, что пределы интегрирования по энергии E для свободного движения выбираются от нуля до бесконечности. В результате получаем следующее выражение:

    В этом интеграле удобно перейти от интегрирования по энергии E к интегрированию по волновому числу k . Будем считать, что волновое число может принимать как положительные, так и отрицательные значения. Для удобства введем частоту w, связанную с энергией E , следующим соотношением:

    Преобразуя интеграл (B.28), получаем следующее выражение для волнового пакета:

    . (B.30)

    Интеграл (B.30) дает общее решение уравнения Шредингера (B.4) для свободного движения. Коэффициенты C (k) находятся из начальных условий.

    Возьмем начальное условие (B.5) и подставим туда решение (B.30). В результате получим следующее выражение:

    (B.31)

    Интеграл (B.31) есть не что иное, как разложение начальной волновой функции в интеграл Фурье. Используя обратное преобразование Фурье, находим коэффициенты C (k).

    . (B.32)

    Резюме . Под свободным движением электрона понимается движение в отсутствии внешнего поля в бесконечной области пространства. Если известна волновая функция электрона в начальный момент времени Y 0 (x), то с помощью формул (B.32) и (B.30) можно найти общее решение уравнения Шредингера Y(x,t) для свободного движения электрона.

    Сделаем рисунок

    В нашей задаче функция U(x) имеет особый, разрывный вид: она равна нулю между стенками, а на краях ямы (на стенках) обращается в бесконечность:

    Запишем уравнение Шредингера для стационарных состояний частиц в точках расположенных между стенками:

    или, если учесть формулу (1.1)

    К уравнению (1.3) необходимо добавить граничные условия на стенках ямы. Примем во внимание, что волновая функция связана с вероятностью нахождения частиц. Кроме того, по условиям задачи за пределами стенок частица не может быть обнаружена. Тогда волновая функция на стенках и за их пределами должна обращаться в нуль, и граничные условия задачи принимают простой вид:

    Теперь приступим к решению уравнения (1.3) . В частности, можно учесть, что его решением являются волны де-Бройля. Но одна волна де-Бройля как решение, к нашей задаче явно не относится, так как она заведомо описывает свободную частицу, «бегущую» в одном направлении. У нас же частица бегает «туда-сюда» между стенками. В таком случае на основании принципа суперпозиции искомое решение можно попытаться представить в виде двух волн де-Бройля, бегущих друг другу навстречу с импульсами p и -p, то есть в виде:

    Постоянные и можно найти из одного из граничных условий и условия нормировки. Последнее говорит о том, что если сложить все вероятности, то есть найти вероятность обнаружения электрона между стенками вообще в (любом месте), то получится единица (вероятность достоверного события равна 1), т.е.:

    Согласно первому граничному условию имеем:

    Таким образом, получим решение нашей задачи:

    Как известно, . Поэтому найденное решение можно переписать в виде:

    Постоянная А определяется из условия нормировки. Но здесь не она представляет особый интерес. Осталось неиспользованным второе граничное условие. Какой результат оно позволяет получить? Применительно к найденному решению (1.5) оно приводит к уравнению:

    Из него видим, что в нашей задаче импульс p может принимать не любые значения, а только значения

    Кстати, n не может равняться нулю, так как волновая функция тогда бы всюду на промежутке (0…l) равнялась нулю! Это означает, что частица между стенками не может находиться в покое! Она обязательно должна двигаться. В аналогичных условиях находятся электроны проводимости в металле. Полученный вывод распространяется и на них: электроны в металле не могут быть неподвижными.

    Наименьший возможный импульс движущегося электрона равен

    Мы указали, что импульс электрона при отражении от стенок меняет знак. Поэтому на вопрос, каков импульс у электрона, когда он заперт между стенками, определённо ответить нельзя: то ли +p, то ли -p. Импульс неопределённый. Его степень неопределённости, очевидно, определяется так: =p-(-p)=2p. Неопределённость же координаты равна l; если попытаться «поймать» электрон, то он будет обнаружен в пределах между стенками, но где точно — неизвестно. Поскольку наименьшее значение p равно , то получаем:

    Мы подтвердили соотношение Гейзенберга в условиях нашей задачи, то есть при условии существования наименьшего значения p. Если же иметь в виду произвольно-возможное значение импульса, то соотношение неопределённости получает следующий вид:

    Это означает, что исходный постулат Гейзенберга-Боpа о неопределённости и устанавливает лишь нижнюю границу неопределенностей, возможную при измерениях. Если в начале движения система была наделена минимальными неопределённостями, то с течением времени они могут расти.

    Однако формула (1.6) указывает и на другой чрезвычайно интересный вывод: оказывается, импульс системы в квантовой механике не всегда в состоянии изменяться непрерывно (как это всегда имеет место в классической механике). Спектр импульса частицы в нашем примере дискретный, импульс частицы между стенками может изменяться только скачками (квантами). Величина скачка в рассмотренной задаче постоянна и равна .

    На рис. 2. наглядно изображён спектр возможных значений импульса частицы. Таким образом, дискретность изменения механических величин, совершенно чуждая классической механике, в квантовой механике вытекает из ее математического аппарата. На вопрос, почему импульс изменяется скачками, наглядного найти нельзя. Таковы законы квантовой механики; наш вывод вытекает из них логически — в этом все объяснение.

    Обратимся теперь к энергии частицы. Энергия связана с импульсом формулой (1). Если спектр импульса дискретный, то автоматически получается, что и спектр значений энергии частицы между стенками дискретный. И он находится элементарно. Если возможные значения согласно формуле (1.6) подставить в формулу (1.1), получим:

    где n = 1, 2,…, и называется квантовым числом.

    Таким образом, мы получили энергетические уровни.

    Рис. 3 изображает расположение энергетических уровней, соответствующее условиям нашей задачи. Ясно, что для другой задачи расположение энергетических уровней будет иным. Если частица является заряженной (например, это электрон), то, находясь не на низшем энергетическом уровне, она будет в состоянии спонтанно излучать свет (в виде фотона). При этом она перейдёт на более низкий энергетический уровень в соответствии с условием:

    Волновые функции для каждого стационарного состояния в нашей задаче представляют собой синусоиды, нулевые значения которых обязательно попадают на стенки. Две такие волновые функции для n = 1,2 изображены на рис. 1.

    Движение микрочастиц в различных силовых полях описывается в рамках нерелятивистской квантовой механики с помощью уравнения Шредингера, из которого вытекают наблюдаемые на опыте волновые свойства частиц. Это уравнение, как и все основные уравнения физики, не выводятся, а постулируется. Его правильность подтверждается согласием результатов расчета с опытом. Волновое уравнение Шредингера имеет следующий общий вид :

    - (ħ 2 / 2m) ∙ ∆ψ + U (x, y, z, t) ∙ ψ = i ∙ ħ ∙ (∂ψ / ∂t)

    где ħ = h / 2π, h = 6,623∙10 -34 Дж ∙ с - постоянная Планка;
    m - масса частицы;
    ∆ - оператор Лапласа (∆ = ∂ 2 / ∂x 2 + ∂ 2 / ∂y 2 + ∂ 2 / ∂z 2);
    ψ = ψ (x, y, z, t) - искомая волновая функция;
    U (x, y, z, t) - потенциальная функция частицы в силовом поле, где она движется;
    i - мнимая единица.

    Это уравнение имеет решение лишь при условиях, накладываемых на волновую функцию:

    1. ψ (x, y, z, t) должна быть конечной, однозначной и непрерывной;
    2. первые производные от нее должны быть непрерывны;
    3. функция | ψ | 2 должна быть интегрируема, что в простейших случаях сводится к условию нормировки вероятностей.
    Для многих физических явлений, происходящих в микромире, уравнение (8.1) можно упростить, исключив зависимость ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т.е. U = U (x, y, z) не зависит явно от времени и имеет смысл потенциальной энергии. Тогда после преобразований можно прийти к уравнению Шредингера для стационарных состояний:

    ∆ψ + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

    где ψ = ψ (x, y, z) - волновая функция только координат;
    E - параметр уравнения - полная энергия частицы.

    Для этого уравнения реальный физический смысл имеют лишь такие решения, которые выражаются регулярными функциями ψ (называемыми собственными функциями), имеющими место только при определенных значениях параметра E, называемого собственным значением энергии. Эти значения E могут образовывать как непрерывный, так и дискретный ряд, т.е. как сплошной, так и дискретный спектр энергий.

    Для какой-либо микрочастицы при наличии уравнения Шредингера типа (8.2) задача квантовой механики сводится к решению этого уравнения, т.е. нахождению значений волновых функций ψ = ψ (x, y, z), соответствующих спектру собственных энергией E. Далее находится плотность вероятности | ψ | 2 , определяющая в квантовой механике вероятность нахождения частицы в единичном объеме в окрестности точки с координатами (x, y, z).

    Одним из простейших случаев решения уравнения Шредингера является задача о поведении частицы в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками". Такая "яма" для частицы, движущейся только вдоль оси Х, описывается потенциальной энергией вида

    где l - ширина "ямы", а энергия отсчитывается от ее дна (рис. 8.1).

    Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

    ∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

    В силу того, что "стенки ямы" бесконечно высокие, частица не проникает за пределы "ямы". Это приводит к граничным условиям:

    ψ (0) = ψ (l) = 0

    В пределах "ямы" (0 ≤ x ≤ l) уравнение (8.4) сводится к виду:

    ∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ E ∙ ψ = 0

    ∂ 2 ψ / ∂x 2 + (k 2 ∙ ψ) = 0

    где k 2 = (2m ∙ E) / ħ 2


    Решение уравнения (8.7) с учетом граничных условий (8.5) имеет в простейшем случае вид:

    ψ (x) = A ∙ sin (kx)


    где k = (n ∙ π)/ l

    при целочисленных значениях n.

    Из выражений (8.8) и (8.10) следует, что

    E n = (n 2 ∙ π 2 ∙ ħ 2) / (2m ∙ l 2) (n = 1, 2, 3 ...)


    т.е. энергия стационарных состояний зависит от целого числа n (называемого квантовым числом) и имеет определенные дискретные значения, называемые уровнями энергии.

    Следовательно, микрочастица в "потенциальной яме" с бесконечно высокими "стенками" может находится только на определенном энергетическом уровне E n , т.е. в дискретных квантовых состояниях n.

    Подставив выражение (8.10) в (8.9) найдем собственные функции

    ψ n (x) = A ∙ sin (nπ / l) ∙ x


    Постоянная интегрирования А найдется из квантовомеханического (вероятностного) условия нормировки

    которое для данного случая запишется в виде:

    Откуда в результате интегрирования получим А = √ (2 / l) и тогда имеем

    ψ n (x) = (√ (2 / l)) ∙ sin (nπ / l) ∙ x (n = 1, 2, 3 ...)

    Графики функции ψ n (х) не имеют физического смысла, тогда как графики функции | ψ n | 2 показывают распределение плотности вероятности обнаружения частицы на различных расстояниях от "стенок ямы"(рис. 8.1). Как раз эти графики (как и ψ n (х) - для сравнения) изучаются в данной работе и наглядно показывают, что представления о траекториях частицы в квантовой механике несостоятельны.

    Из выражения (8.11) вытекает, что энергетический интервал между двумя соседними уровнями равен

    ∆E n = E n-1 - E n = (π 2 ∙ ħ 2) / (2m ∙ l 2) ∙ (2n + 1)

    Отсюда видно, что для микрочастиц (типа электрона) при больших размерах "ямы" (l≈ 10 -1 м), энергетические уровни располагаются настолько тесно, что образуют практически непрерывный спектр. Такое состояние имеет место, например, для свободных электронов в металле. Если же размеры "ямы" соизмеримы с атомными (l ≈ 10 -10 м), то получается дискретный спектр энергии (линейчатый спектр). Эти виды спектров также могут быть изучены в данной работе для различных микрочастиц.

    Другим случаем поведения микрочастиц (как, впрочем, и микросистем - маятников), часто встречаемым на практике (и рассматриваемым в этой работе), является задача о линейном гармоническом осцилляторе в квантовой механике.

    Как известно, потенциальная энергия одномерного гармонического осциллятора массой m равна

    U (x) = (m ∙ ω 0 2 ∙ x 2)/ 2

    где ω 0 - собственная частота колебаний осциллятора ω 0 = √ (k / m);
    k - коэффициент упругости осциллятора.

    Зависимость (8.17) имеет вид параболы, т.е. "потенциальная яма" в данном случае является параболической (рис. 8.2).



    Квантовый гармонический осциллятор описывается уравнением Шредингера (8.2), учитывающим выражение (8.17) для потенциальной энергии. Решение этого уравнения записывается в виде :

    ψ n (x) = (N n ∙ e -αx2 / 2) ∙ H n (x)

    где N n - постоянный нормирующий множитель, зависящий от целого числа n;
    α = (m ∙ ω 0) / ħ;
    H n (x) - полином степени n, коэффициенты которого вычисляются при помощи рекуррентной формулы при различных целочисленных n.
    В теории дифференциальных уравнений можно доказать, что уравнение Шредингера имеет решение (8.18) лишь для собственных значений энергии:

    E n = (n + (1 / 2)) ∙ ħ ∙ ω 0


    где n = 0, 1, 2, 3... - квантовое число.

    Это значит, что энергия квантового осциллятора может принимать лишь дискретные значения, т.е. квантуется. При n = 0 имеет место E 0 = (ħ ∙ ω 0) / 2, т.е. энергия нулевых колебаний, что является типичным для квантовых систем и представляет собой прямое следствие соотношения неопределенности.

    Как показывает детальное решение уравнения Шредингера для квантового осциллятора , каждому собственному значению энергии при разных n соответствует своя волновая функция, т.к. от n зависит постоянный нормирующий множитель

    а также H n (x) - полином Чебышева-Эрмита степени n.
    При том первые два полинома равны:

    H 0 (x) = 1;
    H 1 (x) = 2x ∙ √ α

    Любой последующий полином связан с нми по следующей рекуррентной формуле:

    H n+1 (x) = 2x ∙ √ α ∙ H n (x) - 2n ∙ H n-1 (x)

    Собственные функции типа (8.18) позволяют найти для квантового осциллятора плотность вероятности нахождения микрочастицы как | ψ n (х) | 2 и исследовать ее поведение на различных уровнях энергии. Решение этой задачи затруднительно ввиду необходимости использования рекуррентной формулы. Эта задача успешно может решаться лишь с использованием ЭВМ, что и делается в настоящей работе.

    Для частиц квантового мира действуют другие законы, чем для объектов классической механики. Согласно предположению де Бройля, микрообъекты обладают свойствами и частицы, и волны – и, действительно, при рассеивании пучка электронов на отверстии наблюдается дифракция, характерная для волн.

    Поэтому можно говорить не о движения квантовых частиц, а о вероятности того, что частица будет находиться в конкретной точке в некий момент времени.

    Что описывает уравнение Шредингера

    Уравнение Шрёдингера предназначено для описания особенностей движения квантовых объектов в полях внешних сил. Зачастую частица передвигается сквозь силовое поле, не зависящее от времени. Для этого случая записывается стационарное уравнение Шрёдингера:

    В представленном уравнении m и Е – и соответственно энергия частицы, пребывающей в силовом поле, а U – этого поля. — оператор Лапласа. — постоянная Планка, равная 6,626 10 -34 Дж с.

    (её также называют амплитудой вероятности, или пси-функцией) – это и есть функция, позволяющая узнать, в каком месте пространства, скорее всего, будет находиться наш микрообъект. Физический смысл имеет не сама функция, а её квадрат. Вероятность того, что частица находится в элементарном объеме :

    Следовательно, найти функцию в конечном объеме можно с вероятностью:

    Так как пси-функция – вероятность, то она не может быть ни меньше нуля, ни превышать единицу. Полная вероятность найти частицу в бесконечном объеме – это условие нормировки:

    Для пси-функции работает принцип суперпозиции: если частица или система может находиться в ряде квантовых состояний , то для нее возможно и состояние, определяемое их суммой:

    Стационарное уравнение Шрёдингера имеет множество решений, однако при решении следует учесть граничные условия и отобрать только собственные решения – те, которые обладают физическим смыслом. Такие решения существуют только для отдельных значений энергии частицы Е, которые и образуют дискретный энергетический спектр частицы.

    Примеры решения задач

    ПРИМЕР 1

    Задание Волновая функция описывает расстояние электрона до ядра водорода: r – расстояние между электроном и ядром, a – первый Боровский радиус. На каком расстоянии от ядра электрон, скорее всего, находится?
    Решение 1) Выразив объем через радиус ядра, найдем вероятность того, что электрон находится в пределах некоторого расстояния от ядра:

    2) Вероятность того, что электрон находится в пределах элементарного «кольца» dr:

    3) Чтобы найти наиболее вероятное расстояние, найдем из последнего выражения:

    Решив это уравнение, получим r = a – самое вероятное расстояние между электроном и ядром.

    Ответ r = a – с наибольшей вероятностью ядро находится на расстоянии первого Боровского радиуса от ядра.

    ПРИМЕР 2

    Задание Найти уровни энергии частицы в бесконечно глубокой потенциальной яме.
    Решение Пусть частица движется по оси абсцисс. Ширина ямы – l. Энергию мы отсчитываем от дна ямы и описываем функцией:


    Запишем одномерное стационарное уравнение Шрёдингера:

    Рассмотрим граничные условия. Так как мы считаем, что частица не может проникнуть за стенки, то за пределами ямы =0. На границе ямы пси-функция также равна нулю: В яме потенциальная энергия U=0.

    Тогда уравнение Шрёдингера, записанное для ямы, упростится:

    По форме это – ДУ гармонического осциллятора:

    kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей