Какую систему можно назвать гармоническим осциллятором. Гармонический осциллятор: виды и применение

F , пропорциональной смещению x :

Если F - единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором . Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), груз на пружине , торсионный маятник и акустические системы. Среди немеханических аналогов гармонического осциллятора можно выделить электрический гармонический осциллятор (см. LC-цепь).

Пусть x - смещение материальной точки относительно её положения равновесия, а F - действующая на точку возвращающая сила любой природы вида

где k = const. Тогда, используя второй закон Ньютона , можно записать ускорение как

Амплитуда сокращается. Значит, она может иметь любое значение (в том числе и нулевое - это означает, что материальная точка покоится в положении равновесия). На синус также можно сократить, так как равенство должно выполняться в любой момент времени t . Таким образом, остаётся условие для частоты колебаний:

Простое гармоническое движение является основой некоторых способов анализа более сложных видов движения. Одним из таких способов является способ, основанный на преобразовании Фурье , суть которого сводится к разложению более сложного вида движения в ряд простых гармонических движений.

Любая система, в которой происходит простое гармоническое движение, обладает двумя ключевыми свойствами:

Типичным примером системы, в которой происходит простое гармоническое движение, является идеализированная система груз-пружина, в которой груз присоединён к пружине и находится на горизонтальной поверхности. Если пружина не сжата и не растянута, то на груз не действует никаких переменных сил и он находится в состоянии механического равновесия. Однако, если груз вывести из положения равновесия, пружина деформируется и с её стороны будет действовать сила, стремящаяся вернуть груз в положение равновесия. В случае системы груз-пружина такой силой является сила упругости пружины, которая подчиняется закону Гука :

где k имеет вполне конкретный смысл - это коэффициент жёсткости пружины.

Однажды смещённый груз подвергается действию возвращающей силы, ускоряющей его и стремящейся вернуть в начальную точку, то есть в положение равновесия. По мере того, как груз приближается к положению равновесия, возвращающая сила уменьшается и стремится к нулю. Однако в положении x = 0 груз обладает некоторым количеством движения (импульсом), приобретённым благодаря действию возвращающей силы. Поэтому груз проскакивает положение равновесия, начиная снова деформировать пружину (но уже в противоположном направлении). Возвращающая сила будет стремиться замедлить его, пока скорость не станет равной нулю; и сила вновь будет стремиться вернуть груз в положение равновесия.

Если нет потерь энергии, груз будет колебаться как описано выше; такое движение является периодическим.

Простое гармоническое движение, показанное одновременно в реальном пространстве и в фазовом пространстве . Real Space - реальное пространство; Phase Space - фазовое пространство; velocity - скорость; position - положение (позиция).

В случае вертикально подвешенного на пружине груза, наряду с силой упругости, действует сила тяжести, то есть суммарно сила составит

Измерения частоты (или периода) колебаний груза на пружине используются в устройствах для определения массы тела - так называемых массметрах , применяемых на космических станциях, когда весы не могут функционировать из-за невесомости.

Простое гармоническое движение в некоторых случаях можно рассматривать как одномерную проекцию универсального движения по окружности.

Если объект движется с постоянной угловой скоростью ω по окружности радиуса r , центром которой является начало координат плоскости x − y , то такое движение вдоль каждой из координатных осей является простым гармоническим с амплитудой r и круговой частотой ω .

В приближении малых углов движение простого маятника является близким к простому гармоническому. Период колебаний такого маятника, прикреплённого к стержню длиной , даётся формулой

где g - ускорение свободного падения. Это показывает, что период колебаний не зависит от амплитуды и массы маятника, но зависит от g , поэтому, при той же самой длине маятника, на Луне он будет качаться медленнее, так как там слабее гравитация и меньше значение ускорения свободного падения.

Указанное приближение является корректным только при небольших углах отклонения, поскольку выражение для углового ускорения пропорционально синусу координаты:

где I - момент инерции ; в данном случае I = m ℓ 2 . Небольшие углы реализуются в условиях, когда амплитуда колебаний значительно меньше длины стержня.

что делает угловое ускорение прямо пропорциональным углу θ , а это удовлетворяет определению простого гармонического движения.

При рассмотрении осциллятора с затуханием за основу берётся модель консервативного осциллятора, в которую добавляется сила вязкого трения. Сила вязкого трения направлена против скорости движения груза относительно среды и прямо пропорциональна этой скорости. Тогда полная сила, действующая на груз, записывается так:

Используя второй закон Ньютона, получаем дифференциальное уравнение, описывающее затухающий осциллятор:

Поэтому в стрелочных индикаторах (например, в амперметрах) обычно стараются ввести именно критическое затухание, чтобы стрелка успокаивалась максимально быстро для считывания его показаний.

У осциллятора с критическим затуханием добротность равна 0,5. Соответственно, добротность указывает характер поведения осциллятора. Если добротность больше 0,5, то свободное движение осциллятора представляет собой колебания; теоретически, со временем он пересечёт положение равновесия неограниченное количество раз. Добротность, меньшая или равная 0,5, соответствует неколебательному движению осциллятора; в свободном движении он пересечёт положение равновесия не более одного раза.

В случае колебательного движения затухание ещё характеризуют такими параметрами, как:

Это время рассматривается как время, необходимое для затухания (прекращения) колебаний (хотя, формально, свободные колебания продолжаются бесконечно долго).

Колебания осциллятора называют вынужденными, когда на него производится некоторое дополнительное воздействие извне. Это воздействие может производиться различными средствами и по различным законам. Например, силовым возбуждением называется воздействие на груз силой, зависящей только от времени по определённому закону. Кинематическим возбуждением называют воздействие на осциллятор движением точки закрепления пружины по заданному закону. Возможно также воздействие трением, когда, например, среда, с которой груз испытывает трение, совершает движение по заданному закону.

Гармоническим осциллятором называют частицу, совершающую одномерное движение под действием квазиупругой силы . Потенциальная энергия такой частицы имеет вид

Выразив в формуле (27.1) k через получим

В одномерном случае Поэтому уравнение Шрёдингера (см. (21.5)) для осциллятора выглядит следующим образом:

Полная энергия, осциллятора). В теории дифференциальных уравнений доказывается, что уравнение (27.2) имеет конечные, однозначные и непрерывные решения при значениях параметра Е, равных

На рис. 27.1 дана схема энергетических уровней гармонического осциллятора. Для наглядности уровни вписаны в кривую потенциальной энергии. Однако следует помнить, что в квантовой механике полная энергия не может быть представлена в виде суммы точно определенных энергий Т и U (см. последний абзац предыдущего параграфа).

Уровни энергии гармонического осциллятора являются эквидистантными, т. е. отстоящими друг от друга на одинаковое расстояние. Наименьшее возможное значение энергии равно . Это значение называется нулевой энергией.

Существование нулевой энергии подтверждается экспериментами по изучению рассеяния света кристаллами при низких температурах. Оказывается, что интенсивность рассеянного света по мере понижения температуры стремится не к нулю, а к некоторому конечному значению, указывающему на то, что и при абсолютном нуле колебания атомов в кристаллической решетке не прекращаются.

Квантовая механика позволяет вычислить вероятности различных переходов квантовой системы из одного состояния в другое. Подобные вычисления показывают, что для гармонического осциллятора возможны лишь переходы между соседними уровнями. При таких переходах квантовое число изменяется на единицу:

Условия, накладываемые на изменения квантовых чисел при переходах системы из одного состояния в другое, называются правилами отбора.

Таким образом, для гармонического осциллятора существует правило отбора, выражаемое формулой (27.4).

Из правила (27.4) вытекает, что энергия гармонического осциллятора может изменяться только порциями /гto. Этот результат, получающийся естественным образом в квантовой механике, совпадает с тем весьма чужеродным для классической физики предположением, которое пришлось сделать Планку, чтобы вычислить испускательную способность абсолютно черного тела (см. § 7). Отметим, что Планк предполагал, что энергия гармонического осциллятора может быть лишь целой кратной На. В действительности же имеется еще нулевая энергия, существование которой было установлено только после создания квантовой механики.

Гармонический осциллятор

Гармони́ческий осцилля́тор (в классической механике) - система , которая при смещении из положения равновесия испытывает действие возвращающей силы F , пропорциональной смещению x (согласно закону Гука):

где k - коэффициент жёсткости системы.

Если F - единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором . Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), , торсионный маятник и акустические системы. Среди других аналогов гармонического осциллятора стоит выделить электрический гармонический осциллятор (см. LC-цепь).

Свободные колебания

Консервативный гармонический осциллятор

В качестве модели консервативного гармонического осциллятора возьмём груз массы m , закреплённый на пружине жёсткостью k .

Пусть x - смещение груза относительно положения равновесия. Тогда, согласно закону Гука, на него будет действовать возвращающая сила:

тогда полная энергия имеет постоянное значение

Простое гармоническое движение - это движение простого гармонического осциллятора , периодическое движение, которое не является ни вынужденным , ни затухающим . Тело в простом гармоническом движении подвергается воздействию единственной переменной силы , которая по модулю прямо пропорциональна смещению x от положения равновесия и направлена в обратную сторону.

Это движение является периодическим: тело колеблется около положения равновесия по синусоидальному закону. Каждое последующее колебание такое же, как и предыдущее, и период , частота и амплитуда колебаний остаются постоянными. Если принять, что положение равновесия находится в точке с координатой, равной нулю, то смещение x тела от положения равновесия в любой момент времени даётся формулой:

где A - амплитуда колебаний, f - частота, φ - начальная фаза.

Частота движения определяется характерными свойствами системы (например, массой движущегося тела), в то время как амплитуда и начальная фаза определяются начальными условиями - перемещением и скоростью тела в момент начала колебаний. Кинетическая и потенциальная энергии системы также зависят от этих свойств и условий.

Простое гармоническое движение может быть математическими моделями различных видов движения, таких как колебание пружины . Другими случаями, которые могут приближённо рассматриваться как простое гармоническое движение, являются движение маятника и вибрации молекул.

Простое гармоническое движение является основой некоторых способов анализа более сложных видов движения. Одним из таких способов является способ, основанный на преобразовании Фурье , суть которого сводится к разложению более сложного вида движения в ряд простых гармонических движений.

F - возвращающая сила, x - перемещение груза (деформация пружины), k - коэффициент жёсткости пружины.

Любая система, в которой происходит простое гармоническое движение, обладает двумя ключевыми свойствами:

  1. Когда система выведена из состояния равновесия, должна существовать возвращающая сила, стремящаяся вернуть систему в равновесие.
  2. Возвращающая сила должна в точности или приближённо быть пропорциональна перемещению.

Система груз-пружина удовлетворяет обоим этим условиям.

Однажды смещённый груз подвергается действию возвращающей силы, ускоряющей его, и стремящейся вернуть в начальную точку, то есть, в положение равновесия. По мере того, как груз приближается к положению равновесия, возвращающая сила уменьшается и стремится к нулю. Однако в положении x = 0 груз обладает некоторым количеством движения (импульсом), приобретённым благодаря действию возвращающей силы. Поэтому груз проскакивает положение равновесия, начиная снова деформировать пружину (но уже в противоположном направлении). Возвращающая сила будет стремиться замедлить его, пока скорость не станет равной нулю; и сила вновь будет стремиться вернуть груз в положение равновесия.

Пока в системе нет потерь энергии, груз будет колебаться как описано выше; такое движение называется периодическим.

Дальнейший анализ покажет, что в случае системы груз-пружина движение является простым гармоническим.

Динамика простого гармонического движения

Для колебания в одномерном пространстве, учитывая Второй закон Ньютона (F = m  d²x /dt ² ) и закон Гука (F = −kx , как описано выше), имеем линейное дифференциальное уравнение второго порядка:

m - масса тела, x - его перемещение относительно положения равновесия, k - постоянная (коэффициент жёсткости пружины).

Решение этого дифференциального уравнения является синусоидальным ; одно из решений таково:

где A , ω и φ - постоянные величины, и положение равновесия принимается за начальное. Каждая из этих постоянных представляет собой важное физическое свойство движения: A - это амплитуда, ω = 2πf - круговая частота , и φ - начальная фаза.

Универсальное движение по окружности

Простое гармоническое движение в некоторых случаях можно рассматривать как одномерная проекция универсального движения по окружности. Если объект движется с постоянной угловой скоростью ω по окружности радиуса r , центром которой является начало координат плоскости x − y , то такое движение вдоль каждой из координатных осей является простым гармоническим с амплитудой r и круговой частотой ω .

Груз как простой маятник

В приближении малых углов движение простого маятника является близким к простому гармоническому. Период колебаний такого маятника, прикреплённого к стержню длиной с ускорением свободного падения g даётся формулой

Это показывает, что период колебаний не зависит от амплитуды и массы маятника, но зависит от ускорения свободного падения g , поэтому при той же самой длине маятника, на Луне он будет качаться медленнее, так как там слабее гравитация и меньше значение ускорения свободного падения.

Указанное приближение является корректным только при небольших углах отклонения, поскольку выражение для углового ускорения пропорционально синусу координаты:

I - момент инерции ; в данном случае I = m ℓ 2 .

что делает угловое ускорение прямо пропорциональным углу θ , а это удовлетворяет определению простого гармонического движения.

Затухающий гармонический осциллятор

Взяв за основу ту же модель, добавим в неё силу вязкого трения. Сила вязкого трения направлена против скорости движения груза относительно среды и пропорциональна этой скорости. Тогда полная сила, действующая на груз, записывается так:

Проводя аналогичные действия, получаем дифференциальное уравнение, описывающее затухающий осциллятор:

Здесь введено обозначение: . Коэффициент носит название постоянной затухания. Он тоже имеет размерность частоты.

Решение же распадается на три случая.

, где - частота свободных колебаний. , где

Критическое затухание примечательно тем, что именно при критическом затухании осциллятор быстрее всего стремится в положение равновесия. Если трение меньше критического, он дойдёт до положения равновесия быстрее, однако «проскочит» его по инерции, и будет совершать колебания. Если трение больше критического, то осциллятор будет экспоненциально стремиться к положению равновесия, но тем медленнее, чем больше трение.

Поэтому в стрелочных индикаторах (например, в амперметрах) обычно стараются ввести именно критическое затухание, чтобы прочитать его показания можно было максимально быстро.

Затухание осциллятора также часто характеризуют безразмерным параметром, называемым добротностью . Добротность обычно обозначают буквой . По определению, добротность равна:

Чем больше добротность, тем медленнее затухают колебания осциллятора.

У осциллятора с критическим затуханием добротность равна 0,5. Соответственно, добротность указывает характер поведения осциллятора. Если добротность больше 0,5, то свободное движение осциллятора представляет собой колебания; со временем он пересечёт положение равновесия неограниченное количество раз. Добротность, меньшая или равная 0,5, соответствует неколебательному движению осциллятора; в свободном движении он пересечёт положение равновесия не более одного раза.

Добротность иногда называют коэффициентом усиления осциллятора, так как при некоторых способах возбуждения при совпадении частоты возбуждения с резонансной амплитуда колебаний оказывается примерно в раз больше, чем при возбуждении на низкой частоте.

Также добротность примерно равна количеству колебательных циклов, за которое амплитуда колебаний уменьшается в раз, умноженному на .

В случае колебательного движения затухание ещё характеризуют такими параметрами, как:

  • Время жизни колебаний (оно же время затухания , оно же время релаксации ) τ - время, за которое амплитуда колебаний уменьшится в e раз.
Это время рассматривается как время, необходимое для затухания (прекращения) колебаний (хотя формально свободные колебания продолжаются бесконечно долго).

Вынужденные колебания

Колебания осциллятора называют вынужденными, когда на него производится некоторое дополнительное воздействие извне. Это воздействие может производиться различными средствами и по различным законам. Например, силовым возбуждением называется воздействие на груз силой, зависящей только от времени по определённому закону. Кинематическим возбуждением называют воздействие на осциллятор движением точки закрепления пружины по заданному закону. Возможно также воздействие трением, когда, например, среда, с которой груз испытывает трение, совершает движение по заданному закону.

КОЛЕБАНИЯ. ВОЛНЫ. ОПТИКА

КОЛЕБАНИЯ

Лекция 1

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Идеальный гармонический осциллятор. Уравнение идеального осциллятора и его решение. Амплитуда, частота и фаза колебаний

Колебание – один из самых распространённых процессов в природе и технике. Колебания – это процессы, повторяющиеся во времени. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведённых часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни. Звук – это колебания давления воздуха, радиоволны – периодические изменения напряжённости электрического и магнитного поля, свет – это тоже электромагнитные колебания. Землетрясения – колебания почвы, приливы и отливы – изменение уровней морей и океанов, вызываемые притяжением луны и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и др. Несмотря на такое многообразие, все колебания описываются одними и теми же дифференциальными уравнениями.

Первыми учёными, изучавшими колебания, были Галилео Галилей и Христиан Гюйгенс. Галилей установил независимость периода колебаний от амплитуды. Гюйгенс изобрёл часы с маятником.

Любая система, которая, будучи слегка выведена из положения равновесия, совершает устойчивые колебания, называется гармоническим осциллятором. В классической физике такими системами являются математический маятник в пределах малых углов отклонения, груз в пределах малых амплитуд колебаний, электрический контур, состоящий из линейных элементов ёмкости и индуктивности.

Гармонический осциллятор можно считать линейным, если смещение от положения равновесия прямо пропорционально возмущающей силе. Частота колебаний гармонического осциллятора не зависит от амплитуды. Для осциллятора выполняется принцип суперпозиции - если действуют несколько возмущающих сил, то эффект их суммарного действия может быть получен как результат сложения эффектов от действующих сил в отдельности.

Гармонические колебания описываются уравнением (рис.1.1.1)

(1.1.1)

где х -смещение колеблющейся величины от положения равновесия, А – амплитуда колебаний, равная величине максимального смещения, - фаза колебаний, определяющая смещение в момент времени , - начальная фаза, определяющая величину смещения в начальный момент времени, - циклическая частота колебаний.

Время одного полного колебания называется периодом, , где - число колебаний, совершенных за время .

Частота колебаний определяет число колебаний, совершаемых в единицу времени, она связана с циклической частотой соотношением , тогда период .

Скорость колеблющейся материальной точки

ускорение

Таким образом, скорость и ускорение гармонического осциллятора также изменяются по гармоническому закону с амплитудами и соответственно. При этом скорость опережает по фазе смещение на , а ускорение – на (рис.1.1.2).

Из сопоставления уравнений движения гармонического осциллятора (1.1.1) и (1.1.2) следует, что , или

Это дифференциальное уравнение второго порядка называется уравнением гармонического осциллятора. Его решение содержит два постоянные а и , которые определяются заданием начальных условий

.

Если периодически повторяющийся процесс описывается уравнениями, не совпадающими с (1.1.1), он н6азывается ангармоническим. Система, совершающая ангармонические колебания, называется ангармоническим осциллятором.

1.1.2 . Свободные колебания систем с одной степенью свободы. Комплексная форма представления гармонических колебаний

В природе очень распространены малые колебания, которые система совершает вблизи своего положения равновесия. Если система, выведенная из положения равновесия, предоставлена себе, то есть на неё не действуют внешние силы, то такая система будет совершать свободные незатухающие колебания. Рассмотрим систему с одной степенью свободы.

Устойчивому равновесию соответствует такое положение системы, в котором её потенциальная энергия имеет минимум (q – обобщённая координата системы). Отклонение системы от положения равновесия приводит к возникновению силы , которая стремится вернуть систему обратно. Значение обобщённой координаты, соответствующей положению равновесия, обозначим , тогда отклонение от положения равновесия

Будем отсчитывать потенциальную энергию от минимального значения . Примем Полученную функцию разложим в ряд Маклорена и оставим первый член разложения, имеем: о

,

где . Тогда с учётом введённых обозначений:

, (1.1.4)

С учётом выражения (1.1.4) для силы, действующей на систему, получаем:

Согласно второму закону Ньютона, уравнение движения системы имеет вид: ,

Выражений (1.1.5) совпадает с уравнением (1.1.3) свободных гармонических колебаний при условии, что

и имеет два независимых решения: и , так что общее решение:

,

Из формулы (1.1.6) следует, что частота определяется только собственными свойствами механической системы и не зависит от амплитуды и от начальных условий движения.

Зависимость координаты колеблющейся системы от времени можно определить в виде вещественной части комплексного выражения , где A=Xe-iα – комплексная амплитуда, её модуль совпадает с обычной амплитудой, а аргумент – с начальной фазой.

1.1.3 . Примеры колебательных движений различной физической природы

Колебания груза на пружине

Рассмотрим колебания груза на пружине, при условии, что пружина не деформирована за пределы упругости. Покажем, что такой груз будет совершать гармонические колебания относительно положения равновесия (рис.1.1.3). Действительно, согласно закону Гука, сжатая или растянутая пружина создаёт гармоническую силу:

где – коэффициент жёсткости пружины, – координата положения равновесия, х – координата груза (материальной точки) в момент времени , - смещение от положения равновесия.

Поместим начало отсчета координаты в положение равновесия системы. В этом случае .

Если пружину растянуть на величину х , после чего отпустить в момент времени t =0, то уравнение движения груза согласно второму закону Ньютона примет вид -kx =ma , или , и

(1.1.6)

Это уравнение совпадает по виду с уравнением движения (1.1.3) системы, совершающей гармонические колебания, его решение будем искать в виде:

. (1.1.7)

Подставим (1.17) в (1.1.6), имеем: то есть выражение (1.1.7) является решением уравнения (1.1.6) при условии, что

Если в начальный момент времени положение груза было произвольным, то уравнение движения примет вид:

.

Рассмотрим, как меняется энергия груза, совершающего гармонические колебания в отсутствие внешних сил (рис.1.14). Если в момент времени t =0 грузу сообщить смещение х=А , то его полная энергия станет равной потенциальной энергии деформированной пружины , кинетическая энергия равна нулю (точка 1).

На груз действует сила F= -kx , стремящаяся вернуть его в положение равновесия, поэтому груз движется с ускорением и увеличивает свою скорость, а, следовательно, и кинетическую энергию. Эта сила сокращает смещение груза х, потенциальная энергия груза убывает, переходя в кинетическую. Система «груз - пружина» замкнутая, поэтому её полная энергия сохраняется, то есть:

. (1.1.8)

В момент времени груз находится в положении равновесия (точка 2), его потенциальная энергия равна нулю, а кинетическая максимальна . Максимальную скорость груза найдём из закона сохранения энергии (1.1.8):

За счёт запаса кинетической энергии груз совершает работу против упругой силы и пролетает положение равновесия. Кинетическая энергия постепенно переходит в потенциальную. При груз имеет максимальное отрицательное смещение –А, кинетическая энергия Wk =0, груз останавливается и начинает движение к положению равновесия под действием упругой силы F= -kx . Далее движение происходит аналогично.

Маятники

Под маятником понимают твёрдое тело, которое совершает под действием силы тяжести колебания вокруг неподвижной точки или оси. Различают физический и математический маятники.

Математический маятник – это идеализированная система, состоящая из невесомой нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной материальной точке.

Математическим маятником, например, является шарик на длинной тонкой нити.

Отклонение маятника от положения равновесия характеризуется углом φ , который образует нить с вертикалью (рис.1.15). При отклонении маятника от положения равновесия возникает момент внешних сил (силы тяжести) : , где m – масса, – длина маятника

Этот момент стремится вернуть маятник в положение равновесия (аналогично квазиупругой силе) и направлен противоположно смещению φ , поэтому в формуле стоит знак «минус».

Уравнение динамики вращательного движения для маятника имеет вид: Iε= ,

.

Будем рассматривать случай малых колебаний, поэтому sin φ ≈φ , обозначим ,

имеем: , или , и окончательно

Это уравнение гармонических колебаний, его решение:

.

Частота колебаний математического маятника определяется только его длиной и ускорением силы тяжести, и не зависит от массы маятника. Период равен:

Если колеблющееся тело нельзя представить, как материальную точку, то маятник называют физическим (рис.1.1.6). Уравнение его движения запишем в виде:

.

В случае малых колебаний , или =0 , где . Это уравнение движения тела, совершающего гармонические колебания. Частота колебаний физического маятника зависит от его массы, длины и момента инерции относительно оси, проходящей через точку подвеса.

Обозначим . Величина называется приведённой длинной физического маятника. Это длина математического маятника, период колебаний которого совпадает с периодом данного физического маятника. Точка на прямой, соединяющей точку подвеса с центром масс, лежащая на расстоянии приведённой длины от оси вращения, называется центром качания физического маятника (О’ ). Если маятник подвесить в центре качания, то приведённая длина и период колебаний будут теми же, что и в точке О . Таким образом, точка подвеса и центр качания обладают свойствами взаимности: при переносе точки подвеса в центр качения прежняя точка подвеса становится новым центром качения.

Математический маятник, который качается с таким же периодом, как и рассматриваемый физический, называется изохронным данному физическому маятнику.

1.1.4. Сложение колебаний (биения, фигуры Лиссажу). Векторное описание сложения колебаний

Сложение одинаково направленных колебаний можно производить методом векторных диаграмм. Любое гармоническое колебание можно представить в виде вектора следующим образом. Выберем ось х с началом отсчета в точке О (рис.1.1.7)

Из точки О построим вектор , который составляет угол с осью х . Пусть этот вектор поворачивается с угловой скоростью . Проекция вектора на ось Х равна:

то есть она совершает гармонические колебания с амплитудой а.

Рассмотрим два гармонических колебания одинакового направления и одинаковой циклической малой , заданные векторами и . Смещения по оси Х равны:

результирующий вектор имеет проекцию и представляет собой результирующее колебание (рис.1.1.8), по теореме косинусов Таким образом, сложение гармонических колебаний производится сложением векторов.

Проведем сложение взаимно перпендикулярных колебаний. Пусть материальная точка совершает два взаимно перпендикулярных колебания частотой :

.

Сама материальная точка при этом будет двигаться по некоторой криволинейной траектории.

Из уравнения движения следует: ,

. (1.1.9)

Из уравнения (1.1.9) можно получить уравнение эллипса (рис.1.1.9):

Рассмотрим частные случаи этого уравнения:

1. Разность фаз колебаний α= 0. При этом т.е. или Это уравнение прямой, и результирующее колебание происходит вдоль этой прямой с амплитудой (рис.1.1.10).а.

ее ускорение равно второй производной от смещения по времени тогда сила, действующая на колеблющуюся точку, по второму закону Ньютона равна

То есть сила пропорциональна смещению х и направлена против смещения к положению равновесия. Эта сила называется возвращающей силой. В случае груза на пружине возвращающей силой является сила упругости, в случае математического маятника – составляющая силы тяжести.

Возвращающая сила по характеру подчиняется закону Гука F= -kx, где

– коэффициент возвращающей силы. Тогда потенциальная энергия колеблющейся точки равна:

(постоянную интегрирования выбирают равной нулю, чтобы при х).

АНГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

2a. Пространство. Время. Движение Фейнман Ричард Филлипс

Глава 21 ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

Глава 21

ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

§ 1. Линейные дифференциаль­ные уравнения

§ 4. Начальные условия

§ 1. Линейные дифференциальные уравнения

Обычно физику как науку делят на не­сколько разделов: механику, электричество и г. п., и мы «проходим» эти разделы один за дру­гим. Сейчас, например, мы «проходим» в основ­ном механику. Но то и дело происходят стран­ные вещи: переходя к новым разделам физики и даже к другим наукам, мы сталкиваемся с уравнениями, почти не отличающимися от уже изученных нами ранее. Таким образом, многие явления имеют аналогию в совсем других об­ластях науки. Простейший пример: распро­странение звуковых волн во многом похоже на распространение световых волн. Если мы достаточно подробно изучим акустику, то обна­ружим потом, что «прошли» довольно большую часть оптики. Таким образом, изучение явле­ний в одной области физики может оказаться полезным при изучении других ее разделов. Хорошо с самого начала предвидеть такое воз­можное «расширение рамок раздела», иначе мо­гут возникнуть недоумения, почему мы тратим столько времени и сил на изучение небольшой задачи механики.

Гармонический осциллятор, к изучению ко­торого мы сейчас переходим, будет встречаться нам почти всюду; хотя мы начнем с чисто меха­нических примеров грузика на пружинке, ма­лых отклонений маятника или каких-то других механических устройств, на самом деле мы бу­дем изучать некое дифференциальное уравне­ние. Это уравнение непрестанно встречается в физике и в других науках и фактически описы­вает столь многие явления, что, право же, стоит того, чтобы изучить его получше. Такое уравне­ние описывает колебания грузика на пружинке, колебания заряда, текущего взад и вперед по электрической цепи, колебания камертона, порождающие звуковые волны, аналогичные колебания электронов в атоме, порождающие световые волны. Добавьте сюда уравнения, описывающие дей­ствия регуляторов, например поддерживающих заданную температуру термостата, сложные взаимодействия в химиче­ских реакциях и (уже совсем неожиданно) уравнения, от­носящиеся к росту колонии бактерий, которых одновременно и кормят и травят ядом, или к размножению лис, питаю­щихся кроликами, которые в свою очередь едят траву, и т. д. Мы привели очень неполный список явлений, которые описы­ваются почти теми же уравнениями, что и механический осцил­лятор. Эти уравнения называются линейными дифференциаль­ными уравнениями с постоянными коэффициентами. Это урав­нения, состоящие из суммы нескольких членов, каждый из которых представляет собой производную зависимой величины по независимой, умноженную на постоянный коэффициент. Таким образом,

называется линейным дифференциальным уравнением n-го порядка с постоянными коэффициентами (все а n - посто­янные).

§ 2. Гармонический осциллятор

Пожалуй, простейшей механической системой, движение которой описывается линейным дифференциальным уравнением с постоянными коэффициентами, является масса на пружинке. После того как к пружинке подвесят грузик, она немного рас­тянется, чтобы уравновесить силу тяжести. Проследим теперь за вертикальными отклонениями массы от положения равнове­сия (фиг. 21.1).

Фиг. 21.1. Грузик, подвешенный на пружинке.

Простой пример гармонического ос­циллятора.

Отклонения вверх от положения равновесия мы обозначим через х и предположим, что имеем дело с абсо­лютно упругой пружиной. В этом случае противодействующие растяжению силы прямо пропорциональны растяжению. Это означает, что сила равна -kx (знак минус напоминает нам, что сила противодействует смещениям). Таким образом, умно­женное на массу ускорение должно быть равно -kx

m(d 2 x/dt 2)=-kx. (21.2)

Для простоты предположим, что вышло так (или мы нужным образом изменили систему единиц), что k/m = 1. Нам предстоит решить уравнение

d 2 x/dt 2 =-x. (21.3)

После этого мы вернемся к уравнению (21.2), в котором k и m содержатся явно.

Мы уже сталкивались с уравнением (21.3), когда только начи­нали изучать механику. Мы решили его численно [см. вып. 1, уравнение (9.12)], чтобы найти движение. Численным интегри­рованием мы нашли кривую (см. фиг. 9.4, вып. 1), которая пока­зывает, что если частица mв начальный момент выведена из рав­новесия, но покоится, то она возвращается к положению рав­новесия. Мы не следили за частицей после того, как она достиг­ла положения равновесия, но ясно, что она на этом не остано­вится, а будет колебаться (осциллировать). При численном ин­тегрировании мы нашли время возврата в точку равновесия: t= 1,570. Продолжительность полного цикла в четыре раза боль­ше: t 0 =6,28 «сек». Все это мы нашли численным интегрирова­нием, потому что лучше решать не умели. Но математики дали в наше распоряжение некую функцию, которая, если ее про­дифференцировать дважды, переходит в себя, умножившись на -1. (Можно, конечно, заняться прямым вычислением таких функций, но это много труднее, чем просто узнать ответ.)

Эта функция есть: x=cost. Продифференцируем ее: dx/dt=-sint, a d 2 x/dt 2 =-wt=-x. В начальный момент t=0, x=1, а начальная скорость равна нулю; это как раз те пред­положения, которые мы делали при численном интегрирова­нии. Теперь, зная, что x=cost, найдем точное значение вре­мени, при котором z=0. Ответ: t=p/2, или 1,57108. Мы ошиб­лись раньше в последнем знаке, потому что численное интег­рирование было приближенным, но ошибка очень мала!

Чтобы продвинуться дальше, вернемся к системе единиц, где время измеряется в настоящих секундах. Что будет реше­нием в этом случае? Может быть, мы учтем постоянные k и т, умножив на соответствующий множитель cost? Попробуем. Пусть x=Acost, тогда dx/dt=-Asint и d 2 t/dt 2 =-Acost=-x. К нашему огорчению, мы не преуспели в решении уравнения (21.2), а снова вернулись к (21.3). Зато мы открыли важнейшее свойство линейных дифференциальных уравнений: если умно­жить решение уравнения на постоянную, то мы снова получим решение. Математически ясно - почему. Если х есть решение уравнения, то после умножения обеих частей уравнения на А производные тоже умножатся на A и поэтому Ах так же хорошо удовлетворит уравнению, как и х. Послушаем, что скажет по этому поводу физик. Если грузик растянет пружинку вдвое больше прежнего, то вдвое возрастет сила, вдвое возрастет ус­корение, в два раза больше прежней будет приобретенная ско­рость и за то же самое время грузик пройдет вдвое большее рас­стояние. Но это вдвое большее расстояние - как раз то самое расстояние, которое надо пройти грузику до положения равно­весия. Таким образом, чтобы достичь равновесия, требуется столько же времени и оно не зависит от начального смещения. Иначе говоря, если движение описывается линейным уравне­нием, то независимо от «силы» оно будет развиваться во вре­мени одинаковым образом.

Ошибка пошла нам на пользу - мы узнали, что, умножив решение на постоянную, мы получим решение прежнего уравне­ния. После нескольких проб и ошибок можно прийти к мысли, что вместо манипуляций с х надо изменить шкалу времени. Иначе говоря, уравнение (21.2) должно иметь решение вида

x=cosw 0 t. (21.4)

(Здесь w 0 - вовсе не угловая скорость вращающегося тела, но нам не хватит всех алфавитов, если каждую величину обозна­чать особой буквой.) Мы снабдили здесь w индексом 0, потому что нам предстоит встретить еще много всяких омег: запомним, что w 0 соответствует естественному движению осциллятора. Попытка использовать (21.4) в качестве решения более успешна, потому что dx/dt=- (w 0 sinw 0 t и d 2 x/dt 2 =-w 2 0 w sw 0 t=-w 2 0 x. На­конец-то мы решили то уравнение, которое и хотели решить. Это уравнение совпадает с (21.2), если w 2 0 =k/m.

Теперь нужно понять физический смысл w 0 . Мы знаем, что косинус «повторяется» после того, как угол изменится на 2я. Поэтому x=cosw 0 t будет периодическим движением; полный цикл этого движения соответствует изменению «угла» на 2p. Величину w 0 t часто называют фазой движения. Чтобы изменить w 0 t на 2p, нужно изменить t на t 0 (период полного колебания); конечно, t 0 находится из уравнения w 0 t 0 = 2p. Это значит, что w 0 t 0 нужно вычислять для одного цикла, и все будет повто­ряться, если увеличить t на t 0 ; в этом случае мы увеличим фазу на 2p. Таким образом,

Значит, чем тяжелее грузик, тем медленнее пружинка будет ко­лебаться взад и вперед. Инерция в этом случае будет больше, и если сила не изменится, то ей понадобится большее время для разгона и торможения груза. Если же взять пружинку пожест­че, то движение должно происходить быстрее; и в самом деле, период уменьшается с увеличением жесткости пружины.

Заметим теперь, что период колебаний массы на пружинке не зависит от того, как колебания начинаются. Для пружинки как будто безразлично, насколько мы ее растянем. Уравнение движения (21.2) определяет период колебаний, но ничего не го­ворит об амплитуде колебания. Амплитуду колебания, конеч­но, определить можно, и мы сейчас займемся этим, но для этого надо задать начальные условия.

Дело в том, что мы еще не нашли самого общего решения уравнения (21.2). Имеется несколько видов решений. Реше­ние x=acosw 0 t соответствует случаю, когда в начальный мо­мент пружинка растянута, а скорость ее равна нулю. Можно иначе заставить пружинку двигаться, например улучить момент, когда уравновешенная пружинка покоится (х=0), и резко ударить по грузику; это будет означать, что в момент t=0 пружинке сообщена какая-то скорость. Такому движению будет соответствовать другое решение (21.2) - косинус нужно заменить на синус. Бросим в косинус еще один камень: если x=cosw 0 t-решение, то, войдя в комнату, где качается пружин­ка, в тот момент (назовем его «t=0»), когда грузик проходит через положение равновесия (x=0), мы будем вынуждены заме­нить это решение другим. Следовательно, x=cosw 0 t не может быть общим решением; общее решение должно допускать, так сказать, перемещение начала отсчета времени. Таким свойст­вом обладает, например, решение x=acosw 0 (t-t 1 ), где t 1 - какая-то постоянная. Далее, можно разложить

cos(w 0 t+D )=cosw 0 t cosD -sinw 0 t sinD и записать

x=A cosw 0 t +В sinw 0 t ,

где A=acosD и В=- asinD . Каждую из этих форм можно ис­пользовать для записи общего решения (21.2): любое из су­ществующих в мире решений дифференциального уравнения

d 2 x/dt 2 =-w 2 0 x можно записать в виде

x=acosw 0 (t-t 1 ), (21.6а)

x=acos (w 0 t+D ), (21.6б)

х=A cosw 0 t+B sinw 0 t. (21.6в)

Некоторые из встречающихся в (21.6) величин имеют наз­вания: w 0 называют угловой частотой; это число радианов, на которое фаза изменяется за 1 сек. Она определяется дифферен­циальным уравнением. Другие величины уравнением не опре­деляются, а зависят от начальных условий. Постоянная а слу­жит мерой максимального отклонения груза и называется ам­плитудой колебания. Постоянную D иногда называют фазой колебания, но здесь возможны недоразумения, потому что другие называют фазой w 0 t+D и говорят, что фаза зависит от времени. Можно сказать, что D - это сдвиг фазы по сравнению с некоторой, принимаемой за нуль. Не будем спорить о словах. Разным D соответствуют движения с разными фазами. Вот это верно, а называть ли D фазой или нет - уже другой вопрос.

§ 3. Гармоническое движение и движение по окружности

Косинус в решении уравнения (21.2) наводит на мысль, что гармоническое движение имеет какое-то отношение к движению по окружности. Это сравнение, конечно, искусственное, потому что в линейном движении неоткуда взяться окружности: грузик движется строго вверх и вниз. Можно оправдаться тем, что мы уже решили уравнение гармонического движения, когда изуча­ли механику движения по окружности. Если частица движется по окружности с постоянной скоростью v, то радиус-вектор из центра окружности к частице поворачивается на угол, величина которого пропорциональна времени. Обозначим этот угол q=vt/R (фиг. 21.2).

Фиг. 21.2. Частица, движу­щаяся по кругу с постоянной скоростью.

Тогда d q/dt= w 0 =v/R. Известно, что ускоре­ние а=v 2 /R=w 2 0 R и направлено к центру. Координаты движу­щейся точки в заданный момент равны

х =R cosq, y=Rsinq.

Что можно сказать об ускорении? Чему равна x-составляющая ускорения, d 2 x/dt 2 . Н айти эту величину можно чисто гео­метрически: она равна величине ускорения, умноженной на ко­синус угла проекции; перед полученным выражением надо пос­тавить знак минус, потому что ускорение направлено к центру:

а х =- acosq=-wRcosq=-w 2 0 х. (21.7)

Иными словами, когда частица движется по окружности, гори­зонтальная составляющая движения имеет ускорение, пропор­циональное горизонтальному смещению от центра. Конечно, мы знаем решения для случая движения по окружности: x=Rcos w 0 t. Уравнение (21.7) не содержит радиуса окружности; оно оди­наково при движении по любой окружности при одинаковой w 0 .

Таким образом, имеется несколько причин, по которым следует ожидать, что отклонение грузика на пружинке окажется пропор­циональным cosw 0 t и движение будет выглядеть так, как если бы мы следили за x-координатой частицы, движущейся по окружно­сти с угловой скоростью w 0 . Проверить это можно, поставив опыт, чтобы показать, что движение грузика вверх-вниз на пружинке в точности соответствует движению точки по окружности. На фиг. 21.3 свет дуговой лампы проектирует на экран тени дви­жущихся рядом воткнутой во вращающийся диск иголки и вер­тикально колеблющегося груза.

Фиг. 21.3. Демонстрация экви­валентности простого гармони­ческого движения и равномерного движения по окружности.

Если вовремя и с нужного места заставить грузик колебаться, а потом осторожно подобрать скорость движения диска так, чтобы частоты их движений сов­пали, тени на экране будут точно следовать одна за другой. Вот еще способ убедиться в том, что, находя численное реше­ние, мы почти вплотную подошли к косинусу.

Здесь можно подчеркнуть, что поскольку математика равно­мерного движения по окружности очень сходна с математикой колебательного движения вверх-вниз, то анализ колебатель­ных движений очень упростится, если представить это движе­ние как проекцию движения по окружности. Иначе говоря, мы можем дополнить уравнение (21.2), казалось бы, совершенно лишним уравнением для у и рассматривать оба уравнения совместно. Проделав это, мы сведем одномерные колебания к движению по окружности, что избавит нас от решения дифферен­циального уравнения. Можно сделать еще один трюк - ввести комплексные числа, но об этом в следующей главе.

§ 4. Начальные условия

Давайте выясним, какой смысл имеют А и В или а и D. Конечно, они показывают, как началось движение. Если движе­ние начнется с малого отклонения, мы получим один тип коле­баний; если слегка растянуть пружинку, а потом ударить по грузику - другой. Постоянные А и В или а и D, или какие-нибудь две другие постоянные определяются обстоятельствами, при которых началось движение, или, как обычно говорят, начальными условиями. Нужно научиться определять постоян­ные, исходя из начальных условий. Хотя для этого можно использовать любое из соотношений (21.6), лучше всего иметь дело с (21.6в). Пусть в начальный момент t=0 грузик смещен от положения равновесия на величину х 0 и имеет скорость v 0 . Это самая общая ситуация, какую только можно придумать. (Нельзя задать начального ускорения, потому что оно зависит от свойств пружины; мы можем распорядиться только величи­ной х 0 .) Вычислим теперь А и В. Начнем с уравнения для

х=Acosw o t+B sinw 0 t;

поскольку нам понадобится и скорость, продифференцируем х и получим

v=-w 0 Asinw 0 t+w 0 Bcosw 0 t.

Эти выражения справедливы для всех t, но у нас есть допол­нительные сведения о величинах х и v при t=0. Таким образом, если положить t=0, мы должны получить слева х 0 и v 0 , ибо это то, во что превращаются х и v при t=0. Кроме того, мы знаем, что косинус нуля равен единице, а синус нуля равен нулю. Следовательно,

х 0 ·1+В ·0=А

v u =-w 0 A·0+w 0 B·1=w 0 B.

Таким образом, в этом частном случае

А=х 0 , В=v 0 /w 0 .

Зная А и В, мы можем, если пожелаем, найти а и D.

Итак, задача о движении осциллятора решена, но есть одна интересная вещь, которую надо проверить. Надо выяснить, сохраняется ли энергия. Если нет сил трения, то энергия долж­на сохраняться. Сейчас нам удобно использовать формулы

х=a cos(w o t+D) и v=-w 0 asin(w 0 t+D).

Давайте найдем кинетическую энергию Т и потенциальную энергию U . Потенциальная энергия в произвольный момент времени равна 1 / 2 kx 2 , где х - смещение, a k - постоянная упругости пружинки. Подставляя вместо х написанное выше выражение, найдем

U= 1 / 2 kx 2 = 1 / 2 ka 2 cos 2 (w 0 t+D).

Разумеется, потенциальная энергия зависит от времени; она всегда положительна, это тоже понятно: ведь потенциальная энергия - это энергия пружины, а она изменяется вместе с х. Кинетическая энергия равна 1 / 2 mv 2 ; используя выражение для v, получаем

Т = 1 / 2 mv 2 = 1 / 2 mw 2 0 a 2 sin 2 (w 0 t+D ).

Кинетическая энергия равна нулю при максимальном х, ибо в этом случае грузик останавливается; когда же грузик прохо­дит положение равновесия (x=0), то кинетическая энергия до­стигает максимума, потому что именно тогда грузик движется быстрее всего. Изменение кинетической энергии, таким обра­зом, противоположно изменению потенциальной энергии. Пол­ная энергия должна быть постоянной. Действительно, если вспомнить, что k=mw 2 0 , то

T+U= 1 / 2 mw 2 0 а 2 = 1 / 2 rnw 2 0 a 2 .

Энергия зависит от квадрата амплитуды: если увеличить амп­литуду колебания вдвое, то энергия возрастет вчетверо. Средняя потенциальная энергия равна половине максимальной и, сле­довательно, половине полной; средняя кинетическая энергия также равна половине полной энергии.

§ 5. Колебания под действием внешней силы

Нам остается рассмотреть колебания гармонического осцил­лятора под действием внешней силы. Движение в этом случае описывается уравнением

md 2 x/dt 2 =-kx+F(t). (21.8)

Давайте подумаем, как будет вести себя грузик при этих об­стоятельствах. Внешняя движущая сила может зависеть от времени каким угодно образом. Начнем с простейшей зависимо­сти. Предположим, что сила осциллирует

F(t)=F 0 coswt. (21.9)

Обратите внимание, что w - это не обязательно w 0: будем считать, что можно изменять w , заставляя силу действовать с разной частотой. Итак, надо решить уравнение (21.8) в случае специально подобранной силы (21.9). Каким будет решение (21.8)? Одно из частных решений (общим решением мы еще зай­мемся) выглядит так:

z=Ccoswt, (21.10)

где постоянную С еще надо определить. Иначе говоря, пытаясь найти решение в таком виде, мы предполагаем, что, если тянуть грузик взад и вперед, он в конце концов начнет качаться взад и вперед с частотой действующей силы. Проверим, может ли это быть. Подставив (21.10) в (21.9), получим

Mw 2 С coswt=-mw 2 0 Сcoswt+F 0 coswt. (21.11)

Мы уже заменили k на mw 2 0 , потому что удобнее сравнивать две частоты. Уравнение (21.11) можно поделить на содержащийся в каждом члене косинус и убедиться, что при правильно подоб­ранном значении С выражение (21.10) будет решением. Эта ве­личина С должна быть такой:

Таким образом, грузик т колеблется с частотой действующей на него силы, но амплитуда колебания зависит от соотношения между частотой силы и частотой свободного движения осцил­лятора. Если со очень мала по сравнению с w 0 , то грузик дви­жется вслед за силой. Если же чересчур быстро менять направ­ление толчков, то грузик начинает двигаться в противополож­ном по отношению к силе направлении. Это следует из равенства (21.12), которое говорит нам, что величина С отрицательна, если w больше собственной частоты гармонического осцилля­тора w 0 . (Мы будем называть w 0 собственной частотой гармо­нического осциллятора, а w - приложенной частотой.) При очень высокой частоте знаменатель становится очень большим и грузик практически не движется.

Найденное нами решение справедливо только в том случае, когда уже установилось равновесие между осциллятором и дей­ствующей силой; это происходит после того, как вымрут дру­гие движения. Эти вымирающие движения называют переход­ным откликом на силу F(t), а движение, описываемое (21.10) и (21.12),- равновесным откликом.

Приглядевшись к формуле (21.12), мы заметим любопытную вещь: если частота со почти равна w 0 , то С приближается к бес­конечности. Таким образом, если настроить силу «в лад» с соб­ственной частотой, отклонения грузика достигнут гигантских размеров. Об этом знает всякий, кому когда-либо приходилось раскачивать ребенка на качелях. Это довольно трудно сделать, если закрыть глаза и беспорядочно толкать качели. Но если найти правильный ритм, то раскачать качели легко, однако, как только мы опять собьемся с ритма, толчки начнут тормо­зить качели и от такой работы будет мало проку.

Если частота со будет в точности равна w 0 , то амплитуда должна стать бесконечной, что, разумеется, невозможно. Мы ошиблись, потому что решали не совсем верное уравнение. Составляя уравнение (21.8), мы забыли о силе трения и о мно­гих других силах. Поэтому амплитуда никогда не достигнет бесконечности; пожалуй, пружинка порвется гораздо раньше!

Из книги Живой кристалл автора Гегузин Яков Евсеевич

Из книги Принц из страны облаков автора Гальфар Кристоф

Глава 11 Дверь открылась, и Миртиль застыла на месте. У нее перехватило дыхание. Перед ней стояла такая красивая женщина, какой она еще никогда не видела. Черты г-жи Дрейк были поразительно тонкими: ветерок, овевавший ее прекрасное лицо, и тот, казалось, прикасался к нему с

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Глава 12 Г-жа Дрейк сидела напротив принцессы. Ноздри Миртиль щекотал сладковатый запах настоя, курившегося в чашках. Вдыхая ароматы далеких стран, она, никогда не покидавшая Миртильвиль, как будто перенеслась в неведомые края и мчалась по воздуху над огненно-алыми

Из книги Глаз и Солнце автора Вавилов Сергей Иванович

Глава 14 Незаметно махнув рукой Тому, Тристам занял свое обычное место в последнем ряду. Миртиль бросила беглый взгляд на его руку: вчерашний ожог зажил. Джерри, сидевший рядом с Томом, был вне себя от ярости. Опять этот Тристам дешево отделался! Безобразие! Давно пора

Из книги автора

Глава 15 - Мне совсем не хочется идти к директрисе, - сказал Тристам, как только они с Томом оказались в коридоре.- Раньше нужно было думать, - возразил Том. - Теперь ничего не поделаешь. Придется идти!И друзья поплелись к директорскому кабинету. Тристам не замечал, что

Из книги автора

Глава 16 Ветер дул все сильнее. Стебли рисовых метелок нещадно хлестали Тома и Тристама, убегавших от преследователей. Обезумев от страха, мальчики думали только о том, чтобы нагнать г-жу Дрейк. До защитного ограждения было уже недалеко. Возле городской черты мать Тристама

Из книги автора

Глава 17 Получасом раньше, в тот самый момент, когда в класс Лазурро вбежал полковник, Миртиль поняла, что для их городка наступили последние часы.- Они нас нашли, - твердо сказал полковник. - Они уже здесь. Миртиль, Тристам, идемте со мной, вы должны бежать.Миртиль

Из книги автора

Глава 13 Когда в гостиную вошел Том, Тристам сидел на диване. Он повесил мамин кулон себе на шею, заправив кристалл под свитер, и смотрел на портрет Миртиль, лежавший перед ним на низеньком столике. Глаза Тристама блестели, как будто он только что плакал.- Ну и тип! -

Из книги автора

Глава 7 - Ты знаешь что-нибудь про аэродинамику? - спросил Вакинг.- Ароэ… что?В наушниках послышался тяжелый вздох Тома, летевшего вместе с Робом. Их машину отделяло от ласточки Вакинга несколько километров.- Это наука о свойствах воздуха, обтекающего самолеты, ракеты

Из книги автора

Глава 10 - Все пропало! - воскликнул Том. - Роб не прилетит! Как думаешь, у лейтенанта был план на этот случай?Тристам явно сомневался, но промолчал. Он с отчаянием смотрел, как звенья по десять машин, одно за другим, заходят на посадку. В некоторых, особенно крупных

Из книги автора

Глава 13 Внутри жуткого облака было нечем дышать. Густой серый туман ослепил Миртиль и Тристама, порывистый ветер, с каждым мгновением усиливаясь, швырял машину как щепку, и они почти сразу перестали понимать, куда их тащит. Мощь чудовища, в утробе которого они оказались,

Из книги автора

Глава 15 Они шли долго, может быть, несколько часов. Тристам молча шагал за Вакингом и Миртиль, улавливая обрывки их разговора. Так, он услышал, что большинство летчиков из Белой Столицы, по мнению лейтенанта, должны были спастись и даже не слишком пострадать: все они были

Из книги автора

Глава 16 Они шли по лесу, и Миртиль рассказывала Тристаму обо всем, что с ней приключилось: о встрече с тираном, о тропическом циклоне и о том, какой выбор предложил ей этот человек, не скрывавший своего безумия.- Ты выбрала смерть? - спросил потрясенный Тристам.- Да. И

Из книги автора

ПЕРВЫЕ ПОПЫТКИ ПОЛУЧИТЬ САМО-ДЕИСТВУЮЩИИ ДВИГАТЕЛЬ - МЕХАНИЧЕСКИЙ ОСЦИЛЛЯТОР - РАБОТА ДЮАРА И ЛИНДЕ - ЖИДКИЙ ВОЗДУХ Осознав эту истину, я начал изыскивать пути выполнения моей идеи, и после длительных размышлений, я наконец придумал аппарат, который смог бы получать

Из книги автора

РАЗВИТИЕ НОВОГО ПРИНЦИПА - ЭЛЕКТРИЧЕСКИЙ ОСЦИЛЛЯТОР - ПРОИЗВЕДЕНИЕ КОЛОССАЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ДВИЖЕНИЙ - ЗЕМЛЯ ОТВЕЧАЕТ ЧЕЛОВЕКУ - МЕЖПЛАНЕТНАЯ СВЯЗЬ ТЕПЕРЬ СТАЛА ВОЗМОЖНОЙ Я решил сконцентрировать свои усилия на этой несколько рискованной задаче, хотя и сулившей

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей