Математическая модель объекта явления процесса. Определение и назначение математического моделирования

По учебнику Советова и Яковлева : «модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.» (с. 6) «Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием.» (с. 6) «Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи.»

Наконец, наиболее лаконичное определение математической модели: "Уравнение , выражающее идею . "

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий :

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика» Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика».

Содержательные и формальные модели

Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель . Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель , умозрительная модель или предмодель . При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершенных формализованных теорий (передний край физики , биология , экономика , социология , психология , и большинство других областей), создание содержательных моделей резко усложняется.

Содержательная классификация моделей

Никакая гипотеза в науке не бывает доказана раз и навсегда. Очень чётко это сформулировал Ричард Фейнман :

«У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально. Значит ли это, что ваша теория правильна? Нет, просто-напросто это значит, что вам не удалось ее опровергнуть.»

Если модель первого типа построена, то это означает что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Тип 2: Феноменологическая модель (ведем себя так, как если бы …)

Феноменологическая модель содержит механизм для описания явления. Однако этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично, новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира , проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Тип 3: Приближение (что-то считаем очень большим или очень малым )

Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика . Уравнения заменяются линейными. Стандартный пример - закон Ома .

А вот и тип 8, широко распространенный в математических моделях биологических систем.

Тип 8: Демонстрация возможности (главное - показать внутреннюю непротиворечивость возможности )

Это тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципам и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

Один из самых знаменитых таких экспериментов - геометрия Лобачевского (Лобачевский называл её «воображаемой геометрией»). Другой пример - массовое производство формально - кинетических моделей химических и биологических колебаний, автоволн и др. Парадокс Эйнштейна - Подольского - Розена был задуман как модель 7 типа, для демонстрации противоречивости квантовой механики. Совершенно незапланированным образом он со временем превратился в модель 8 типа - демонстрацию возможности квантовой телепортации информации.

Пример

Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой m , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием x от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука (F = − k x ) после чего воспользуемся вторым законом Ньютона , чтобы выразить его в форме дифференциального уравнения :

где означает вторую производную от x по времени: .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором ».

По формальной классификация эта модель линейная, детерминисткая, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т.~д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям, её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор - пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о её применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жёсткой». Она может задаваться, например, следующим уравнением:

Здесь - некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения, - некоторый малый параметр. Явный вид функции f нас в данный момент не интересует. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида , то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания . Поведение системы качественно изменилось.

Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор - пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности : принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «Общей теории систем ».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача : структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда ни различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера , - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Англии обрушился металлический мост через реку Тей , конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача : известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования ). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение ) или быть результатом специально планируемого в ходе решения экперимента (активное наблюдение ).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

Дополнительные примеры

где x s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x s , причем такое поведение структурно устойчиво.

Эта система имеет равновесное состояние , когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора . Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым : малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения . Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать . Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра - Лотки ответа не дает: здесь требуются дополнительные исследования.

Примечания

  1. «A mathematical representation of reality»(Encyclopaedia Britanica)
  2. Новик И. Б. , О философских вопросах кибернетического моделирования. М., Знание, 1964.
  3. Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  4. Самарский А. А. , Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры. . - 2-е изд., испр.. - М.: Физматлит, 2001. - ISBN 5-9221-0120-X
  5. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  6. Wiktionary: mathematical model
  7. CliffsNotes
  8. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, Springer, Complexity series, Berlin-Heidelberg-New York, 2006. XII+562 pp. ISBN 3-540-35885-4
  9. «Теория считается линейной или нелинейной в зависимости от того, какой - линейный или нелинейный - математический аппарат, какие - линейные или нелинейные - математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А. , Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. - M.: URSS, 2006. - 208 с. ISBN 5-484-00183-8
  10. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем - это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения ее состояния.» Анищенко В. С. , Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.
  11. «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  12. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует - например, как он реагирует на внешние воздействия,- то она называется функциональной или, образно, черным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  13. «Очевидный, но важнейший начальный этап построения или выбора математической модели - это получение по возможности более четкого представления о моделируемом объекте и уточнение его содержательной модели, основанное на неформальных обсуждениях. Нельзя жалеть времени и усилий на этот этап, от него в значительной мере зависит успех всего исследования. Не раз бывало, что значительный труд, затраченный на решение математической задачи, оказывался малоэффективным или даже потраченным впустую из-за недостаточного внимания к этой стороне дела.» Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4, с. 35.
  14. «Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель М в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в) принимаются окончательно гипотезы и предположения; г) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2, с. 93.

С.П. БОБКОВ, Д.О. БЫТЕВ

МОДЕЛИРОВАНИЕ СИСТЕМ

Учебное пособие


Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

Международный университет бизнеса и новых технологий (институт)

С.П. БОБКОВ, Д.О. БЫТЕВ

МОДЕЛИРОВАНИЕ СИСТЕМ

для студентов высших учебных заведений.


Бобков С.П. Моделирование систем: учеб. пособие / С.П. Бобков,

Д.О. Бытев; Иван. гос. хим.-технол. ун-т. – Иваново, 2008. – 156 с. - ISBN

Цель учебного пособия – дать студентам общее представление о со- временных методах моделирования технических и технико-экономических систем и объектов.

В пособии рассматриваются общие вопросы и современная методо-

логия моделирования, непрерывные и дискретные детерминированные мо-

дели объектов и систем, стохастические модели с дискретным и непрерыв- ным временем. Большое внимание уделено методам имитационного моде- лирования систем с вероятностными характеристиками. Дается обзор дру- гих подходов к моделированию сложных систем, таких как информацион- но-энтропийный, использование нейронных сетей и сетей Петри.

Учебное пособие предназначено для студентов, обучающихся по специальностям подготовки 080801 «Прикладная информатика» и 230201

«Информационные системы и технологии». Кроме того, пособие может быть полезным для студентов других специальностей и направлений.

Табл.7. Ил.92. Библиогр.:10 назв.

Печатается по решению редакционно-издательского совета Иванов-

ского государственного химико-технологического университета.

Рецензенты:

кафедра прикладной математики Ивановского государственного энергетического университета; доктор физико-математических наук В.А.Соколов, (Ярославский государственный университет).

ISBN 5-9616-0268-6 © ГОУ ВПО Ивановский государст- венный химико-технологический университет», 2008


1.5. Понятие математической схемы моделирования. . . . . . . . . . . . . . 12

1.6. Общая методика создания математических моделей. . . . . . . . . . . 13

1.7. Основные понятия системного подхода к созданию

математических моделей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1. Математические модели технических объектов. . . . . . . . . . . . . . . 20

2.1.1. Компонентные функциональные уравнения объектов. . . . . 20

2.1.2. Фазовые переменные и их аналогии. . . . . . . . . . . . . . . . . . . . 23

2.1.3. Топологические уравнения. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4. Примеры создания моделей технических объектов. . . . . . . 25

2.1.5. Модели технологических аппаратов. . . . . . . . . . . . . . . . . . . 29

2.2. Конечные автоматы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1. Понятие конечного автомата. . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2. Способы описания и классы конечных автоматов. . . . . . . . 32

2.2.3. Другие виды конечных автоматов. . . . . . . . . . . . . . . . . . . . . 37

3. СТОХАСТИЧЕСКИЕ МОДЕЛИ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1. Элементы теории марковских случайных процессов. . . . . . . . . . . 39

3.1.1. Понятие случайного процесса. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2. Дискретные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3. Стационарное распределение вероятностей. . . . . . . . . . . . . 43

3.1.4. Непрерывные марковские цепи. . . . . . . . . . . . . . . . . . . . . . . 45

3.1.5. Уравнения А.Н. Колмогорова. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.6. Потоки событий. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2. Основы теории массового обслуживания. . . . . . . . . . . . . . . . . . . . . 51

3.2.1. Обобщенная структурная схема СМО. Параметры

и характеристики. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2. Разомкнутые СМО с ожиданием и терпеливыми заявками. 58

3.2.3. Предельные варианты разомкнутой СМО. . . . . . . . . . . . . . . 62

3.2.4.Общий случай разомкнутой СМО. . . . . . . . . . . . . . . . . . . . . . 64

3.2.5. Замкнутые СМО. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.6. Сети массового обслуживания

с простейшими потоками событий. . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3. Вероятностные автоматы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77


4. ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . .
4.1. Определение метода имитационного моделирования. . . . . . . . . .
4.2. Основные понятия имитационного моделирования. . . . . . . . . . . .
4.3. Основные этапы имитационного моделирования. . . . . . . . . . . . . .
4.4. Время в имитационных моделях. Псевдопараллелизм. . . . . . . . . .
4.5. Обобщённые алгоритмы имитационного моделирования. . . . . . .
4.6. Моделирование случайных факторов. . . . . . . . . . . . . . . . . . . . . . . .
4.6.1. Моделирование базовых случайных величин. . . . . . . . . . . .
4.6.2. Моделирование непрерывных случайных величин
с произвольным распределением. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.3. Моделирование дискретных случайных величин. . . . . . . . .
4.6.4. Моделирование случайных событий и их потоков. . . . . . .
4.7 Моделирование случайных процессов. . . . . . . . . . . . . . . . . . . . . . . .
4.7.1 Дискретные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.2 Непрерывные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . .
4.8. Обработка и анализ результатов имитационного моделирования.
4.8.1. Оценка вероятностных параметров. . . . . . . . . . . . . . . . . . . .
4.8.2. Оценка корреляционных параметров. . . . . . . . . . . . . . . . . . .
4.8.3. Расчет средних по времени параметров СМО. . . . . . . . . . . .
4.9. Планирование экспериментов с имитационными моделями. . . . .
4.10. Общие проблемы имитационного моделирования. . . . . . . . . . . .
5. ОБЗОР АЛЬТЕРНАТИВНЫХ ПОДХОДОВ К МОДЕЛИРОВАНИЮ
СЛОЖНЫХ СИСТЕМ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1. Сети Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1. Определение сети Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2. Функционирование сети Петри. . . . . . . . . . . . . . . . . . . . . . . .
5.1.3. Анализ сетей Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2. Нейронные сети. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1. Понятие нейронной сети. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2. Искусственный нейрон. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.3. Основные виды активационных функций искусственных
нейронов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.4. Виды простейших нейронных сетей. . . . . . . . . . . . . . . . . . . .
5.2.5. Рекуррентные и самоорганизующиеся нейронные сети. . .
5.2.6. Общие замечания по использованию нейронных сетей. . . .
5.3. Информационно-энтропийный подход к моделированию систем
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .

ВВЕДЕНИЕ

Моделирование является универсальным методом получения и использо- вания знаний об окружающем мире. Моделирование всегда используется чело- веком в целенаправленной деятельности, особенно в исследовательской. В со- временных условиях усиливается роль и значение математического моделиро- вания, которое с развитием средств вычислительной техники часто стали назы- вать компьютерным.

Математические (компьютерные) модели, в силу своей логичности и строгого формального характера, позволяют выявить основные факторы, опре- деляющие свойства изучаемых систем и исследовать их реакции на внешние воздействия и изменения параметров. Часто математические модели проще и удобнее использовать, чем натуральные (физические). Они позволяют прово- дить вычислительные эксперименты, реальная постановка которых затруднена или невозможна.

Изучение основных принципов математического моделирования является неотъемлемой частью подготовки специалистов в технических областях дея- тельности. Дисциплины, связанные с изучением основных аспектов моделиро- вания объектов и систем в обязательном порядке входят в соответствующие учебные планы, являясь компонентами федеральных образовательных стандар- тов.

Целью данного учебного пособия является последовательное изложение современных методов моделирования. Пособие предназначено главным обра- зом для студентов, обучающихся по специальностям и направлениям «Инфор- мационные системы» и «Прикладная информатика (по отраслям». Однако, учи- тывая опыт преподавания подобных дисциплин в технических вузах, авторы сочли целесообразным не ограничиваться рассмотрением только информаци- онных систем, но и включить в текст рассмотрение технических и технико- экономических систем и объектов.

Материал пособия выстроен следующим образом. В первой главе рас- сматриваются общие вопросы и современная методология моделирования, ис- пользование системного подхода при создании математических моделей. Вто- рая глава посвящена рассмотрению непрерывных и дискретных детерминиро- ванных моделей объектов и систем. Предлагается использование метода анало- гий при синтезе и анализе моделей технических объектов различной физиче- ской природы. В третьей главе изучаются стохастические модели с дискретным и непрерывным временем. Большое внимание в пособии уделено методам ими- тационного моделирования систем с вероятностными характеристиками, что составляет содержание четвертой главы. В пятой главе дается обзор других подходов к моделированию сложных систем, таких как информационно- энтропийный, использование нейронных сетей и сетей Петри.


ОБЩИЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Основные понятия математического моделирования

Решение практических задач математическими методами последовательно осуществляется путем формулировки задачи (разработки математической модели), выбора метода исследования полученной математической модели, анализа полученного математического результата. Математическая формулировка задачи обычно представляется в виде геометрических образов, функций, систем уравнений и т.п. Описание объекта (явления) может быть представлено с помощью непрерывной или дискретной, детерминированной или стохастической и другими математическими формами.

Теория математического моделирования обеспечивает выявление закономерностей протекания различных явлений окружающего мира или работы систем и устройств путем их математического описания и моделирования без проведения натурных испытаний. При этом используются положения и законы математики, описывающие моделируемые явления, системы или устройства на некотором уровне их идеализации.

Математическая модель (ММ) представляет собой формализованное описание системы (или операции) на некотором абстрактном языке, например, в виде совокупности математических соотношений или схемы алгоритма, т. е. такое математическое описание, которое обеспечивает имитацию работы систем или устройств на уровне, достаточно близком к их реальному поведению, получаемому при натурных испытаниях систем или устройств. Любая ММ описывает реальный объект, явление или процесс с некоторой степенью приближения к действительности. Вид ММ зависит как от природы реального объекта, так и от задач исследования.

Математическое моделирование общественных, экономических, биологических и физических явлений, объектов, систем и различных устройств является одним из важнейших средств познания природы и проектирования самых разнообразных систем и устройств. Известны примеры эффективного использования моделирования в создании ядерных технологий, авиационных и аэрокосмических систем, в прогнозе атмосферных и океанических явлений, погоды и т.д.

Однако для таких серьезных сфер моделирования нередко нужны суперкомпьютеры и годы работы крупных коллективов ученых по подготовке данных для моделирования и его отладки. Тем не менее, и в этом случае математическое моделирование сложных систем и устройств не только экономит средства на проведение исследований и испытаний, но и может устранить экологические катастрофы - например, позволяет отказаться от испытаний ядерного и термоядерного оружия в пользу его математического моделирования или испытаний аэрокосмических систем перед их реальными полетами.

Между тем математическое моделирование на уровне решения более простых задач, например, из области механики, электротехники, электроники, радиотехники и многих других областей науки и техники в настоящее время стало доступным выполнять на современных ПК. А при использовании обобщенных моделей становится возможным моделирование и достаточно сложных систем, например, телекоммуникационных систем и сетей, радиолокационных или радионавигационных комплексов.

Целью математического моделирования является анализ реальных процессов (в природе или технике) математическими методами. В свою очередь, это требует формализации ММ процесса, подлежащего исследованию. Модель может представлять собой математическое выражение, содержащее переменные, поведение которых аналогично поведению реальной системы. Модель может включать элементы случайности, учитывающие вероятности возможных действий двух или большего числа «игроков», как, например, в теории игр; либо она может представлять реальные переменные параметры взаимосвязанных частей действующей системы.

Математическое моделирование для исследования характеристик систем можно разделить на аналитическое, имитационное и комбинированное. В свою очередь, ММ делятся на имитационные и аналитические.

2. Особенности построения математических моделей

Для использования ЭВМ при решении прикладных задач прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена егоматематическая модель.

Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.

Для построения математической модели необходимо:

Тщательно проанализировать реальный объект или процесс;

Выделить его наиболее существенные черты и свойства;

Определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;

Описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);

Выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;

Определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

Построение алгоритма, моделирующего поведение объекта, процесса или системы;

Проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;

Корректировка модели;

Использование модели.

Математическое описание исследуемых процессов и систем зависит от:

Природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.

Требуемой достоверности и точности изучения и исследования реальных процессов и систем.

На этапе выбора математической модели устанавливаются: линейность и нелинейность объекта, процесса или системы, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса. При математическом моделировании сознательно отвлекаются от конкретной физической природы объектов, процессов или систем и, в основном, сосредотачиваются на изучении количественных зависимостей между величинами, описывающими эти процессы.

Математическая модель никогда не бывает полностью тождественна рассматриваемому объекту, процессу или системе. Основанная на упрощении, идеализации, она является приближенным описанием объекта. Поэтому результаты, полученные при анализе модели, носят приближенный характер. Их точность определяется степенью адекватности (соответствия) модели и объекта.

Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальныйобъект (поверхность стола) заменяется абстрактной математической моделью - прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола.

Однако модель прямоугольника для письменного стола - это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой. Для одного и того же стола мы можем принять либо модель прямоугольника, либо более сложную модель четырехугольника общего вида, либо четырехугольника с закругленными углами. Выбор той или иной модели определяется требованием точности. С повышением точности модель приходится усложнять, учитывая новые и новые особенности изучаемого объекта, процесса или системы.

Рассмотрим другой пример: исследование движения кривошипно-шатунного механизма (Рис. 4).

Для кинематического анализа этого механизма, прежде всего, необходимо построить его кинематическую модель. Для этого:заменяем механизм его кинематической схемой, где все звенья заменены жесткими связями.Пользуясь этой схемой, мы выводим уравнение движения механизма.Дифференцируя последнее, получаем уравнения скоростей и ускорения, которые представляют собой дифференциальные уравнения 1-го и 2-го порядка.

Запишем эти уравнения:

где С 0 - крайнее правое положение ползуна С:

r - радиус кривошипа AB;

l - длина шатуна BC;

Угол поворота кривошипа;

Полученные трансцендентные уравнения представляют математическую модель движения плоского аксиального кривошипно-шатунного механизма, основанную на следующих упрощающих предположениях:нас не интересовали конструктивные формы и расположение масс, входящих в механизм тел, и все тела механизма мы заменили отрезками прямых. На самом деле, все звенья механизма имеют массу и довольно сложную форму. Например, шатун - это сложное сборное соединение, форма и размеры которого, конечно, будут влиять на движение механизма;при построении математической модели движения рассматриваемого механизма мы также не учитывали упругость входящих в механизм тел, т.е. все звенья рассматривали как абстрактные абсолютно жесткие тела. В действительности же, все входящие в механизм тела - упругие тела. Они при движении механизма будут как-то деформироваться, в них могут даже возникнуть упругие колебания. Это все, конечно, также будет влиять на движение механизма;мы не учитывали погрешность изготовления звеньев, зазоры в кинематических парах A, B, C и т.д.

Таким образом, важно еще раз подчеркнуть, что, чем выше требования к точности результатов решения задачи, тем больше необходимость учитывать при построении математической модели особенности изучаемого объекта, процесса или системы. Однако, здесь важно во время остановиться, так как сложная математическая модель может превратиться в трудно разрешимуюзадачу.

Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической. Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер. Для проверки выводов необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента. Таким образом, вопрос применимости некоторой математической модели к изучению рассматриваемого объекта, процесса или системы не является математическим вопросом и не может быть решен математическими методами.

Основным критерием истинности является эксперимент, практика в самом широком смысле этого слова.

Построение математической модели в прикладных задачах - один из наиболее сложных и ответственных этапов работы. Опыт показывает, что во многих случаях правильно выбрать модель - значит решить проблему более, чем наполовину. Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, - определенной математической культурой, опытом исследования в своей области, знанием ЭВМ и программирования.

3. Обобщенная математическая модель

Математическая модель описывает зависимость между исходными данными и искомыми величинами.Элементами обобщенной математической модели являются (рис. 1):

· множество входных данных (переменные) X,Y; X - совокупность варьируемых переменных; Y - независимые переменные (константы);

· математический оператор L, определяющий операции над этими данными; под которым понимается полная система математических операций, описывающих численные или логические соотношения между множествами входных и выходных данных (переменные);

· множество выходных данных (переменных) G(X,Y); представляет собой совокупность критериальных функций, включающую (при необходимости) целевую функцию.

Математическая модель является математическим аналогом проектируемого объекта. Степень адекватности ее объекту определяется постановкой и корректностью решений задачи проектирования.

Множество варьируемых параметров (переменных) X образует пространство варьируемых параметров R x (пространство поиска), которое является метрическим с размерностью n, равной числу варьируемых параметров.

Множество независимых переменных Y образуют метрическое пространство входных данных R y . В том случае, когда каждый компонент пространства R y задается диапазоном возможных значений, множество независимых переменных отображается некоторым ограниченным подпространством пространства R y .

Множество независимых переменных Y определяет среду функционирования объекта, т.е. внешние условия, в которых будет работать проектируемый объект.Это могут быть:

Технические параметры объекта, не подлежащие изменению в процессе проектирования;

Физические возмущения среды, с которой взаимодействует объект проектирования;

Тактические параметры, которые должен достигать объект проектирования.

Выходные данные рассматриваемой обобщенной модели образуют метрическое пространство критериальных показателей R G .

Схема использования математической модели в системе автоматизированного проектирования показана на рис.2.

4. Требования к математическим моделям

математический модель задача результат

Основными требованиями к МО являются требования адекватности, точности, экономичности.

1. Адекватность - способность отображать заданные свойства объекта с погрешностью не выше заданной.

2. Точность - оценивается степенью совпадения значений параметров действительного объекта и рассчитанных на математических моделях.

3. Универсальность - характеризует полноту отображения в модели свойств реального объекта.

4. Экономичность - обычно характеризуется необходимыми затратами машинной памяти и времени. Иногда оценивается по количеству операций необходимых при одном обращении к модели.Аналогичные требования по точности и экономичности фигурируют при выборе численных методов решения уравнений модели.

Требования универсальности, точности, адекватности с одной стороны и экономичности с другой противоречивы. Это обуславливает работу целого спектра моделей отличающихся теми или иными свойствами.

5. Методы получения математической модели

1. Выбор свойств объекта, которые подлежат отражению в модели. Выбор основан на анализе возможных применений модели и определяет степень универсальности ММ.

2. Сбор исходной информации о выбранных свойствах объекта. Источниками сведений могут быть: опыт и знания инженера, разрабатывающего модель; научно-техническая литература, прежде всего справочная; описания прототипов -- имеющихся ММ для элементов, близких по своим свойствам к исследуемому объекту; результаты экспериментального измерения параметров и т. п.

3. Синтез структуры ММ. Структура ММ -- общий вид математических соотношений модели без конкретизации числовых значений фигурирующих в них параметров. Структура модели может быть представлена также в графической форме, например в виде эквивалентной схемы или графа. Синтез структуры -- наиболее ответственная и наиболее трудно поддающаяся формализации операция.

4. Расчет числовых значений параметров ММ. Эта задача ставится как задача минимизации погрешности модели заданной структуры.

5. Оценка точности и адекватности ММ. Для оценки точности должны использоваться значения, которые не фигурировали при решении задачи.

6. Реализация функциональных ММ на ЭВМ подразумевает выбор численного метода решения уравнений и преобразование уравнений в соответствии с особенностями выбранного метода. Конечная цель преобразований -- получение рабочей программы анализа в виде последовательности элементарных действий (арифметических и логических операций), реализуемых командами ЭВМ. Указанные преобразования исходной ММ в последовательности элементарных действий ЭВМ выполняет автоматически по специальным программам, создаваемым инженером -- разработчиком САПР. Инженер-пользователь САПР должен лишь указать, какие программы из имеющихся он хочет использовать. Процесс преобразований ММ, относящихся к различным иерархическим уровням, иллюстрирует рисунок 3.

Рисунок 3 Процесс преобразования математических моделей ДУЧП -- дифференциальные уравнения с частными производными; ОДУ -- обыкновенные дифференциальные уравнения; АУ -- алгебраические уравнения; ЛАУ -- линейные алгебраические уравнения; 1...12 -- взаимно направленные пути дискретизации переменных в ММ

7. Инженер-пользователь задает исходную информацию об анализируемом объекте и о проектных процедурах, подлежащих выполнению, на удобном для него проблемно-ориентированном языке программного комплекса. Ветви 1 на рисунке 5.1 соответствует постановка задачи, относящейся к микроуровню, как краевой, чаще всего в виде ДУЧП. Численные методы решения ДУЧП основаны на дискретизации переменных и алгебраизации задачи.

Дискретизация заключается в замене непрерывных переменных конечным множеством их значений в заданных для исследования пространственном и временном интервалах; алгебраизация -- в замене производных алгебраическими соотношениями.

6. Использование математических моделей

Вычислительная мощность современных компьютеров в сочетании с предоставлением пользователю всех ресурсов системы, возможностью диалогового режима при решении задачи и анализе результатов позволяют свести к минимуму время решения задачи.

При составлении математической модели от исследователя требуется:

· изучить свойства исследуемого объекта;

· умение отделить главные свойства объекта от второстепенных;

· оценить принятые допущения.

Модель описывает зависимость между исходными данными и искомыми величинами. Последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам, называют алгоритмом.

Алгоритм решения задачи связан с выбором численного метода. В зависимости от формы представления математической модели (алгебраическая или дифференциальная форма) используются различные численные методы.

Размещено на Allbest.ru

Подобные документы

    Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.

    курсовая работа , добавлен 11.12.2011

    Применение системы MathCAD при решении прикладных задач технического характера. Основные средства математического моделирования. Решение дифференциальных уравнений. Использование системы MathCad для реализации математических моделей электрических схем.

    курсовая работа , добавлен 17.11.2016

    Сущность понятия "дифференциальное уравнение". Главные этапы математического моделирования. Задачи, приводящие к решению дифференциальных уравнений. Решение задач поиска. Точность маятниковых часов. Решение задачи на определение закона движения шара.

    курсовая работа , добавлен 06.12.2013

    Изучение актуальной задачи математического моделирования в биологии. Исследование модифицированной модели Лотки-Вольтерра типа конкуренция хищника за жертву. Проведение линеаризации исходной системы. Решение системы нелинейных дифференциальных уравнений.

    контрольная работа , добавлен 20.04.2016

    Основные положения теории математического моделирования. Структура математической модели. Линейные и нелинейные деформационные процессы в твердых телах. Методика исследования математической модели сваи сложной конфигурации методом конечных элементов.

    курсовая работа , добавлен 21.01.2014

    Понятие и виды задач математического линейного и нелинейного программирования. Динамическое программирование, решение задачи средствами табличного процессора Excel. Задачи динамического программирования о выборе оптимального распределения инвестиций.

    курсовая работа , добавлен 21.05.2010

    Общая характеристика факультативных занятий по математике, основные формы и методы проведения. Составление календарно-тематического плана факультативного курса

Лекция № 1

Введение. Понятие математических моделей и методов

Раздел 1. Введение

2. Методы построения математических моделей. Понятие о системном подходе. 1

3. Основные понятия математического моделирования экономических систем.. 4

4. Методы аналитического, имитационного и натурного моделирования. 5

Контрольные вопросы.. 6

1. Содержание, цели и задачи дисциплины «Методы моделирования»

Настоящая дисциплина посвящена изучению методов моделирования и практическому применению полученных знаний. Целью дисциплины является обучение студентов общим вопросам теории моделирования, методам построения математических моделей и формального описания процессов и объектов, применению математических моделей для проведения вычислительных экспериментов и решения оптимизационных задач, с использованием современных вычислительных средств.

В задачи дисциплины входит:

Ознакомить студентов с основными понятиями теории математического моделирования, теории систем, теории подобия, теории планирования эксперимента и обработки экспериментальных данных, используемых для построения математических моделей,

Дать студентам навыки в области постановки задачи моделирования, математического описания объектов /процессов/, численных методов реализации математических моделей на ЭВМ и решения оптимизационных задач.

В результате изучения дисциплины студент должен освоить методы математического моделирования процессов и объектов от постановки задачи до реализации математических моделей на ЭВМ и оформления результатов исследования моделей.

Курс дисциплины рассчитан на 12 лекций и 12 практических работ. В результате изучения дисциплины студент должен освоить методы математического моделирования от постановки задачи до реализации математических моделей на ЭВМ

2. Методы построения математических моделей. Понятие о системном подходе

5. Решение задачи.

Последовательное использование методов исследования операций и их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней, которые к тому же не могут согласовать эти свои волевые решения.

Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.

4. Методы аналитического, имитационного и натурного моделирования

Моделирование представляет собой мощный метод научного познания, при использовании которого исследуемый объект заменяется более простым объектом, называемым моделью. Основными разновидностями процесса моделирования можно считать два его вида - математическое и физическое моделирование. При физическом (натурном) моделировании исследуемая система заменяется соответствующей ей другой материальной системой, которая воспроизводит свойства изучаемой системы с сохранением их физической природы. Примером этого вида моделирования может служить пилотная сеть, с помощью которой изучается принципиальная возможность построения сети на основе тех или иных компьютеров, коммуникационных устройств, операционных систем и приложений.

Возможности физического моделирования довольно ограничены. Оно позволяет решать отдельные задачи при задании небольшого количества сочетаний исследуемых параметров системы. Действительно, при натурном моделировании вычислительной сети практически невозможно проверить ее работу для вариантов с использованием различных типов коммуникационных устройств - маршрутизаторов, коммутаторов и т. п. Проверка на практике около десятка разных типов маршрутизатров связана не только с большими усилиями и временными затратами, но и с немалыми материальными затратами.

Но даже и в тех случаях, когда при оптимизации сети изменяются не типы устройств и операционных систем, а только их параметры, проведение экспериментов в реальном масштабе времени для огромного количества всевозможных сочетаний этих параметров практичеки невозможно за обозримое время. Даже простое изменение максимального размера пакета в каком-либо протоколе требует переконфигурирования операционной системы в сотнях компьютеров сети, что требует от администратора сети проведения очень большой работы.

Поэтому, при оптимизации сетей во многих случаях предпочтительным оказывается использование математического моделирования. Математическая модель представляет собой совокупность соотношений (формул, уравнений, неравенств, логических условий), определяющих процесс изменения состояния системы в зависимости от ее параметров, входных сигналов, начальных условий и времени.

Особым классом математических моделей являются имитационные модели. Такие модели представляют собой компьютерную программу, которая шаг за шагом воспроизводит события, происходящие в реальной системе. Применительно к вычислительным сетям их имитационные модели воспроизводят процессы генерации сообщений приложениями, разбиение сообщений на пакеты и кадры определенных протоколов, задержки, связанные с обработкой сообщений, пакетов и кадров внутри операционной системы, процесс получения доступа компьютером к разделяемой сетевой среде, процесс обработки поступающих пакетов маршрутизатором и т. д. При имитационном моделировании сети не требуется приобретать дорогостоящее оборудование - его работы имитируется программами, достаточно точно воспроизводящими все основные особенности и параметры такого оборудования.

Преимуществом имитационных моделей является возможность подмены процесса смены событий в исследуемой системе в реальном масштабе времени на ускоренный процесс смены событий в темпе работы программы. В результате за несколько минут можно воспроизвести работу сети в течение нескольких дней, что дает возможность оценить работу сети в широком диапазоне варьируемых параметров.

Результатом работы имитационной модели являются собранные в ходе наблюдения за протекающими событиями статистические данные о наиболее важных характеристиках сети: временах реакции, коэффициентах использования каналов и узлов, вероятности потерь пакетов и т. п.

Существуют специальные языки имитационного моделирования, которые облегчают процесс создания программной модели по сравнению с использованием универсальных языков программирования. Примерами языков имитационного моделирования могут служить такие языки, как SIMULA, GPSS, SIMDIS.

Существуют также системы имитационного моделирования, которые ориентируются на узкий класс изучаемых систем и позволяют строить модели без программирования.

Контрольные вопросы

Сформулируйте определение процесса моделирования. Что такое модель? Свойства моделирования. Сформулируйте основные этапы построения модели классическим методом. Сформулируйте основные этапы построения модели при системном подходе. Назовите функции моделей. Каковы этапы процесса решения экономических задач? Основные разновидности процесса моделирования.

Под математическим моделированием, в узком смысле слова, понимают описание в виде уравнений и неравенств реальных физических, химических, технологических, биологических, экономических и других процессов. Для того чтобы использовать математические методы для анализа и синтеза различных процессов, необходимо уметь описать эти процессы на языке математики, то есть описать в виде системы уравнений и неравенств .

Математические методы выступают как способ получения новых знаний об объекте. Это относится не только к системам. Оглядываясь назад, обращаясь к истории науки, исследователь видит, что всю динамику науки можно рассматривать как непрерывный процесс построения новых, более совершенных и мощных моделей. Укоренилось представление, что «всякое познание является моделированием» (Н.Амосов). Под воздействием общей теории систем произошло переосмысление, переоценка и классических представлений. Понятие математического моделирования стало толковаться настолько расширительно, что включило в себя всю формализацию и математизацию знания. «Математическая модель - это лишь специальный способ описания, позволяющий для анализа использовать формально-логический аппарат математики » (Моисеев Н.Н., 1973).

Но модели сложных и больших систем - это нечто иное принципиально, качественно. Аналитического, формально-логического аппарата здесь уже недостаточно. В рамках этой работы под математической моделью понимается любая математическая конструкция, являющаяся большой и/или сложной динамической системой и обладающая свойством структурно-функционального изоморфизма по отношению к исследуемой системе (системе-оригиналу).

Между моделированием и получением количественного или качественного результата математическими методами существует глубокое различие. Применение математики становится возможным тогда, когда становится ясно, что и с какой целью определять, оценивать, измерять, что и как обрабатывать математическими методами. Модель для этих задач не служит. Математическое моделирование − это не приложение математического инструмента к объекту, не решение конкретных задач математическими средствами. Это построение формальными методами и средствами абстрактного объекта изофункционального исследуемому объекту для последующего приложения математических методов количественного и качественного анализа. В то же время, использование в моделировании математики в качестве языка (метатеории) придает полученным выводам доказательную силу. Деятельность по построению моделей не принадлежит математике и выполняется (должна выполняться) не математиками, а специалистами в конкретной области знания.

Для построения модели системы нужны те содержательные эмпирические представления, те описательные науки, которые предшествуют появлению формализованных наук. Эти описания не входят в виде составных частей в формализованную науку, а лишь облегчают процесс формализации, обогащают эвристические возможности формализации. Модель не требует предварительного описания моделируемого объекта, потому что она сама является формой описания.

Отношение модели и реальности иное, чем отношение реальности и математической формулы. Формула − это иероглиф, знак действительности. Модель − это сама действительность. Можно возразить, что физик или математик отлично чувствует динамику, реальные отношения, которые скрываются за формулой, не воспринимает ее как иероглиф, а, кроме того, современная математика − это далеко не просто и не только формула. И все же, формулами ученый мыслить не может. Иное дело модель. Она обладает динамикой, она живет (не только в переносном, порой и в прямом смысле слова). Исследователь может мыслить моделями, он получает возможность образного мышления. В мире моделей смыкается художественное и логическое восприятие действительности.

Математическое моделирование не исключает использование классической математики, более того, в составе модели математика получает ту силу и всеобщность проникновения, которой была лишена в классическую эпоху.

Если мы рассматриваем некоторый объект как целое, заданное своими внешними свойствами, мы можем эффективно использовать аналитические способы описания для процессов, происходящих вне этого целого. Но стоит поставить задачу внутреннего описания большой и/или сложной системы, описания взаимодействий между ее частями, элементами и подсистемами методами классической математики, как мы немедленно сталкиваемся с непреодолимыми трудностями.

С другой стороны, попытка описать процедурными методами некоторую систему, в общем, не проникая в ее внутреннее устройство, в ее структуру и функции элементов, как правило, не приведет к значимому результату. Каждому методу свое место.

В математике аналитических структур мы должны сначала понять, а потом описать. В моделировании, в математике алгоритмических процессов, сам процесс описания того, что еще не понято, нередко становится средством понимания.

Как методология научных исследований математическое моделирование сочетает в себе опыт различных отраслей науки о природе и обществе, прикладной математики, информатики и системного программирования для решения фундаментальных проблем. Математическое моделирование объектов сложной природы – единый сквозной цикл разработок от фундаментального исследования проблемы до конкретных численных расчетов показателей эффективности объекта. Результатом разработок бывает система математических моделей, которые описывают качественно разнородные закономерности функционирования объекта и его эволюцию в целом как сложной системы в различных условиях. Вычислительные эксперименты с математическими моделями дают исходные данные для оценки показателей эффективности объекта. Поэтому математическое моделирование как методология организации научной экспертизы крупных проблем незаменимо при проработке народнохозяйственных решений. (В первую очередь это относится к моделированию экономических систем).По своей сути математическое моделирование есть метод решения новых сложных проблем, поэтому исследования по математическому моделированию должны быть опережающими. Следует заранее разрабатывать новые методы, готовить кадры, умеющие со знанием дела применять эти методы для решения новых практических задач.Математическая модель может возникнуть тремя путями: 1. В результате прямого изучения реального процесса. Такие модели называются феноменологическими.2. В результате процесса дедукции. Новая модель является частным случаем некоторой общей модели. Такие модели называются асимптотическими.3. В результате процесса индукции. Новая модель является обобщением элементарных моделей. Такие модели называют моделями ансамблей. Процесс моделирования начинается с моделирования упрощенного процесса, который с одной стороны отражает основные качественные явления, с другой стороны допускает достаточно простое математическое описание. По мере углубления исследования строятся новые модели, более детально описывающие явление. Факторы, которые считаются второстепенными на данном этапе, отбрасываются. Однако, на следующих этапах исследования, по мере усложнения модели, они могут быть включены в рассмотрение. В зависимости от цели исследования один и тот же фактор может считаться основным или второстепенным.Математическая модель и реальный процесс не тождественны между собой. Как правило, математическая модель строится с некоторым упрощением и при некоторой идеализации. Она лишь приближенно отражает реальный объект исследования, и результаты исследования реального объекта математическими методами носят приближенный характер. Точность исследования зависит от степени адекватности модели и объекта и от точности применяемых методов вычислительной математики. Схема построения математических моделей следующая: 1. Выделение параметра или функции, подлежащей исследованию.2. Выбор закона, которому подчиняется эта величина.3. Выбор области, в которой требуется изучить данное явление.

Теоретическая дисциплина становится точной наукой, когда она оперирует количественными характеристиками. За качественным описанием модели следует вторая фаза абстрагирования − количественное описание модели. Еще Галилео Галилей сказал, что книга природы написана на языке математики. Иммануил Кант провозгласил, что «во всякой науке столько истины, сколько в ней математики». А Давиду Гильберту принадлежат слова: «Математика основа всего точного естествознания».

Математическое моделирование − это теоретико-экспериментальный метод познавательно-созидательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов − математических моделей.

Под математической моделью принято понимать совокупность соотношений (уравнений, неравенств, логических условий, операторов и т.п.), определяющих характеристики состояний объекта моделирования, а через них и выходные значения – реакции , в зависимости от параметров объекта-оригинала , входных воздействий , начальных и граничных условий, а также времени.

Математическая модель, как правило, учитывает лишь те свойства (атрибуты) объекта-оригинала , которые отражают, определяют и представляют интерес с точки зрения целей и задач конкретного исследования. Следовательно, в зависимости от целей моделирования, при рассмотрении одного и того же объекта-оригинала с различных точек зрения и в различных аспектах, последний может иметь различные математические описания и, как следствие, быть представлен различными математическими моделями.

Принимая во внимание, изложенное выше, дадим наиболее общее, но в то же время строгое конструктивное определение математической модели, сформулированное П.Дж. Коэном.

Определение 4.1. Математическая модель − это формальная система, представляющая собой конечное собрание символов и совершенно строгих правил оперирования этими символами в совокупности с интерпретацией свойств определенного объекта некоторыми отношениями, символами или константами.

Как следует из приведенного определения, конечное собрание символов (алфавит) и совершенно строгих правил оперирования этими символами («грамматика» и «синтаксис» математических выражений) приводят к формированию абстрактных математических объектов (АМО). Только интерпретация делает этот абстрактный объект математической моделью.

Математическая модель представляет собой количест-венную формализацию абстрактных представлений об изучаемом явлении или объекте.

Математические модели могут быть представлены различны­ми математическими средствами:

· действительными или комплексными величинами;

· векторами, матрицами;

· геометрическими образами;

· не­равенствами;

· функциями и функционалами;

· множествами, различными уравнениями;

· функциями распределения вероятностей, статистиками и т.д.

«В физической науке писал Томпсон, при изучении любого объекта первый и наиболее существенный шаг состоит в том, чтобы найти принципы численной оценки и практические методы из­мерения некоторого количества, присущего этому объекту».

Переход от первой ко второй фазе абстрагирования, т.е. от физической модели к математической часто освобождает модель от специфических черт, присущих данному изучаемому явлению или объ­екту. Очень многие математические модели, лишившись физической или технической оболочки, приобретают универсальность, т.е. спо­собность количественного описания различных по своей физической природе процессов или по техническому назначению объектов. В этом проявляется одно из важнейших свойств математической форма­лизации предмета исследования, благодаря которому при постановке и решении прикладных задач в большинстве случаев не требуется создавать новый математический аппарат, а можно воспользоваться существующим, с необходимыми для конкретной ситуации усовершенс­твованием и интерпретацией. Таким образом, одна математическая модель может быть использована для решения большого числа част­ных, конкретных задач и в этом смысле она выражает одно из глав­ных практических назначений теории.

Конечно, построение физической модели часто неразрывно свя­зано с построением математической модели и оба этих процесса представляют две стороны единого процесса абстрагирования.

Нас окружают сложные технические объекты (технические системы), созданные человеком . В процессе проектирования новой или модернизации существующей технической системы решаются задачи расчета параметров и исследования процессов в этой системе. При проведении многовариантных расчетов реальную систему заменяют моделью. В широком смысле модель определяют как отражение наиболее существенных свойств объекта.

Определение 4 .2 . Математическая модель технического объекта - совокупность математических объектов и отношений между ними, которая адекватно отражает свойства исследуемого объекта, интересующие исследователя (инженера).

Модель может быть представлена различными способами.

Формы представления модели

· инвариантная − запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели;

· аналитическая − запись модели в виде результата аналитического решения исходных уравнений модели;

· алгоритмическая − запись соотношений модели и выбранного численного метода решения в форме алгоритм;

· схемная (графическая) − представление модели на некотором графическом языке (например, язык графов, эквивалентные схемы, диаграммы и т.п.);

· физическая;

· аналоговая;

Математическое моделирование является наиболее универсальным описанием процессов.

В понятие математического моделирования иногда включают и процесс решения задачи на ЭВМ (что в принципе не совсем верно, так как решение задачи на ЭВМ предусматривает кроме всего прочего создание алгоритмической и программной модели, реализующей вычисление в соответствии с математической моделью).

Определение 4.3. ММ− это образ исследуемого объекта, создаваемый в уме субъекта-исследователя с помощью определенных формальных (математических) систем с целью изучения (оценки) определенных свойств данного объекта.

Пусть некоторый объект Q обладает некоторым интересующим нас свойством C 0 .

Для получения математической модели, описывающей данное свойство необходимо:

1. Определить показатель данного свойства (т.е. определить меру свойства в некоторой системе измерения ).

2. Установить перечень свойств С 1 , ..., С m, с которыми свойство С 0 связано некоторыми отношениями (это могут быть внутренние свойства объекта и свойства внешней среды, влияющие на объект).

3. Описать в избранной форматной системе свойства внешней среды, как внешние факторы х 1 , ..., х n , влияющие на искомый показатель Y , внутренние свойства объекта, как параметры z 1 , ..., z r , а неучтенные свойства отнести к группе неучитываемых факторов .

4. Выяснить, если это возможно, закономерные отношения между Y и всеми учитываемыми факторами и параметрами, и составить математическое описание (модель ).

Реальный объект характеризуется следующим функциональным отношением между показателями его свойств:

Однако в модели отображаются только те факторы и параметры оригинального объекта, которые имеют существенное значение для решения исследуемой проблемы. Кроме того, измерения существенных факторов и параметров практически всегда содержат ошибки, вызываемые неточностью измерительных приборов и незнанием некоторых факторов. В силу этого ММ является только приближенным описанием свойств изучаемого объекта.

Математическую модель можно определить еще и как абстракцию изучаемой реальной сущности .

Модели обычно отличаются от оригиналов по природе своих внутренних параметров. Подобие заключается в адекватности реакции Y модели и оригинала на изменение внешних факторов . Поэтому в общем случае математическая модель представляет собой функцию

где - внутренние параметры модели, адекватные параметрам оригинала.

В зависимости от применяемых методов математического описания изучаемых объектов (явлений, процессов) ММ бывают аналитические, логические, графические, автоматные и т.д.

Главным вопросом математического моделирования является вопрос о том, как точно составленная ММ отражает отношения между учитываемыми факторами, параметрами и показателем Y оцениваемого свойства реального объекта, т.е. на сколько точно уравнение (4.2) соответствует уравнению (4.1). Иногда уравнение (4.2) может быть получено сразу в явном виде, например, в виде системы дифференциальных уравнений, или в виде иных явных математических соотношений.

В более сложных случаях вид уравнения (4.2) неизвестен и задача исследователя состоит, прежде всего, в том, чтобы найти это уравнение. При этом к числу варьируемых параметров , относят все учитываемые внешние факторы и параметры исследуемого объекта, а к числу искомых параметров относят внутренние параметры модели , связывающие факторы , с показателем Y " наиболее правдоподобным отношением. Решением этой проблемы занимается теория эксперимента. Суть этой теории состоит в том, чтобы, основываясь на выборочных измерениях значений параметров , и показателя Y ", найти параметры , при которых функция (4.2) наиболее точно отражает реальную закономерность (4.1).

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей