Чему равна работа совершаемая силой тяжести. Механическая работа

С механической работой (работой силы) вы уже знакомы из курса физики основной школы. Напомним приведенное там определение механической работы для следующих случаев.

Если сила направлена так же, как перемещение тела, то работа силы


В этом случае работа силы положительна.

Если сила направлена противоположно перемещению тела, то работа силы

В этом случае работа силы отрицательна.

Если сила f_vec направлена перпендикулярно перемещению s_vec тела, то работа силы равна нулю:

Работа – скалярная величина. Единицу работы называют джоуль (обозначают: Дж) в честь английского ученого Джеймса Джоуля, сыгравшего важную роль в открытии закона сохранения энергии. Из формулы (1) следует:

1 Дж = 1 Н * м.

1. Брусок массой 0,5 кг переместили по столу на 2 м, прикладывая к нему силу упругости, равную 4 Н (рис. 28.1). Коэффициент трения между бруском и столом равен 0,2. Чему равна работа действующей на брусок:
а) силы тяжести m?
б) силы нормальной реакции ?
в) силы упругости ?
г) силы трения скольжения тр?


Суммарную работу нескольких сил, действующих на тело, можно найти двумя способами:
1. Найти работу каждой силы и сложить эти работы с учетом знаков.
2. Найти равнодействующую всех приложенных к телу сил и вычислить работу равнодействующей.

Оба способа приводят к одному и тому же результату. Чтобы убедиться в этом, вернитесь к предыдущему заданию и ответьте на вопросы задания 2.

2. Чему равна:
а) сумма работ всех действующих на брусок сил?
б) равнодействующая всех действующих на брусок сил?
в) работа равнодействующей? В общем случае (когда сила f_vec направлена под произвольным углом к перемещению s_vec) определение работы силы таково.

Работа A постоянной силы равна произведению модуля силы F на модуль перемещения s и на косинус угла α между направлением силы и направлением перемещения:

A = Fs cos α (4)

3. Покажите, что из общего определения работы следуют к выводы, показанные на следующей схеме. Сформулируйте их словесно и запишите в тетрадь.


4. К находящемуся на столе бруску приложена сила, модуль которой 10 Н. Чему равен угол между этой силой и перемещением бруска, если при перемещении бруска по столу на 60 см эта сила совершила работу: а) 3 Дж; б) –3 Дж; в) –3 Дж; г) –6 Дж? Сделайте пояснительные чертежи.

2. Работа силы тяжести

Пусть тело массой m движется вертикально от начальной высоты h н до конечной высоты h к.

Если тело движется вниз (h н > h к, рис. 28.2, а), направление перемещения совпадает с направлением силы тяжести, поэтому работа силы тяжести положительна. Если же тело движется вверх (h н < h к, рис. 28.2, б), то работа силы тяжести отрицательна.

В обоих случаях работа силы тяжести

A = mg(h н – h к). (5)

Найдем теперь работу силы тяжести при движении под углом к вертикали.

5. Небольшой брусок массой m соскользнул вдоль наклонной плоскости длиной s и высотой h (рис. 28.3). Наклонная плоскость составляет угол α с вертикалью.


а) Чему равен угол между направлением силы тяжести и направлением перемещения бруска? Сделайте пояснительный чертеж.
б) Выразите работу силы тяжести через m, g, s, α.
в) Выразите s через h и α.
г) Выразите работу силы тяжести через m, g, h.
д) Чему равна работа силы тяжести при движении бруска вдоль всей этой же плоскости вверх?

Выполнив это задание, вы убедились, что работа силы тяжести выражается формулой (5) и тогда, когда тело движется под углом к вертикали – как вниз, так и вверх.

Но тогда формула (5) для работы силы тяжести справедлива при движении тела по любой траектории, потому что любую траекторию (рис. 28.4, а) можно представить как совокупность малых «наклонных плоскостей» (рис. 28.4, б).

Таким образом,
работа силы тяжести при движении но любой траектории выражается формулой

A т = mg(h н – h к),

где h н – начальная высота тела, h к – его конечная высота.
Работа силы тяжести не зависит от формы траектории.

Например, работа силы тяжести при перемещении тела из точки A в точку B (рис. 28.5) по траектории 1, 2 или 3 одинакова. Отсюда, в частности, следует, что рибота силы тяжести при перемещении по замкнутой траектории (когда тело возвращается в исходную точку) равна нулю.

6. Шар массой m, висящий на нити длиной l, отклонили на 90º, держа нить натянутой, и отпустили без толчка.
а) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия (рис. 28.6)?
б) Чему равна работа силы упругости нити за то же время?
в) Чему равна работа равнодействующей сил, приложенных к шару, за то же время?


3. Работа силы упругости

Когда пружина возвращается в недеформированное состояние, сила упругости совершает всегда положительную работу: ее направление совпадает с направлением перемещения (рис. 28.7).

Найдем работу силы упругости .
Модуль этой силы связан с модулем деформации x соотношением (см. § 15)

Работу такой силы можно найти графически.

Заметим сначала, что работа постоянной силы численно равна площади прямоугольника под графиком зависимости силы от перемещения (рис. 28.8).

На рисунке 28.9 изображен график зависимости F(x) для силы упругости. Разобьем мысленно все перемещение тела на столь малые промежутки, чтобы на каждом из них силу можно было считать постоянной.

Тогда работа на каждом из этих промежутков численно равна площади фигуры под соответствующим участком графика. Вся же работа равна сумме работ на этих участках.

Следовательно, и в этом случае работа численно равна площади фигуры под графиком зависимости F(x).

7. Используя рисунок 28.10, докажите, что

работа силы упругости при возвращении пружины в недеформированное состояние выражается формулой

A = (kx 2)/2. (7)


8. Используя график на рисунке 28.11, докажите, что при изменении деформации пружины от x н до x к работа силы упругости выражается формулой

Из формулы (8) мы видим, что работа силы упругости зависит только от начальной и конечной деформации пружины, Поэтому если тело сначала деформируют, а потом оно возвращается в начальное состояние, то работа силы упругости равна нулю. Напомним, что таким же свойством обладает и работа силы тяжести.

9. В начальный момент растяжение пружины жесткостью 400 Н/м равно 3 см. Пружину растянули еще на 2 см.
а) Чему равна конечная деформация пружины?
б) Чему равна работа силы упругости пружины?

10. В начальный момент пружина жесткостью 200 Н/м растянута на 2 см, а в конечный момент она сжата на 1 см. Чему равна работа силы упругости пружины?

4. Работа силы трения

Пусть тело скользит по неподвижной опоре. Действующая на тело сила трения скольжения направлена всегда противоположно перемещению и, следовательно, работа силы трения скольжения отрицательно при любом направлении перемещения (рис. 28.12).

Поэтому если сдвинуть брусок вправо, а пегом на такое же расстояние влево, то, хотя он и вернется в начальное положение, суммарная работа силы трения скольжения не будет равна нулю. В этом состоит важнейшее отличие работы силы трения скольжения от работы силы тяжести и силы упругости. Напомним, что работа этих сил при перемещении тела по замкнутой траектории равна нулю.

11. Брусок массой 1 кг передвигали по столу так, что его траекторией оказался квадрат со стороной 50 см.
а) Вернулся ли брусок в начальную точку?
б) Чему равна суммарная работа действовавшей на брусок силы трения? Коэффициент трения между бруском и столом равен 0,3.

5. Мощность

Часто важна не только совершаемая работа, но и скорость совершения работы. Она характеризуется мощностью.

Мощностью P называют отношение совершенной работы A к промежутку времени t, за который эта работа совершена:

(Иногда мощность в механике обозначают буквой N, а в электродинамике – буквой P. Мы считаем более удобным одинаковое обозначение мощности.)

Единица мощности – ватт (обозначают: Вт), названная в честь английского изобретателя Джеймса Уатта. Из формулы (9) следует, что

1 Вт = 1 Дж/c.

12. Какую мощность развивает человек, равномерно поднимая ведро воды массой 10 кг на высоту 1 м в течение 2 с?

Часто мощность удобно выражать не через работу и время, а через силу и скорость.

Рассмотрим случай, когда сила направлена вдоль перемещения. Тогда работа силы A = Fs. Подставляя это выражение в формулу (9) для мощности, получаем:

P = (Fs)/t = F(s/t) = Fv. (10)

13. Автомобиль едет по горизонтальной дороге со скоростью 72 км/ч. При этом его двигатель развивает мощность 20 кВт. Чему равна сила сопротивления движению автомобиля?

Подсказка. Когда автомобиль движется по горизонтальной дороге с постоянной скоростью, сила тяги равна по модулю силе сопротивления движению автомобиля.

14. Сколько времени потребуется для равномерного подъема бетонного блока массой 4 т на высоту 30 м, если мощность двигателя подъемного крана 20 кВт, а КПД электродвигателя подъемного крана равен 75%?

Подсказка. КПД электродвигателя равен отношению работы по подъему груза к работе двигателя.

Дополнительные вопросы и задания

15. Мяч массой 200 г бросили с балкона высотой 10 и под углом 45º к горизонту. Достигнув в полете максимальной высоты 15 м, мяч упал на землю.
а) Чему равна работа силы тяжести при подъеме мяча?
б) Чему равна работа силы тяжести при спуске мяча?
в) Чему равна работа силы тяжести за все время полета мяча?
г) Есть ли в условии лишние данные?

16. Шар массой 0,5 кг подвешен к пружине жесткостью 250 Н/м и находится в равновесии. Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.
а) На какую высоту подняли шар?
б) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия?
в) Чему равна работа силы упругости за время, в течение которого шар движется к положению равновесия?
г) Чему равна работа равнодействующей всех приложенных к шару сил за время, в течение которого шар движется к положению равновесия?

17. Санки массой 10 кг съезжают без начальной скорости со снежной горы с углом наклона α = 30º и проезжают некоторое расстояние по горизонтальной поверхности (рис. 28.13). Коэффициент трения между санками и снегом 0,1. Длина основания горы l = 15 м.

а) Чему равен модуль силы трения при движении санок по горизонтальной поверхности?
б) Чему равна работа силы трения при движении санок по горизонтальной поверхности на пути 20 м?
в) Чему равен модуль силы трения при движении санок по горе?
г) Чему равна работа силы трения при спуске санок?
д) Чему равна работа силы тяжести при спуске санок?
е) Чему равна работа равнодействующей сил, действующих на санки, при их спуске с горы?

18. Автомобиль массой 1 т движется со скоростью 50 км/ч. Двигатель развивает мощность 10 кВт. Расход бензина составляет 8 л на 100 км. Плотность бензина 750 кг/м 3 , а его удельная теплота сгорания 45 МДж/кг. Чему равен КПД двигателя? Есть ли в условии лишние данные?
Подсказка. КПД теплового двигателя равен отношению совершенной двигателем работы к количеству теплоты, которое выделилось при сгорании топлива.

Работа силы тяжести. Силу тяжести Р материальной точки массой т вблизи поверхности Земли можно считать постоянной, равной mg

направленной по вертикали вниз.

Работа А силы Р на перемещении от точки М 0 до точки М

где h = z 0 - z x - высота опускания точки.

Работа силы тяжести равна произведению этой силы на высоту опус­кания (работа положительна) или высоту подъема (работа отрицатель­на). Работа силы тяжести не зависит от формы траектории между точками М 0 и М|, и если эти точки совпадают, то ра­бота силы тяжести равна нулю (случай замкнутого пути). Она равна нулю также, если точки М 0 и М лежат в одной и той же горизонтальной плос­кости.

Работа линейной силы упругости. Линейной силой упругости (или линейной восстанавливающей силой) называют силу, действую­щую по закону Гука (рис. 63):

F = - с r ,

где r - расстояние от точки статического равновесия, где сила равна нулю, до рассматриваемой точки М; с - постоянный коэффициент- коэффициент жесткости.

А=--().

По этой формуле и вычисляют работу линейной силы упругости. Если точка М 0 совпадает сточкой статического равновесия О, то тогда r 0 =0 и для работы силы на перемещении от точки О до точки М имеем

Величина r - кратчайшее расстояние между рассматриваемой точ­кой и точкой статического равновесия. Обозначим его λ и назовем де­формацией. Тогда

Работа линейной силы упругости на перемещении из состояния ста­тического равновесия всегда отрицательна и равна половине произве­дения коэффициента жесткости на квадрат деформации. Работа линейной силы упругости не зависит от формы перемещения и работа по любому замкнутому перемещению равна нулю. Она также равна нулю, если точки Мо и М лежат на одной сфере, описанной из точки статического равновесия.

    Работа переменной силы при криволинейном движении.

Работа силы на криволинейном участке

Рассмотрим общий случай нахождения работы переменной силы, точка приложения которой движется по криволинейной траектории. Пусть точка М приложения переменной силы F движется по произвольной непрерывной кривой. Обозначим через вектор бесконечно малого перемещения точки М. Этот вектор направлен по касательной к кривой в ту же сторону, что и вектор скорости.

Элементарной работой переменной силы F на бесконечно малом перемещении

ds называется скалярное произведение векторов F и ds :

где а - угол между векторами F и ds

То есть элементарная работа силы равна произведению модулей векторов силы и бесконечно малого перемещения, умноженному на косинус угла между этими векторами.

Разложим вектор силы F на две составляющие: - направленную по касательной к траектории - и - направленную по нормали. Линия действия силы

перпендикулярна касательной к траектории, по которой движется точка, и ее работа равна нулю. Тогда:

dA = F t ds .

Для того, чтобы вычислить работу переменной силы F на конечном участке кривой от а до Ь, следует вычислить интеграл от элементарной работы:

    Потенциальная и кинетическая энергии.

Потенциальной энергией П мат ериальной точки в рассматривае мой точке силового поля М называют работу , которую совершают силы по ля, действующие на материальную точку при перемещении ее из точки M в начальную точку M 0 , т. е.

П = Амм 0

П = =-U =- U

Постоянная С 0 одна и та же для всех точек поля, зависящая от того, какая точка поля выбрана за начальную. Очевидно, что потенциаль­ную энергию можно ввести только для потенциального силового поля, в котором работа не зависит от формы перемещения между точками М и М 0 . Непотенциальное силовое поле не имеет потенциальной энер­гии, для него не существует и силовой функции.

dA = dU = -dП; А = U - U 0 = П 0 - П

Из приведенных формул следует, что П определяется с точностью до произвольной постоянной, которая зависит от выбора начальной точки, но эта произвольная постоян­ная не влияет на вычисляемые через потенциальную энергию силы и рабо­ту этих сил. Учитывая это:

П = - U + const или П = - U .

Потенциальную энергию в какой- либо точке поля с точностью до произвольной постоянной можно оп­ределить как значение силовой функ­ции в этой же точке, взятое со зна­ком минус.

Кинетической энергией системы называется скалярная величина Т, равная сумме кинетических энергий всех точек системы:

Кинетическая энергия является характеристикой и поступатель­ного, и вращательного движений системы. Кинетическая энергия является величиной скалярной и притом су­щественно положительной. Поэтому она не зависит от направлений движения частей системы и не характеризует изменений этих на­правлений.

Отметим еще следующее важное обстоятельство. Внутренние силы действуют на части системы по взаимно противоположным на­правлениям. На изменения кинетической энергии влияет действие и внешних и внутренних сил

    Равнопеременное движение точки.

Равнопеременное движение точки - движение, при к-ром касат. ускорение ω т точки (в случае прямолинейного движения полное ускорение ω )постоянно. Закон равнопеременного движения точки и закон изменения её скорости υ при этом движении даются равенствами:

где s - измеренное вдоль дуги траектории расстояние точки от выбранного на траектории начала отсчёта, t - время, s 0 - значение s в нач. момент времени t = = 0. - нач. скорость точки. Когда знакиυ и ω одинаковы, равнопеременное движение. является ускоренным, а когда разные - замедленным.

При поступат. равнопеременном движении твёрдого тела всё сказанное относится к каждой точке тела; при равномерном вращении вокруг неподвижной оси угл. ускорение e тела постоянно, а закон вращения и закон изменения угл. скорости ω тела даются равенствами

где φ - угол поворота тела, φ 0 - значение φ в нач. момент времени t = 0, ω 0 - нач. угл. скорость тела. Когда знаки ω и ε совпадают, вращение является ускоренным, а когда не совпадают - замедленным.

    Работа постоянной силы при прямолинейном движени.

Определим работу для случая, когда действующая сила постоянна по величине и направлению, а точка ее приложения перемещается по прямолинейной траектории. Рассмотрим материальную точку С, к которой приложена постоянная по значению и направлению сила(рис. 134, а).

За некоторый промежуток времени t точка С переместилась в положение С1 по прямолинейной траектории на расстояние s.

Работа W постоянной силы при прямолинейном движении точки ее приложения равна произведению модуля силы F на рас­стояние s и на косинус угла между направлением силы и направле­нием перемещения, т. е.

Угол α между направлением силы и направлением движения может меняться в пределах от 0 до 180°. При α < 90° работа положительна, при α > 90° - отрицательна, при α = 90° работа равна нулю.

Если сила составляет с направлением движения острый угол, она называется движущей силой, работа силы всегда положительна. Если угол между направлениями силы и перемещения тупой, сила оказывает сопротивление движению, совершает отрицательную работу и носит название силы сопротивления. Примерами сил сопротивления могут служить силы резания, трения, сопротивле­ния воздуха и другие, которые всегда направлены в сторону, про­тивоположную движению.

Когда α = 0°, т. е. когда направление силы совпадает с направлением скорости, тогда W = F s, так как cos 0° = 1. Произведение F cos α есть проекция силы на направление движения материальной точки. Следовательно, работу силы можно определить как произведение перемещения s и проекции силына направление движения точки.

33. Силы инерции твердого тела

В классической механикепредставления осилахи их свойствах основываются назаконах Ньютонаи неразрывно связаны с понятиеминерциальная система отсчёта.

Действительно, физическая величина, называемая силой, вводится в рассмотрение вторым законом Ньютона, при этом сам закон формулируется только для инерциальных систем отсчёта. Соответственно, понятие силы первоначально оказывается определённым только для таких систем отсчёта.

Уравнение второго закона Ньютона, связывающее ускорениеимассуматериальной точкис действующей на неё силой, записывается в виде

Из уравнения непосредственно следует, что причиной ускорения тел являются только силы, и наоборот: действие на тело не скомпенсированных сил обязательно вызывает его ускорение.

Третий закон Ньютона дополняет и развивает сказанное о силах во втором законе.

    сила есть мера механического действия на данное материальное тело других тел

    в соответствии с третьим законом Ньютона силы способны существовать лишь попарно, при этом природа сил в каждой такой паре одинакова.

    любая сила, действующая на тело, имеет источник происхождения в виде другого тела. Иначе говоря, силы обязательно представляют собой результат взаимодействия тел.

Никакие другие силы в механике в рассмотрение не вводятся и не используются. Возможность существования сил, возникших самостоятельно, без взаимодействующих тел, механикой не допускается.

Хотя в наименованиях эйлеровых и даламберовых сил инерции содержится слово сила , эти физические величины силами в смысле, принятом в механике, не являются.

34. Понятие о плоскопараллельном движении твердого тела

Движение твердого тела называется плоскопараллельным, если все точки тела перемещаются в плоскостях, параллельных некоторой фиксированной плоскости (основной плоскости). Пусть некоторое тело V совершает плоское движение, π - основная плоскость. Из определенияплоскопараллельного движения и свойств абсолютно твердого тела следует, что любой отрезок прямой АВ, перпендикулярный плоскости π, будет совершать поступательное движение. То есть траектории, скорости и ускорения всех точек отрезка АВ будут одинаковы. Таким образом, движение каждой точки сечения s параллельного плоскости π, определяет собой движение всех точек тела V, лежащих на отрезке перпендикулярном сечению в данной точке. Примерами плоскопараллельного движения являются: качение колеса по прямолинейному отрезку, так как все его точки перемещаются в плоскостях, параллельных плоскости, перпендикулярной оси колеса; частным случаем такого движения являетсявращение твердого тела вокруг неподвижной оси, в самом деле, все точки вращающегося тела движутся в плоскостях параллельных некоторой перпендикулярной оси вращения неподвижной плоскости.

35. Силы инерции при прямолинейном и криволинейном движении материальной точки

Сила, с которой точка сопротивляется изменению движения, называется силой инерции материальной точки. Сила инерции направлена противоположно ускорению точки и равна массе, умно­женной на ускорение.

При прямолинейном движении направление ускорения совпадает с траекторией. Сила инерции направлена в сторону, противоположную ускорению, и численное значение ее определяется по формуле:

При ускоренном движении направления ускорения и скорости совпадают и сила инерции направлена в сторону, противоположную движению. При замедленном движении, когда ускорение направлено в сторону, обратную скорости, сила инерции действует по направлению движения.

При криволинейном и неравномерном движении ускорение может быть разложено на нормальную аn и касательную at составляющие. Аналогично сила инерции точки также складывается из двух составляющих: нормальной и касательной.

Нормальная составляющая силы инерции равна произведению массы точки на нормальное ускорение и направлена противоположно этому ускорению:

Касательная составляющая силы инерции равна произведению массы точки на касательное ускорение и направлена противоположно этому ускорению:

Очевидно, что полная сила инерции точки М равна геометрической сумме нормальной и касательной составляющих, т. е.

Учитывая, что касательная и нормальная составляющие взаимно перпендикулярны, полная сила инерции:

36. Теоремы о сложении скоростей и ускорений точки при сложном движении

Теорема о сложении скоростей:

В механикеабсолютная скоростьточки равнавекторнойсумме еёотносительнойипереноснойскоростей:

Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости (относительно неподвижной системы) той точки подвижной системы отсчета, в которой находится тело.

при сложном движении абсолютная скорость точки равна геометрической сумме переносной и относительной скоростей. Величина абсолютной скорости определяется где α – угол между векторами и.

Теорема о сложении ускорений (ТЕОРЕМА КОРИОЛИСА)

aкор = aпер + aот + aкор

Формула выражает следующую теорему Кориолиса о сложении уско-

рений:1 при сложном движении ускорение точки равно геометрической

сумме трех ускорений: относительного, переносного и поворотного, или

кориолисова.

aкор = 2(ω × vот)

37.Принцип Даламбера

принцип Даламбера для материальной точки: в каждый момент движения материальной точки активные силы, реакции связей и сила инерции образуют уравновешенную систему сил.

Д’Аламбера принцип - в механике: один из основных принципов динамики, согласно которому, если к заданнымсилам, действующим на точки механической системы, и реакциям наложенных связей присоединитьсилы инерции, то получится уравновешенная система сил.

Согласно данному принципу, для каждой i-той точки системы верно равенство

где - действующая на эту точку активная сила,- реакция наложенной на точку связи,- сила инерции, численно равная произведению массыточки на её ускорениеи направленная противоположно этому ускорению ().

Фактически, речь идёт о выполняемом отдельно для каждой из рассматриваемых материальных точек переносе слагаемого ma справа налево во втором законе Ньютона() и нареканию этого слагаемого Д’Аламберовой силой инерции.

Принцип Д’Аламбера позволяет применить к решению задач динамики более простые методы статики, поэтому им широко пользуются в инженерной практике, т. н. метод кинетостатики. Особенно удобно им пользоваться для определения реакций связей в случаях, когда закон происходящего движения известен или найден из решения соответствующих уравнений.

На этом уроке мы рассмотрим различное движение тела под действием силы тяжести и научимся находить работу этой силы. Также введём понятие потенциальной энергии тела, узнаем, как связана эта энергия с работой силы тяжести, выведем формулу, по которой находится эта энергия. С помощью данной формулы решим задачу, взятую из сборника для подготовки к единому государственному экзамену.

На прошлых уроках мы изучили разновидности сил в природе. Для каждой силы необходимо правильно вычислять работу. Данный урок посвящён изучению работы силы тяжести.

При небольших расстояниях от поверхности Земли сила тяжести постоянна и по модулю равна , где m - масса тела, g - ускорение свободного падения.

Пусть тело массой m свободно падает с высоты над каким-либо уровнем, с которого ведётся отсчёт, до высоты над тем же уровнем (см. Рис. 1).

Рис. 1. Свободное падение тела с высоты до высоты

При этом модуль перемещения тела равен разности этих высот:

Так как направление перемещения и силы тяжести совпадают, то работа силы тяжести равна:

Значение высот в этой формуле можно отсчитывать от любого уровня (уровень моря, уровень дна ямы, которая вырыта в земле, поверхность стола, поверхность пола и т. д.). В любом случае высоту данной поверхности выбирают равной нулю, поэтому уровень данной высоты называют нулевым уровнем .

Если тело падает с высоты h до нулевого уровня, то работа силы тяжести будет равна:

Если тело, брошенное вверх с нулевого уровня, достигает высоты hнад этим уровнем, то работа силы тяжести будет равна:

Пусть тело массой m движется по наклонной плоскости высотой h и при этом совершает перемещение , модуль которого равен длине наклонной плоскости (см. Рис. 2).

Рис. 2. Движение тела по наклонной плоскости

Работа силы равна скалярному произведению вектора силы на вектор перемещения тела, совершённого под действием данной силы, то есть работа сила тяжести в данном случае будет равна:

где - угол между векторами силы тяжести и перемещения.

На рисунке 2 видно, что перемещение () представляет собой гипотенузу прямоугольного треугольника, а высота h - катет. Согласно свойству прямоугольного треугольника:

Следовательно

Мы получили выражение для работы силы тяжести такое же, как в случае вертикального движения тела. Можно сделать вывод: если траектория тела не является прямолинейной и тело движется под действием силы тяжести, то работа силы тяжести определяется только изменением высоты тела над некоторым нулевым уровнем и не зависит от траектории движения тела.

Рис. 3. Движение тела по криволинейной траектории

Докажем предыдущее утверждение. Пусть тело движется по некоторой криволинейной траектории (см. Рис. 3). Эту траекторию мысленно разбиваем на ряд малых участков, каждый из которых можно считать маленькой наклонной плоскостью. Движение тела по всей траектории можно представить как движение по множеству наклонных плоскостей. Работа силы тяжести на каждом из участков будет равна произведению силы тяжести на высоту данного участка. Если изменения высот на отдельных участках равны , то работы силы тяжести на них равны:

Полная работа на всей траектории равна сумме работ на отдельных участках:

- полная высота, которую преодолело тело,

Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. Что и требовалось доказать.

При движении вниз работа положительна, при движении вверх - отрицательна.

Пусть некоторое тело совершило движение по замкнутой траектории, то есть оно сначала спустилось вниз, а потом по какой-то другой траектории вернулось в исходную точку. Так как тело оказалось в той же самой точке, в которой оно было изначально, то разность высот между начальным и конечным положением тела равна нулю, поэтому и работа силы тяжести будет равна нулю. Следовательно, работа силы тяжести при движении тела по замкнутой траектории равна нулю.

В формуле для работы силы тяжести вынесем (-1) за скобку:

Из прошлых уроков известно, что работа сил, приложенных к телу, равна разности между конечным и начальным значением кинетической энергии тела. В полученной формуле также видна связь между работой силы тяжести и разностью между значениями некоторой физической величины, равной . Такая величина называется потенциальной энергией тела , которое находится на высоте h над некоторым нулевым уровнем.

Изменение потенциальной энергии отрицательно по величине, если совершается положительная работа силы тяжести (видно из формулы ). Если совершается отрицательная работа, то изменение потенциальной энергии будет положительным.

Если тело падает с высоты h на нулевой уровень, то работа силы тяжести будет равна значению потенциальной энергии тела, поднятого на высоту h .

Потенциальная энергия тела , поднятого на некоторую высоту над нулевым уровнем, равна работе, которую совершит сила тяжести при падении данного тела с данной высоты на нулевой уровень.

В отличие от кинетической энергии, которая зависит от скорости тела, потенциальная энергия может быть не равной нулю даже у покоящихся тел.

Рис. 4. Тело, находящееся ниже нулевого уровня

Если тело находится ниже нулевого уровня, то оно обладает отрицательной потенциальной энергией (см. Рис. 4). То есть знак и модуль потенциальной энергии зависят от выбора нулевого уровня. Работа, которая совершается при перемещении тела, от выбора нулевого уровня не зависит.

Термин «потенциальная энергия» применяется только по отношению к системе тел. Во всех вышеприведенных рассуждениях этой системой была «Земля - тело, поднятое над Землёй».

Однородный прямоугольный параллелепипед массой m с рёбрами располагают на горизонтальной плоскости на каждой из трёх граней поочерёдно. Какова потенциальная энергия параллелепипеда в каждом из этих положений?

Дано: m - масса параллелепипеда; - длина рёбер параллелепипеда.

Найти: ; ;

Решение

Если нужно определить потенциальную энергию тела конечных размеров, то можно считать, что вся масса такого тела сосредоточена в одной точке, которая называется центром масс данного тела.

В случае симметричных геометрических тел центр масс совпадает с геометрическим центром, то есть (для данной задачи) с точкой пересечения диагоналей параллелепипеда. Таким образом, необходимо посчитать высоту, на которой расположена данная точка при различных расположениях параллелепипеда (см. Рис. 5).

Рис. 5. Иллюстрация к задаче

Для того чтобы найти потенциальную энергию, необходимо полученные значения высоты умножить на массу параллелепипеда и ускорение свободного падения.

Ответ: ; ;

На данном уроке мы научились вычислять работу силы тяжести. При этом увидели, что, независимо от траектории движении тела, работа силы тяжести определяется разностью между высотами начального и конечного положения тела над некоторым нулевым уровнем. Также мы ввели понятие потенциальной энергии и показали, что работа силы тяжести равна изменению потенциальной энергии тела, взятой с противоположным знаком. Какую работу надо совершить, чтобы переложить пакет с мукой массой 2 кг с полки, находящейся на высоте 0,5 м относительно пола, на стол, находящийся на высоте 0,75 м относительно пола? Чему равны относительно пола потенциальная энергия пакета с мукой, лежавшего на полке, и его потенциальная энергия тогда, когда он находится на столе?

Работа силы тяжести. Решение задач

Цель урока: определить формулу для работы силы тяжести; определить, что работы силы тяжести не зависит от траектории движения тела; развить практические навыки по решению задач.

Ход урока.

1.Организационный момент. Приветствие учащихся, проверка отсутствующих, постановка цели урока.

2.Проверка домашней работы.

3.Изучение нового материала. На предыдущем уроке мы с вами определили формулу для определения работы. Какой формулой определяется работа постоянной силы? (А= FScosα )

Что такое А и S ?

Теперь же применим эту формулу для силы тяжести. Но для начала вспомним, чему равна сила тяжести? (F = mg )

Рассмотрим случай а) тело падает вертикально вниз. Как мы с вами знаем сила тяжести всегда направленно строго вниз. Для того чтобы определить направление S необходимо вспомнить определение. (Перемещение-это вектор соединяющий начальную и конечную точку. Направлен он от начала к концу)

Т.о. для определения , Так как направление перемещения и силы тяжести совпадают, то α =0 и работа силы тяжести равна:

Рассмотрим случай б) тело двигается вертикально вверх. Т.к. направление силы тяжести и перемещении противоположны, то то α =0 и работа силы тяжести равна .

Т.о. образом если сравнить две формулы по модулю, то они будут одинаковы.

Рассмотрим случай в) тело движется по наклонной плоскости. Работа силы равна скалярному произведению вектора силы на вектор перемещения тела, совершённого под действием данной силы, то есть работа сила тяжести в данном случае будет равна , где – угол между векторами силы тяжести и перемещения. На рисунке видно, что перемещение () представляет собой гипотенузу прямоугольного треугольника, а высота h – катет. Согласно свойству прямоугольного треугольника:

.Следовательно

Т.о. какой можно сделать вывод? (что работа силы тяжести не зависит от траектории движения.)

Рассмотрим последний пример, когда траектория движения будет замкнутая линия. Кто скажет чему будет равна работа и почему? (А=0, т.к. перемещение равно 0)

Отметим!: работа силы тяжести при движении тела по замкнутой траектории равна нулю.

4. Закрепление материала.

Задача 1. Охотник стреляет со скалы под углом 40° к горизонту. За время падения пули работа силы тяжести составила 5 Дж. Если пуля вошла в землю на расстоянии 250 м от скалы, то какова её масса?

Задача 2. Находясь на Нептуне, тело совершило перемещение так, как показано на рисунке. При этом перемещении работа силы тяжести составила 840 Дж. Если масса данного тела равна 5 кг, то каково ускорение свободного падения на Нептуне?

5. Домашнее задание.

На этом уроке мы рассмотрим различное движение тела под действием силы тяжести и научимся находить работу этой силы. Также введём понятие потенциальной энергии тела, узнаем, как связана эта энергия с работой силы тяжести, выведем формулу, по которой находится эта энергия. С помощью данной формулы решим задачу, взятую из сборника для подготовки к единому государственному экзамену.

На прошлых уроках мы изучили разновидности сил в природе. Для каждой силы необходимо правильно вычислять работу. Данный урок посвящён изучению работы силы тяжести.

При небольших расстояниях от поверхности Земли сила тяжести постоянна и по модулю равна , где m - масса тела, g - ускорение свободного падения.

Пусть тело массой m свободно падает с высоты над каким-либо уровнем, с которого ведётся отсчёт, до высоты над тем же уровнем (см. Рис. 1).

Рис. 1. Свободное падение тела с высоты до высоты

При этом модуль перемещения тела равен разности этих высот:

Так как направление перемещения и силы тяжести совпадают, то работа силы тяжести равна:

Значение высот в этой формуле можно отсчитывать от любого уровня (уровень моря, уровень дна ямы, которая вырыта в земле, поверхность стола, поверхность пола и т. д.). В любом случае высоту данной поверхности выбирают равной нулю, поэтому уровень данной высоты называют нулевым уровнем .

Если тело падает с высоты h до нулевого уровня, то работа силы тяжести будет равна:

Если тело, брошенное вверх с нулевого уровня, достигает высоты hнад этим уровнем, то работа силы тяжести будет равна:

Пусть тело массой m движется по наклонной плоскости высотой h и при этом совершает перемещение , модуль которого равен длине наклонной плоскости (см. Рис. 2).

Рис. 2. Движение тела по наклонной плоскости

Работа силы равна скалярному произведению вектора силы на вектор перемещения тела, совершённого под действием данной силы, то есть работа сила тяжести в данном случае будет равна:

где - угол между векторами силы тяжести и перемещения.

На рисунке 2 видно, что перемещение () представляет собой гипотенузу прямоугольного треугольника, а высота h - катет. Согласно свойству прямоугольного треугольника:

Следовательно

Мы получили выражение для работы силы тяжести такое же, как в случае вертикального движения тела. Можно сделать вывод: если траектория тела не является прямолинейной и тело движется под действием силы тяжести, то работа силы тяжести определяется только изменением высоты тела над некоторым нулевым уровнем и не зависит от траектории движения тела.

Рис. 3. Движение тела по криволинейной траектории

Докажем предыдущее утверждение. Пусть тело движется по некоторой криволинейной траектории (см. Рис. 3). Эту траекторию мысленно разбиваем на ряд малых участков, каждый из которых можно считать маленькой наклонной плоскостью. Движение тела по всей траектории можно представить как движение по множеству наклонных плоскостей. Работа силы тяжести на каждом из участков будет равна произведению силы тяжести на высоту данного участка. Если изменения высот на отдельных участках равны , то работы силы тяжести на них равны:

Полная работа на всей траектории равна сумме работ на отдельных участках:

- полная высота, которую преодолело тело,

Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. Что и требовалось доказать.

При движении вниз работа положительна, при движении вверх - отрицательна.

Пусть некоторое тело совершило движение по замкнутой траектории, то есть оно сначала спустилось вниз, а потом по какой-то другой траектории вернулось в исходную точку. Так как тело оказалось в той же самой точке, в которой оно было изначально, то разность высот между начальным и конечным положением тела равна нулю, поэтому и работа силы тяжести будет равна нулю. Следовательно, работа силы тяжести при движении тела по замкнутой траектории равна нулю.

В формуле для работы силы тяжести вынесем (-1) за скобку:

Из прошлых уроков известно, что работа сил, приложенных к телу, равна разности между конечным и начальным значением кинетической энергии тела. В полученной формуле также видна связь между работой силы тяжести и разностью между значениями некоторой физической величины, равной . Такая величина называется потенциальной энергией тела , которое находится на высоте h над некоторым нулевым уровнем.

Изменение потенциальной энергии отрицательно по величине, если совершается положительная работа силы тяжести (видно из формулы ). Если совершается отрицательная работа, то изменение потенциальной энергии будет положительным.

Если тело падает с высоты h на нулевой уровень, то работа силы тяжести будет равна значению потенциальной энергии тела, поднятого на высоту h .

Потенциальная энергия тела , поднятого на некоторую высоту над нулевым уровнем, равна работе, которую совершит сила тяжести при падении данного тела с данной высоты на нулевой уровень.

В отличие от кинетической энергии, которая зависит от скорости тела, потенциальная энергия может быть не равной нулю даже у покоящихся тел.

Рис. 4. Тело, находящееся ниже нулевого уровня

Если тело находится ниже нулевого уровня, то оно обладает отрицательной потенциальной энергией (см. Рис. 4). То есть знак и модуль потенциальной энергии зависят от выбора нулевого уровня. Работа, которая совершается при перемещении тела, от выбора нулевого уровня не зависит.

Термин «потенциальная энергия» применяется только по отношению к системе тел. Во всех вышеприведенных рассуждениях этой системой была «Земля - тело, поднятое над Землёй».

Однородный прямоугольный параллелепипед массой m с рёбрами располагают на горизонтальной плоскости на каждой из трёх граней поочерёдно. Какова потенциальная энергия параллелепипеда в каждом из этих положений?

Дано: m - масса параллелепипеда; - длина рёбер параллелепипеда.

Найти: ; ;

Решение

Если нужно определить потенциальную энергию тела конечных размеров, то можно считать, что вся масса такого тела сосредоточена в одной точке, которая называется центром масс данного тела.

В случае симметричных геометрических тел центр масс совпадает с геометрическим центром, то есть (для данной задачи) с точкой пересечения диагоналей параллелепипеда. Таким образом, необходимо посчитать высоту, на которой расположена данная точка при различных расположениях параллелепипеда (см. Рис. 5).

Рис. 5. Иллюстрация к задаче

Для того чтобы найти потенциальную энергию, необходимо полученные значения высоты умножить на массу параллелепипеда и ускорение свободного падения.

Ответ: ; ;

На данном уроке мы научились вычислять работу силы тяжести. При этом увидели, что, независимо от траектории движении тела, работа силы тяжести определяется разностью между высотами начального и конечного положения тела над некоторым нулевым уровнем. Также мы ввели понятие потенциальной энергии и показали, что работа силы тяжести равна изменению потенциальной энергии тела, взятой с противоположным знаком. Какую работу надо совершить, чтобы переложить пакет с мукой массой 2 кг с полки, находящейся на высоте 0,5 м относительно пола, на стол, находящийся на высоте 0,75 м относительно пола? Чему равны относительно пола потенциальная энергия пакета с мукой, лежавшего на полке, и его потенциальная энергия тогда, когда он находится на столе?

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей