Интегральный коэффициент пропускания. Определение общего коэффициента пропускания света

ЛАБОРАТОРНАЯ РАБОТА №21

ИССЛЕДОВАНИЕ ПОГЛОЩЕНИЯ СВЕТА
В РАСТВОРАХ

Цель работы : определение концентрации вещества в окрашенных растворах и проверка закона Бугера-Ламберта.

Приборы и принадлежности : фотометр электрический КФК-3, набор кювет, набор прозрачных окрашенных растворов (раствор медного купороса, раствор двухромовокислого калия.)

ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ

При прохождении света через прозрачные растворы, газы он частично поглощается. Пусть на прозрачную среду падает свет интенсивности І 0 . Интенсивность света І , прошедшего через раствор, согласно закону Бугера-Ламберта, определяется по формуле:

где α – коэффициент поглощения света; d – толщина слоя.

Поглощение света веществом обусловлено взаимодействием световой волны с атомами и молекулами вещества. Под воздействием электрического поля световой волны электроны в атомах смещаются относительно ядер, совершая гармонические колебания. Возникают вторичные волны. Падающая волна интерферирует со вторичными волнами, испускаемыми электронами атомов и порождает волну с амплитудой, не равной амплитуде воздействующего электрического поля. С энергетической точки зрения это означает, что часть энергии электромагнитной волны идет на увеличение внутренней энергии вещества, через которое проходит свет. Электромагнитная волна переносит энергию, пропорциональную квадрату амплитуды напряженности электрического поля. Среднюю энергию, переносимую через единицу площади за 1 сек, называют интенсивностью световой волны І .



Интенсивность света, прошедшего через вещество, определяется законом Бугера-Ламберта и зависит как от толщины слоя, так и от природы исвойств поглощающего вещества.

Коэффициент поглощения света α пропорционален молекулярной концентрации С

α=α 0 С , (21.2)

где α 0 – коэффициент поглощения одной молекулы растворенного вещества, не зависящий от концентрации. Подставляя (21.2) в соотношение (21.1) получим:

Формула (21.3) носит название закона Бугера-Беера и оказывается справедливой для растворов и газов малой концентрации (при этом предполагается, что растворитель практически не поглощает свет).

При прохождении монохроматической световой волны через вещество происходит затухание амплитуды волны в поглощающей среде. Затухание амплитуды характеризуется показателем затухания χ , который связан с коэффициентом поглощения α соотношением:

(21.4)

где λ 0 – длина волны в вакууме, n – показатель преломления среды.

Учитывая, что λ 0 =nλ, где λ – длина волны в среде, можно эту формулу переписать в виде:

Формулы (21.4) и (21.4 а) показывают, что коэффициент α зависит от длины волны. Эта зависимость обуславливает окрашенность растворов.

Поглощение света прозрачными растворами исследуется при помощи фотометров различной конструкции. Измеряя интенсивности падающего и прошедшего света, можно определить концентрацию поглощающего вещества.

Для экспериментального исследования поглощения света в средах вводятся следующие характеристики:

1. Светопропускание определяется коэффициентом пропускания

где τ – коэффициент светопропускания, І 0 – интенсивность падающего светового потока, І – интенсивность светового потока, прошедшего через раствор.

2. Оптическая плотность вещества определяется формулой

где D – оптическая плотность.

Связь между светопропусканием и оптической плотностью устанавливается с помощью формул (21.5) и (21.б)

(21.7)

Светопропускание раствора τ можно выразить из закона Бугера:

Отсюда определяется коэффициент поглощения α :

После соответствующих преобразований с учетом формул (21.5) и (21.6) зависимость между коэффициентом поглощения a и оптической плотностью раствора D определяется следующим образом

Поглощение света имеет резонансный характер с максимальным значением в области частот, близких к собственной частоте колебаний осциллятора ω 0 (рис. 21.1).

Резонансный вид кривой поглощения определяется структурой атомов и диапазоном частот электромагнитной волны, проходящей через вещество.

На рис. 21.1 показана кривая поглощения α=f(ω) для вещества, в котором диполи имеют одну собственную частоту колебания (АВ – ширина полосы поглощения, определяемая на уровне половины максимального поглощения).

ОПИСАНИЕ УСТАНОВКИ

Фотометр фотоэлектрический КФК-3 предназначен для измерения коэффициентов пропускания и оптической плотности прозрачных жидкостных растворов и твердых образцов. Он также используется для измерения скорости изменения оптической плотности вещества и определения концентрации вещества в растворе.

Принцип действия фотометра основан на сравнении светового потока Ф 0 , прошедшего через растворитель, по отношению к которому проводится измерение, и светового потока Ф , прошедшего через исследуемый раствор. Световые потоки Ф 0 и Ф фотоприемником преобразуются в электрические сигналы U 0 , U и U т (U т – сигнал при неосвещенном приемнике), которые обрабатываются микро-ЭВМ фотометра и представляются на цифровом табло в виде коэффициентов пропускания, оптической плотности, скорости изменения оптической плотности, концентрации.

Коэффициент пропускания τ исследуемого раствора определяется как отношение электрических сигналов U U т прошедшего к U 0 – U т падающего света

Оптическая плотность определяется следующим образом:

(21.12)

Скорость изменения оптической плотности равна

где D 2 – D 1 – разность значений оптических плотностей за временной интервал t в минутах. Например, t принимает значения 1, 2, 3, 4, 5, 6, 7, 8, 9 мин.

Концентрация C=DF, где F – коэффициент факторизации, который определяется экспериментально из графика и вводится цифровой клавиатурой в пределах от 0,001 до 9999.

Фотометр КФК-3 (рис. 21.2) состоитиз корпуса 1, фотометрического блока 2, блока питания 3, кюветного отделения 4, микропроцессорной системы 5, монохроматора 6. Кюветное отделение закрывается съемной крышкой.

На боковой станине фотометра расположена ось резистора "УСТ.0" и тумблер "сеть" 8.

В фотометрический блок входят: осветитель, монохроматор, кюветное отделение, кюветодержатель, фотометрическое устройство.

Монохроматор 6 служит для получения излучения заданного спектрального состава и состоит из корпуса, узла входной щели, сферического зеркала, дифракционной решетки, узла выходной щели и синусного механизма, находящегося внутри корпуса.

Ручка 7 служит для поворота дифракционной решетки через синусный механизм и установки длины волныв нм.

В фотометрическое устройство входят фотодиод и усилитель постоянного тока.

В кюветодержатель устанавливают кюветы с растворителем и исследуемым раствором и помещают их в кюветное отделение, при этом две маленькие пружины кюветодержателя должны находиться с передней стороны. Ввод в световой поток кювет осуществляется поворотом рукоятки 8 до упора влево или вправо. При установке рукоятки до упора влево в световой пучок вводится кювета с растворителем.

Микропроцессорная система 5 состоит из двух печатных плат, соединенных между собой разъемом. К фотометру система присоединяется через разъем. На переднюю панель фотометра выведена клавиатура и цифровое табло системы.

Микропроцессорная система обеспечивает выполнение семи задач:

НУЛЬ – измерение и учет сигнала при неосвещенном фотоприемнике, Г – градуировка фотометра, Е – измерение оптической плотности, П – измерение коэффициента пропускания, С – измерение концентрации, А – измерение скорости изменения оптической плотности, F – ввод коэффициента факторизации.

ВЫПОЛНЕНИЕ РАБОТЫ

Подсоединить фотометр к сети 220В и включить тумблер 7 "сеть". Дать прогреться 30 мин. при открытой крышке кюветного отделения. Нажать клавишу "ПУСК" – на цифровом табло появится символ "Г", соответствующее ему значение и значение длины волны. Затем нажать клавишу "Нуль". На цифровом табло справа от мигающей запятой высвечивается значение n 0 , слева – символ "0". Значение n 0 должно быть не менее 0,005 и не более 0,200. Если n 0 не укладывается в указанные пределы, то с помощью резистора «УСТ.0» добиваются нужного значения.

УПРАЖНЕНИЕ I

Измерение коэффициентов пропускания

1. В кюветное отделение установить кюветы с растворителем и исследуемым раствором медного купороса. Кювету с растворителем установить в дальнее гнездо кюветодержателя, а с исследуемым раствором – в ближнее гнездо кюветодержателя. Закрыть крышку кюветного отделения.

2. Путем поворота рукоятки 8 (рис. 21.2) влево до упора ввести в световой поток кювету с растворителем.

3. Нажать клавишу "Г" и маховичком 7 (рис. 21.2) установить длину волны 400 нм. Длина волны высвечивается на верхнем цифровом табло.

4. Нажать клавишу "П". Слева от мигающей запятой высвечивается символ "П", а справа – соответствующее значение "100±0,2", означающее, что начальный отсчет пропускания равен 100%.

Если отсчет "100±0,2" установился с большим отклонением, то нажать клавиши «Г» и «П» повторно через 3-5 с. Затем необходимо открыть крышку кюветного отделения и нажать клавишу "НУЛЬ", закрыть крышку, нажать клавишу "П".

5. Рукояткой 8 ввести в световой пучок кювету с исследуемым раствором. По световому табло определить коэффициент пропускания раствора.

6. Путем нажатия клавиши "Г" установить маховичком 7 длины волн 450 нм, 500 нм, 550 нм, 600 нм, 650 нм, 700нм, 750 нм и снять для них коэффициент пропускания τ .

Построить график зависимости коэффициента пропускания от длины волны т.е. τ=f(λ)

7. При длине волны 550 нм определить коэффициенты пропускания других растворов медного купороса.

8. Аналогичные измерения провести для раствора двухромовокислого калия и построить график зависимости τ=f(λ) .

УПРАЖНЕНИЕ II

Согласно закону Хопкинса – Кранца при взрыве дух зарядов взрывчатого вещества одной формы, но разного размера (массы) в одинаковой атмосфере подобные взрывные волны будут наблюдаться на одинаковом расстоянии

R*=R(Pо/m ) , (1)

гдеR – расстояние от эпицентра взрыва, м;

Pо – давление начальное в фиксированной точке, кПа;

M – масса взрывчатого вещества, кг.

Данная формула дает возможность оценивать различные взрывы, сопоставляя их со взрывом эталонного вещества, в качестве которого обычно принимают тротил. Под тротиловым эквивалентом m тнт, кг, понимают массу такого тротилового заряда, при взрыве которого выделяется столько же энергии, сколько и при взрыве данного заряда массой m, кг, т.е.

m тнт = m Qv / Qv тнт, (2)

Где Qv , Qv тнт – энергия взрыва данного вещества и тротила, кДж/кг.

Общая энергия взрыва, к Дж, определяется как

Е= [(Р1 – Р0)/(kt -1) ]V1 ,(3)

где Р1 – начальное давление газа в сосуде, к Па;

kr - показатель адиабаты газа (kr= Ср/ Cv);

V1- объем сосуда, м.

4.2 Задание на практическую работу.

Задание 1. Определить скорости распространения фронта племени.

Задание 5. Расчет аварии, связанный с образованием «огненного шара».

Условия выполнения задания.

Задание 1. Определение скорости распространения фронта племени.

Скорость распространения фронта племени определяется по формуле

V = k ·М , (4)

где: k - константа, равная 43;

М -масса топлива, содержащегося в облаке.

Эффективный энергозапас топливовоздушной смеси рассчитываются по формуле:

Е = 2М ·q ·С /С , (5)

Безразмерное расстояние при взрыве рассчитывается по формуле:

R = R/(E/P ) , (6)

Безразмерное давление при взрыве рассчитывается по формуле:

P = (V /С ) (( - 1)/ )(0,83/R - 0,14/R ) , (7)

Задание 5. Расчет аварии, связанный с образованием «огненного шара»:

Поражающее действие «огненного шара» на человека определяется величиной тепловой энергии (импульсом теплового излучения) и временем существования «огненного шара», а на остальные объекты – интенсивностью его теплового излучения.

Исходные данные:

количество разлившегося при аварии топлива 10,6 м 3 ;

плотность жидкой фазы пропана,  Г = 530 кг/м 3 ;

температура «огненного шара»,  = 1350 К.

Необходимо определить время существования «огненного шара» и расстояние, при котором импульс теплового излучения соответствует различным степеням ожога человека.

Порядок оценки последствий аварии по ГОСТ Р 12.3.047-98 «Пожарная безопасность технологических процессов»:

Импульс теплового излучения Q, кДж, рассчитывают по формуле:

Q = t s · q , (8)

где t s - время существования огненного шара, с;

q - интенсивность теплового излучения, кВт/м 2 .

Расчет интенсивности теплового излучения «огненного шара», проводят по формуле:

q = E f · F q · t , (9)

где E f - среднеповерхностная плотность теплового излучения, кВт/м 2 ;

F q - угловой коэффициент облученности;

t - коэффициент пропускания атмосферы.

E f определяют на основе имеющихся экспериментальных данных, допускается принимать E f равным 450 кВт/м 2 .

Угловой коэффициент облученностирассчитывают по формуле

, (10)

где Н- высота центра «огненного шара», м;

D s - эффективный диаметр «огненного шара», м;

r - расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром «огненного шара», м.

Эффективный диаметр «огненного шара» D s рассчитывают по формуле

D s =5,33 m 0,327 , (11)

где m - масса горючего вещества, кг.

H - определяют в ходе специальных исследований. Допускается принимать H равной D s /2.

Время существования «огненного шара» t s , с, рассчитывают по формуле

t s = 0,92 m 0,303 , (12)

Коэффициент пропускания атмосферы т рассчитывают по формуле

t = ехр [-7,0 · 10 -4 ( - D s / 2)] , (13)

4.3. Оформление и представление результатов.

1. Изучить теоретический курс лекционных занятий и предлагаемую учебную литературу.

3. Провести идентификацию опасных производственных объектов, используяпризнаки опасности объекта.

4. Исследовать устойчивость объектов экономики.

5. Разработать мероприятия по ПУФ ОЭ.

6. Сделать выводы по полученным исследованиям, сформулировать предложения.

7. Подготовить отчет по выполненной работе. Форма отчетности – письменная, согласно требованиям методических рекомендаций по выполнения практической работы.

8. Подготовить ответы на контрольные вопросы.

9. Осуществить самоконтроль.

10. Защитить практическую работу с первого раза в течении 15 минут.

Представление результатов.

Определения

Обозначения и сокращения

Введение

Основная часть

Заключение

Список использованных источников

Приложения

4.4 Варианты задания.

Поряд-ковый номер Номер варианта Значение М(в кг) С R(м) V1, (куб.м)
0,14
0,13
0,12
0,14
0,15
0,15
0,14
0,13
0,12
0,14
0,13
0,15
0,13
0,14
0,12
0,13
0,15
0,14
0,15
0,13
0,12
0,14
0,15
0,13
0,12
0,14
0,15
0,15
0,13
0,12

Контрольные вопросы :

1. Дать определение взрыва?

2. Перечислить основные характеристики взрыва?

3. Описать процесс взрывных превращений?

4. Обосновать закон Хопкинса-Кранца?

5. В чем заключаются особенности детонации и дефлографии?

6. Чем характеризуется фаза высокого давления?

7. Объясните процесс взрыва ТВС?

8. Приведите последовательность действия ударной волны?

9. Пользуясь вариантом задания, дайте объяснения давления при взрыве?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Безопасность жизнедеятельности / Под ред. Л.А. Михайлова. – М: Академия, 2009. – 272 c.

2. Ильин Л.А. Радиационная гигиена / Л.А. Ильин, В.Ф. Кириллов, И.П. Коренков. – М: Гэотар-Медиа, 2010. –384 c.

3. Практикум по безопасности жизнедеятельности / Под ред. А.В. Фролова. – Ростов-на-Дону: Феникс, 2009. – 496 c.

4. Болтыров В.В. Опасные природные процессы / В.В. Болтыров. – М: КДУ, 2010. – 292 c.

5. Шуленина Н.С. Рабочая тетрадь по основам безопасности жизнедеятельности / Н.С. Шуленина, В.М. Ширшова, Н.А. Волобуева. – Новосибирск: Сибирское университетское издательство, 2010. – 192 c.

6. Почекаева Е.И.. Экология и безопасность жизнедеятельности / E.И. Почекаева. – Ростов-на-Дону: Феникс, 2010. – 560 c.

7. Белов С.В. Безопасность жизнедеятельности / С.В. Белов. – М: А-Приор, – 2011. – 128 c.

8. Хван Т.А. Безопасность жизнедеятельности. Практикум / Т.А. Хван, П.А. Хван. – Ростов-на-Дону: Феникс, 2010. – 320 c.

9. ГОСТ Р 22.0.01-94. БЧС, Безопасность в чрезвычайных ситуациях. Основ­ные положения.

10. ГОСТ Р 22.0.02-94. БЧС. Термины и определения основных понятий.

11. ГОСТ Р 22.0.05-94. БЧС". Техногенные чрезвычайные ситуации. Термины и определения

12. ГОСТ Р 22.0.07-95. БЧС. Источники техногенных чрезвычайных ситуа­ций. Классификация и номенклатура поражающих факторов и их параметров.

13. ГОСТ Р 22.3.03-94. БЧС. Защита населения. Основные положения.

14. ГОСТ Р 22.1.01-95. БЧС". Мониторинг и прогнозирование. Основные по­ложения.

15. ГОСТ Р 22.8.01-96. БЧС". Ликвидация чрезвычайных ситуаций.

16. ГОСТ Р 22.0.06-95. БЧС. Поражающие факторы. Методика определения парамет­ров поражающих воздействий.

Приложение 1.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08

    Пусть - интенсивность входящего света,- интенсивность прошедшего света через вещество.

    Проинтегрируем данное выражение, предварительно разделив переменные:

  1. пропотенцируем это выражение:

  2. по свойству логарифмов:

  3. и получим:

  4. Эта формула выражает закон поглощения света Бугера. Из закона видно, что натуральный показатель поглощения является величиной, обратной расстоянию, на котором интенсивность света ослабляется в результате поглощения в среде враз.

    Натуральный показатель поглощения зависит от длины волны света , поэтому целесообразно закон Бугера записать для монохроматического света:

  5. где -монохроматический натуральный показатель поглощения .

    Так как поглощение света обусловлено взаимодействием с молекулами, то можно закон поглощения связать с некоторыми характеристиками молекул.

    Пусть - концентрация молекул, поглощающих кванты света;

    Эффективное сечение поглощения молекулы;

    Площадь сечения прямоугольного параллелепипеда (рис.1);

    Тогда объём выделенного слоя , количество молекул в нём. Общая площадь эффективного сечения молекул этого слоя равна. На этот слой падает поток фотонов. Доля площади эффективного сечения молекул в общей площади сечения

    Это часть попавших на слой фотонов, которые поглощаются молекулами.

    Изменение интенсивности света зависит от интенсивности падающего светаи количества фотонов, поглощённых молекулами слоя вещества:,

    откуда после интегрирования и потенцирования имеем

  6. В это уравнение входит параметр молекулы .

    Предположим, что молекулы вещества, поглощающие фотоны света, находятся в растворителе, который не поглощает свет.

    Монохроматический натуральный показатель поглощения раствора поглощающего вещества в не поглощающем растворителе пропорционален концентрации раствора:

  7. Эта зависимость выражает закон Бера . Закон выполняется только для разбавленных растворов. В концентрированных растворах он нарушается из-за влияния взаимодействия между близко расположенными молекулами поглощающего вещества.

    Коэффициент -натуральный молярный показатель поглощения .

    Тогда, с учётом этого выражения, закон поглощения можно записать в следующем виде:

  8. - закон Бугера-Ламберта-Бера .

  9. Выясним физический смысл .

    Молярная концентрация , откуда.

    Преобразуем произведение :, где.

    Таким образом, натуральный молярный показатель поглощения – это есть суммарное эффективное сечение поглощения всех молекул одного моля растворённого вещества.

    В лабораторной практике закон Бугера-Ламберта-Бера обычно выражают через показательную функцию с основанием 10:

  10. где -молярный показатель поглощения ;

    Так как .

    Обычно относят к какой-либо длине волны и называютмонохроматическим молярным показателем поглощения ().

  11. Коэффициент пропускания, оптическая плотность.

  12. Отношение интенсивности света, прошедшего сквозь данное тело или раствор к интенсивности света, падающего на тело, называется коэффициентом пропускания :

  13. Коэффициент пропускания обычно выражают в процентах:

    .

    Десятичный логарифм величины, обратной коэффициенту пропускания, называют оптической плотностью раствора:

  14. Метод концентрационной колориметрии.

  15. Закон Бугера-Ламберта-Бера лежит в основе метода «концентрационной колориметрии». Это фотометрический метод определения концентрации вещества в окрашенных растворах. В данном методе непосредственно измеряют интенсивности светового потока, прошедшего через раствор (I l ) и падающего на раствор (I 0 ). Для этой цели используют две группы приборов: объективные (фотоэлектроколориметры) и субъективные, или визуальные (фотометры).

  16. Устройство и принцип работы фотоэлектроколориметра.

  17. Фотоэлектроколориметр ФЭК служит для определения концентраций окрашенных растворов по поглощению света этими растворами.

    Принципиальная схема однолучевого фотоэлектроколориметра (рис. 2):

    Cветофильтр

    Кювета для растворов

    Фотоприёмник

    Преобразователь сигнала (усилитель)

    Измерительный элемент (гальванометр)

При изложении материала предыдущего параграфа поток излучения в любом сечении световой трубки принимался постоянным. Однако при прохождении излучения через границу раздела сред и их толщу имеют место потери в виде отражения части потока на преломляющих поверхностях, поглощения части потока на отражающих поверхностях, поглощения и рассеяния в толще оптической среды.

Эти потери оцениваются коэффициентами отражения поглощения а и светорассеяния ;

где отраженный поток излучения на преломляющей поверхности (если поверхность должна действовать как отражающая, то вторичный поток при отражении); поток излучения, поступивший на вход оптической системы; а - поток излучения, поглощенный в толще оптической среды или на поверхности при ее действии как отражающей; поток излучения, рассеянный в толще среды.

Если через обозначить поток, прошедший оптическую систему, то коэффициент пропускания системы

Таким образом,

При решении практических задач коэффициенты поглощения и рассеяния (последние обычно малы) объединяют в один коэффициент поглощения а.

Коэффициенты отражения, поглощения и пропускания являются оптическими характеристиками определенной среды и зависят от длины волны. Таким образом, эти коэффициенты являются спектральными и обозначаются

Интегральные значения этих коэффициентов определяются выражениями вида

где спектральная плотность потока излучения.

Для светового потока

Вычисления по формулам (206) и (207) при табличном или графическом задании множителей, входящих под знак интеграла, могут выполняться численно или графически.

Для определения коэффициента пропускания оптической системы рассмотрим потери светового потока за счет отражения и поглощения света.

Коэффициент отражения для преломляющей поверхности определяют по формуле Френеля:

где углы падения и преломления соответственно.

Если угол падения луча на поверхность мал, то формула (208) принимает вид:

где показатели преломления сред.

На рис. 93, а показана зависимость коэффициента отражения от угла падения на границе воздух стекло . Из рисунка следует, что для углов падения до 40° коэффициент отражения увеличивается незначительно, это для большинства оптических систем позволяет считать и вычислять его по формуле (209). Зависимость коэффициента отражения от показателя преломления стекла при (воздух) дана на рис. 93, б [по формуле (209)].

Если оптические детали соединяются оптическим контактом или склеиваются бальзамом то вследствие небольшой разности показателей преломления потерь света на отражение не учитываются. Например, для

т. е. 0,4%. В среднем для

Рис. 93. Зависимость коэффициента отражения: а - от угла падения; от показателя преломления

оптических стекол, граничащих с воздухом, В сложных системах потери света на отражение могут составлять примерно так как

где число границ воздух - стекло или наоборот.

Для уменьшения коэффициента отражения используют просветление преломляющих поверхностей путем нанесения на них одной или нескольких тонких пленок, обеспечивающие в результате интерференции резкое уменьшение отраженной части потока излучения. Толщину пленки определяют по формуле

где длина волны; показатель преломления пленки; угол преломления;

Число может быть любым. Для полихроматического излучения коэффициент отражения будег наименьшим при При толщина

Показатель преломления пленки при или

где показатель преломления оптической детали.

Следует заметить, что отражение от просветленных преломляющих поверхностей, а следовательно, и пропускание оптической системы являются селективными.

В соответствии с показателями преломления оптических стекол показатели преломления просветляющих пленок [см. формулу (210)] выбирают в интервале

В качестве материалов для образования пленок используют фтористый магний и криолит, наносимые испарением в вакууме (физический метод). Однако механическая прочность пленок из этих материалов недостаточна, что ограничивает их применение. Поэтому во многих случаях пленку наносят осаждением вещества,

Рис. 94. Эффект вторичных отражений

например диоксида кремня или титана, из его спиртового раствора (химический метод). При этом получается прочная пленка, но имеющая большой показатель преломления что снижает эффект просветления.

Использование двух- и трехслойного просветления преломляющих поверхностей обеспечивает уменьшение отраженного света до при хорошей механической прочности покрытия и постоянстве спектрального состава излучения.

Для отражающих поверхностей (зеркал) используются покрытия из алюминия, серебра, золота, родия и др.

Спектральный коэффициент отражения этих металлов рассчитывают по формуле где - длина волны, удельная проводимость,

Например, для алюминиевого покрытия, которое может быть получено испарением в вакууме, при С ростом длины волны отражательная способность повышается.

Преломленная часть потока излучения проходит сквозь толщу оптически однородной среды и, как уже указывалось, частично поглощается и рассеивается этой средой.

Прошедшее излучение (без учета рассеяния) оценивается по закону Бугера-Ламберта:

где коэффициент внутреннего пропускания; коэффициенты поглощения и пропускания соответственно для толщины стекла 1 см; I - толщина стекла, см.

Если пропускание оценивать с учетом потерь на отражение на двух поверхностях оптической детали, находящейся в воздухе, то общий коэффициент пропускания где

Для расчета спектральных коэффициентов внутреннего пропускания при толщине стекла, отличной от 1 см, целесообразно использовать оптическую плотность

ГОСТ 26602.4-2012

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЛОКИ ОКОННЫЕ И ДВЕРНЫЕ

Метод определения общего коэффициента пропускания света

Windows and doors. Method for determination of total light transmittance


Текст Сравнения ГОСТ 26602.4-2012 с ГОСТ 26602.4-99 см. по ссылке .
- Примечание изготовителя базы данных.
____________________________________________________________________

МКС 91.060.50

Дата введения 2014-01-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила, рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Учреждением "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук" (НИИСФ РААСН) при участии Общества с ограниченной ответственностью "ЦЕРЕРА-ЭКСПЕРТ"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (протокол от 18 декабря 2012 г. N 41)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование органа государственного управления строительством

Азербайджан

Госстрой

Министерство градостроительства

Беларусь

Минстройархитектура

Киргизия

Госстрой

Министерство регионального развития

Узбекистан

Госархитектстрой

4 В настоящем стандарте учтены нормативные положения европейского регионального стандарта EN 13363-1:2003* Solar protection devices combined with glazing - Calculation of solar and light transmittance - Part 1: Simplified method (Солнцезащитные устройства в сочетании с остеклением. Расчет пропускания солнечного излучения и света. Часть 1. Упрощенный метод) в части определения коэффициента пропускания оконных и дверных блоков с солнцезащитой
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить перейдя по ссылке на сайт http://shop.cntd.ru . - Примечание изготовителя базы данных.

5 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 2017-ст межгосударственный стандарт ГОСТ 26602.4-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

6 ВЗАМЕН ГОСТ 26602.4-99


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на оконные и остекленные дверные блоки жилых, общественных, производственных и других зданий и устанавливает метод определения общего коэффициента пропускания света этих изделий.

Данный метод может быть применен для определения общего коэффициента пропускания света витражей, витрин, зенитных фонарей и других светопрозрачных конструкций или их фрагментов, включающих в себя различные комбинации непрозрачных и светопропускающих элементов из различных видов стекол (прозрачных или окрашенных, без покрытий или с покрытиями, узорчатых, армированных, многослойных и т.д.), а также оконные и остекленные блоки с солнцезащитой.

Метод применяют также для оценки соответствия светопрозрачных и солнцезащитных конструкций заявленным свойствам.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты:

ГОСТ 8.014-72 Государственная система обеспечения единства измерений. Методы и средства поверки фотоэлектрических люксметров

ГОСТ 8.332-78 Государственная система обеспечения единства измерений. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения

ГОСТ 7721-89 Источники света для измерений цвета. Типы. Технические требования. Маркировка

ГОСТ 15543-70 Изделия электротехнические. Исполнения для различных климатических районов. Общие технические требования в части воздействия климатических факторов внешней среды

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 фрагмент изделия: Часть изделия, отражающая его основные конструктивные особенности и оптические характеристики.

3.2 образец для испытаний: Светопрозрачная ограждающая конструкция в сборе или ее фрагмент, пригодные для испытаний, технические характеристики которых полностью соответствуют представленной в испытательный центр (лабораторию) сопроводительной нормативной и конструкторской документации.

3.3 относительная спектральная световая эффективность монохроматического излучения с длиной волны : Отношение двух потоков излучения соответственно с длинами волн и , вызывающих в точно определенных фотометрических условиях зрительные ощущения одинаковой силы. Длину волны выбирают так, чтобы максимальное значение этого отношения равнялось единице.

3.4 светопрозрачная ограждающая конструкция: Строительная конструкция, предназначенная для обеспечения естественного освещения внутренних помещений здания или сооружения.

3.5 световой поток : Физическая величина, оценивающая мощность оптического излучения по его воздействию на селективный приемник света, спектральная чувствительность которого определяется функцией относительной спектральной световой эффективности излучения , лм.

3.6 освещенность : Физическая величина, определяемая отношением светового потока, падающего на элемент поверхности, содержащий рассматриваемую точку, к площади этого элемента, лк.

3.7 средняя освещенность : Освещенность, усредненная по площади освещаемого помещения, участка, рабочей зоны, лк.

3.8 коэффициент остекления оконного блока (или другой светопрозрачной конструкции) : Отношение площади светопрозрачной части оконного блока к его рабочей площади. В случае наличия в конструкции нескольких рядов остекления за площадь светопрозрачной части принимают площадь остекления ряда с наименьшей светопрозрачной частью, отн. ед.

3.9 общий коэффициент пропускания света : Отношение светового потока, прошедшего сквозь изделие, к световому потоку, упавшему на него, отн. ед.

4 Средства измерений

4.1 Для прямых измерений общего коэффициента пропускания света используется испытательная установка, состоящая из:

- источников диффузного света типа А (искусственного небосвода отраженного света, окрашенного белой диффузно отражающей краской) по ГОСТ 7721 ;

- светомерной камеры, окрашенной матовой белой диффузно отражающей краской, разделенной горизонтальной перегородкой с проемом и опорной решеткой в нем для установки испытываемого образца;

- измерительного блока, состоящего из шести люксметров. Измерительная головка одного люксметра располагается в наружной камере, измерительные головки остальных пяти - во внутренней камере. Измерительные головки люксметров должны иметь предел допускаемой относительной погрешности не более 10% с учетом погрешности спектральной коррекции, определяемой как отклонение относительной спектральной чувствительности измерительного преобразователя излучения от относительной спектральной световой эффективности монохроматического излучения для дневного зрения по ГОСТ 8.332 , а также погрешности калибровки абсолютной чувствительности и погрешности, вызванной нелинейностью световой характеристики;

- темнителя света по ГОСТ 15543 .

Используемые в установке люксметры должны быть поверены и иметь действующие свидетельства о Государственной поверке средств измерений. Государственная поверка люксметров осуществляется органами стандартизации и метрологии в соответствии с ГОСТ 8.014 .

4.2 Для определения общего коэффициента пропускания расчетно-измерительным методом используются фотометры или спектрофотометры, позволяющие измерять коэффициенты пропускания светопрозрачных материалов.

5 Определение общего коэффициента пропускания света оконных блоков прямыми измерениями

5.1 Порядок отбора образцов

5.1.1 Испытания проводят на образцах, представляющих собой готовые изделия или фрагменты изделий, соответствующих требованиям, установленным в нормативных документах (конструкторской документации) на конкретную продукцию полной заводской готовности.

В случае если результаты испытаний предполагается распространить на типоразмерный ряд (включающий испытываемую конструкцию), то для проведения испытаний выбирают конструкцию с наименьшим коэффициентом остекления. Минимальный размер образцов - 700х700 мм, максимальный размер образцов определяют техническими возможностями испытательной установки.

Рекомендуемые размеры образцов оконных блоков: высота - 1460 мм; ширина - 1470 (или 1320) мм.

Окна, как правило, должны быть двустворчатыми, с форточным узлом. Если конструкция предусматривает откидное или поворотно-откидное открывание узкой створки, наличие форточного узла не обязательно.

5.1.2 Порядок отбора и количество образцов для испытаний устанавливают в нормативных документах (НД) на конкретную продукцию. Рекомендуется испытывать не менее двух идентичных образцов.

5.2 Подготовка образцов к испытаниям

Проверку комплектности конструкции и показателей внешнего вида образцов проводят визуально в соответствии с требованиями НД на испытываемые изделия.

Проверку геометрических размеров образцов проводят с помощью средств измерений по методикам, приведенным в НД на испытываемые изделия.

Перед испытаниями изделия должны быть тщательно очищены от загрязнения и промыты.

5.3 Определение общего коэффициента пропускания света

5.3.1 Сущность метода состоит в определении отношения величины светового потока , лм, прошедшего сквозь изделие, к величине светового потока , лм, падающего на это изделие из наружного пространства.

5.3.2 Испытания проводят при значениях освещенности 500; 750; 1000 лк ±5%, создаваемой источником диффузного света на плоскости проема разделительной перегородки светомерной камеры.

В обоснованных случаях допускается разрабатывать уточненную программу испытаний с другими характеристиками условий проведения испытаний, согласованную испытателем и заказчиком.

5.3.3 Проводят регулировку освещенности с помощью темнителя света и фиксируют ее величину.

5.3.4 Контроль освещенности осуществляют люксметром с измерительным преобразователем излучения, установленным в источнике диффузного света горизонтально (наружный преобразователь излучения) и обращенным приемной поверхностью от испытываемого изделия в соответствии с рисунком А.1 приложения А.

5.3.5 Измерения светового потока, прошедшего через проем разделительной перегородки светомерной камеры, проводят люксметрами с выносными измерительными преобразователями излучения. Преобразователи излучения люксметров должны быть закреплены внутри светомерной камеры и обращены приемной плоскостью в направлении от проема. Число измерителей излучения должно быть не менее пяти.

5.3.6 Испытываемый образец горизонтально устанавливают на опорную решетку в проеме разделительной перегородки светомерной камеры заподлицо с нижней плоскостью перегородки так, чтобы геометрический центр образца находился на вертикальной оси светомерной камеры.

5.3.7 Устанавливают ограничители проема разделительной перегородки по периметру оконного блока. Монтажные зазоры между образцом и проемом изолируют от прохождения света.

5.3.8 Проводят измерение освещенности, соответствующей световому потоку , прошедшему через проем разделительной перегородки светомерной камеры с установленным в нем образцом.

5.3.9 Удаляют образец из проема разделительной перегородки светомерной камеры, не нарушая положения ограничителей проема.

5.3.10 Повторно измеряют освещенность, соответствующую световому потоку , прошедшему через проем разделительной перегородки светомерной камеры без образца.

5.3.11 Измерения проводят при трех фиксированных значениях освещенности по 5.3.2 с интервалом в 5 мин. Результаты измерений для каждого образца заносят в таблицу Б.1 приложения Б.

5.4 Обработка результатов испытаний

5.4.1 Для каждого значения освещенности вычисляют значение коэффициента пропускания света и относительную погрешность его определения по формулам:

где - количество внутренних фотоэлементов;

- абсолютная погрешность определения коэффициента пропускания света при данной освещенности, отн. ед.;

- коэффициент пропускания света изделием в относительных единицах, определенный -м внутренним фотоэлементом при данном значении освещенности, рассчитанный с учетом относительной погрешности измерения по формулам:

где - значения освещенности по люксметру с -м внутренним преобразователем излучения, пропорциональные величине светового потока , лм, прошедшего через проем разделительной перегородки светомерной камеры с образцом;

- значения освещенности по люксметру с -м внутренним преобразователем излучения, пропорциональные величине светового потока , лм, прошедшего через проем разделительной перегородки светомерной камеры без образца;

- абсолютная погрешность определения коэффициента пропускания света -м преобразователем излучения при данной освещенности, отн. ед.;

- абсолютная погрешность измерения значения освещенности с исследуемым образцом;

- абсолютная погрешность измерения значения освещенности без образца в делениях шкалы микроамперметра или гальванометра.

5.4.2 Общий коэффициент пропускания света образца изделия , отн. ед., принимают равным среднеарифметическому значению результатов испытаний изделий, а относительную погрешность его определения принимают равной среднеквадратичному значению относительных погрешностей испытаний:

где 3 - число испытаний по 5.3.11.

5.4.3 При испытании двух и более идентичных образцов за общий коэффициент пропускания света изделия принимают наименьшее значение из полученных по результатам испытаний каждого образца. Относительную погрешность определения общего коэффициента пропускания света изделия в этом случае вычисляют как среднеарифметическое значение для испытанных образцов.

5.5 Оформление результатов испытаний

5.5.1 Результаты испытаний оформляют протоколом, в котором указывают:

- наименование испытательного центра (лаборатории), проводившего испытания;

- номер аттестата аккредитации испытательного центра (лаборатории), проводившего(ей) испытания;

- наименование и юридический адрес организации - заказчика испытаний;

- наименование и юридический адрес организации - изготовителя испытываемой продукции;

- наименование испытываемой продукции и документа, регламентирующего требования к ее качеству;

- описание испытываемых образцов продукции: маркировка образцов, габаритные размеры образцов, тип использованного стекла, геометрические размеры сечений, вид окраски и др.;

- отношение площади остекления к общей площади образца (коэффициент остекления);

- дату поступления образцов в испытательный центр (лабораторию);

- номер регистрации образцов в испытательном центре (лаборатории);

- дату испытаний образцов;

- результаты испытаний - по форме таблицы Б.1 приложения Б;

- заключение: значение общего коэффициента пропускания света испытываемого образца (изделия) и относительной погрешности измерения;

- подписи руководителя испытательного центра (лаборатории) и испытателя, печать испытательного центра.

6 Определение общего коэффициента пропускания света оконных блоков расчетно-измерительным методом

6.1 При расчетно-измерительном методе определения общий коэффициент пропускания света оконного блока определяют по формуле

где - коэффициент пропускания света светопрозрачным заполнением;

- коэффициент передачи светового потока ячейками оконного блока, учитывающий потери света в переплетах светового проема (в оконном блоке).

6.2 Определение коэффициента пропускания света светопрозрачным заполнением (стеклом или стеклопакетом) проводят на фотометре по действующим нормативным документам.

6.3 Для измерений используют фрагменты светопрозрачных заполнений, применяемых в оконном блоке размером от 100х100 мм до 300х300 мм.

6.4 Коэффициент передачи светового потока ячейками оконного блока прямоугольной, круглой и полукруглой формы рассчитывают по формуле

где - площадь оконного блока по наружному обмеру, м;

- площадь -й ячейки в свету, м;



- составляющая коэффициента светопередачи, зависящая от геометрических размеров ячейки переплета:

где - составляющая коэффициента светопередачи, зависящая от отражательных свойств внутренних граней ячеек переплета:

где - коэффициент диффузного отражения внутренних граней ячейки;

, - ширина и высота -й ячейки в свету, м;

- толщина ячейки переплета, м;

- радиус ячейки переплета, м;

- индекс ячейки:

- для ячейки переплета прямоугольной формы, пример которой приведен на рисунке 1:

Рисунок 1 - Оконные блоки прямоугольной формы


- для ячейки переплета круглой формы, пример которой приведен на рисунке 2:

Рисунок 2 - Оконные блоки с ячейками круглой формы


- для ячейки переплета полукруглой формы, пример которой приведен на рисунке 3:

Рисунок 3 - Оконные блоки полукруглой и сложной формы

7 Определение коэффициента пропускания оконных и дверных блоков с солнцезащитой

7.1 При использовании внешних и внутренних солнцезащитных устройств определение общих коэффициентов пропускания света может быть рассчитано по формулам:

- при внешних солнцезащитных устройствах

При внутренних солнцезащитных устройствах

где - общий коэффициент пропускания света оконным блоком, определенный в соответствии с настоящим стандартом;

- коэффициент отражения внешней стороны остекления;

- коэффициент отражения внутренней стороны остекления;

- коэффициент пропускания солнцезащитного устройства;

- коэффициент отражения обратной отражающей стороны солнцезащитного устройства;

- коэффициент отражения внутренней стороны солнцезащитного устройства.

Приложение А (обязательное). Установка для определения общего коэффициента пропускания света

Приложение А
(обязательное)

1 - источник диффузного света; 2 - светомерная камера; 3 - проем с опорной решеткой; 4 - осветительные приборы источника света; 5 - измерительный преобразователь излучения люксметра наружной камеры; 6 - измерительные преобразователи люксметров внутренней камеры; 7 - регистрирующие устройства люксметров; 8 - регулятор напряжения осветительных приборов; 9 - экран фотоэлемента от прямого света источника


Таблица Б.1

Освещенность по люксметру с преобразователем излучения, размещенным в наружной камере, соответствующая величине горизонтальной освещенности, создаваемой источником диффузного света

Номер внутреннего преобра-
зователя излучения ()

Освещенность по люксметру с преобразователем излучения, размещенному во внутренней камере, соответствующая величине светового потока, прошедшего через проем светомерной камеры

Коэффициент пропускания света при данном значении освещенности, определенной -м внутренним фотоэлементом

Коэффициент пропускания света для каждого значения освещенности

Общий коэффициент пропускания света образца

с оконным блоком

без оконного блока

Приложение В (справочное). Перечень рекомендуемых средств измерения освещенности, используемых в измерительной установке

Приложение В
(справочное)

Люксметр типа Аргус 01.

Люксметр-пульсметр типа Аргус 07.

Люксметр типа ТКА-Люкс.

Люксметр типа ТКА-ПКМ модель 02.

Люксметр типа ТКА-ПКМ модель 08.

Люксметр типа ТКА-ПКМ модель 31.

Люксметр типа "Pocket-Lux2" фирмы LMT (Германия).

Люксметр-яркомер типа ТЕС-0693 (Украина).

Люксметр-яркомер типа ТКА модель 04/3.

Люксметр-яркомер Аргус 12.



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2014

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей