Элементарный заряд. Закон сохранений заряда Проводники Полупроводники Диэлектрики Закон Кулона

ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

§1 Распределение заряда в проводнике.

Связь между напряженностью поля у поверхности проводника и поверхностной плотностью заряда

Следовательно, поверхность проводника при равновесии зарядов является эквипотенциальной.

При равновесии зарядов ни в каком месте внутри проводника не может быть избыточных зарядов - все они распределены по поверхности проводника с некоторой плотностью σ.

Рассмотрим замкнутую поверхность в форме цилиндра, образующие которого перпендикулярны поверхности проводника. На поверхности проводника расположены свободные заряды с поверхностной плотностью σ.

Т.к. внутри проводника зарядов нет, то поток через поверхность цилиндра внутри проводника равен нулю. Поток через верхнюю часть цилиндра вне проводника по теореме Гаусса равен

т.е. вектор электрического смещения равен поверхностной плотности свободных зарядов проводника или

2. При внесении незаряженного проводника во внешнее электростатическое поле свободные заряды начнут перемещаться: положительные - по полю, отрицательные - против поля. Тогда с одной стороны проводника будут накапливаться положительные, а с другой отрицательные заряды. Эти заряды называются ИНДУЦИРОВАННЫМИ . Процесс перераспределения зарядов будет происходить до тех пор, пока напряженность внутри проводника не станет равной нулю, а линии напряженности вне проводника перпендикулярны его поверхности. Индуцированные заряды появляются на проводнике вследствие смещения, т.е. являются поверхностной плотностью смещенных зарядов и т.к. то поэтому назвали вектором электрического смещения.

§2 Электроемкость проводников.

Конденсаторы

  1. УЕДИНЕННЫМ называется проводник, удаленный от других проводников, тел, зарядов. Потенциал такого проводника прямо пропорционален заряду на нем

Из опыта следует, что разные проводники, будучи одинаково заряженными Q 1 = Q 2 приобретает различные потенциалы φ 1 ¹ φ 2 из-за различной формы, размеров и окружающей проводник среды (ε). Поэтому для уединенного проводника справедлива формула

где - емкость уединенного проводника . Емкость уединенного проводника равна отношению заряда q , сообщение которого проводнику изменяет его потенциал на 1 Вольт.

В системе SI емкость измеряется в Фарадах

Емкость шара


Рассчитаем емкость плоского конденсатора с площадью пластин S , поверхностной плотностью заряда σ, диэлектрической проницаемостью ε диэлектрика между пластинами, расстоянием между пластинами d . Напряженность поля равна

Используя связь Δφ и Е , находим

Емкость плоского конденсатора.

Для цилиндрического конденсатора:

Для сферического конденсатора

Т.к. при некоторых значениях напряжения в диэлектрике наступает пробой (электрический разряд через слой диэлектрика), то для конденсаторов существует пробивное напряжение. Пробивное напряжение зависит от формы обкладок, свойств диэлектрика и его толщины.

  1. Емкость при параллельном и последовательном соединении конденсаторов

а) параллельное соединение

По закону сохранения заряда

б) последовательное соединение

По закону сохранения заряда

§3 Энергия электростатического поля

  1. Энергия системы неподвижных точечных зарядов

Электростатическое поле является потенциальным. Силы, действующие между зарядами - консервативные силы. Система неподвижных точечных зарядов должна обладать потенциальной энергией. Найдем потенциальную энергию двух неподвижных точечных зарядов q 1 и q 2 , находящихся на расстоянии r друг от друга.

Потенциальная энергия заряда q 2 в поле, создаваемом

зарядом q 1 , равна

Аналогично, потенциальная энергия заряда q 1 в поле, создаваемом зарядом q 2 , равна

Видно, что W 1 = W 2 , тогда обозначив потенциальную энергию системы зарядов q 1 и q 2 через W , можно записать

К проводникам относятся те вещества, в которыхпод действием внешнего электрического поля могут свободно перемещаться электрические заряды.

Различают проводники первого и второго рода. Кпроводникам первого рода относятся металлы и плазма. Перемещение зарядов в проводниках первого родане связано с изменением химического состава и с переносом вещества. К проводникам второго рода относятся электролиты. Носителями зарядов в электролитах являются положительные и отрицательные ионы, перемещение которых обусловливаетперенос вещества и изменение химического состава проводника.

Сообщим проводящему телу заряд q . Он распределится по объему проводника и на его поверхности с некоторой поверхностной плотностью s . Выясним условия равновесия зарядов на проводниках первого рода.

Для того, чтобы свободные заряды не перемещались внутри проводника , необходимо чтобы напряженность электрического поля была равна нулю, т.е.

Из этого условия и формулы (1.81) следует, что во всех точках внутри проводника потенциал имеет одинаковые значения, т.е.

j (внутри) =const .

Для того, чтобы заряды на поверхности проводника были в равновесии, необходимо, чтобы в каждой точке снаружи напряженность поля была направлена по нормали к поверхности, т.е. вектор должен быть ориентирован параллельно вектору внешней нормали:

снаружи ^ S или ­­ . (4.2)

В соответствии с изложенным в разделе (1.8.2) заключаем, что и поверхность проводника является эквипотенциальной, т.е.

j (на поверхности) =const.

Выделим внутри проводника замкнутую поверхность S (рис. 4.1)

Заряд q должен распределиться так, чтобы соблюдались условия равновесия (4.1) и (4.2). Поскольку внутри проводника =0, то поток вектора через поверхность S равен нулю. Согласно теореме Гаусса-Остроградского (формула 2.21) заряд охватываемый поверхностью, также равен нулю. Поскольку этот результат справедлив для любой замкнутой поверхности внутри проводника, остаётся заключить, что весь заряд q распределится по поверхности проводника с некоторой поверхностной плотностью s .

Применив теорему Гаусса-Остроградского, можно показать, что напряженность поля, возникшего вблизи поверхности заряженного проводника, будет направлена по нормали к поверхности и равна

Рассмотрим распределение зарядов на поверхности проводника, изображенного на рис. 4.2. Напряженность поля больше у острия, т.к. там линии эквипотенциальных поверхностей располагаются гуще, следовательно, и больше отношение Dj/Dl .

Согласно (4.3), чем больше Е , тем больше s, следовательно, на остриях плотность заряда велика, что может даже вызвать ионизацию молекул окружающего газа.


При значениях Е »30кв/см начинается ионизация молекул воздуха и наблюдается «истечение» зарядов с острия. Возникает так называемый «электрический ветер», вызванный движением ионов в электрическом поле острия.

Это свойство острия используют в молниеуловителях (громоотводах), когда между зарядом атмосферы и зарядом иного знака, индуцированном на проводнике (громоотводе), возникает разряд-молния.

4.2. Проводник во внешнем электрическом поле.

Электростатическая защита приборов

Внесем нейтральный проводник в электрическое поле, изображенное с помощью пунктирных силовых линий (рис. 4.3).

Под действием внешнего поля электроны проводника смещаются в направлении, противоположном вектору . В результате на одной стороне проводника возникает отрицательный заряд, а на другой - положительный, вызванный недостатком электронов.

Описанное выше явление перераспределения свободного заряда на проводнике во внешнем электрическом поле называется электростатической индукцией . Наведенные на поверхности проводника заряды противоположного знака называют индуцированными. Поле этих зарядов направлено против внешнего.


Перераспределение заряда будет происходить до тех пор, пока не будут выполнены условия равновесия: внутри проводника напряженность поля станет равной нулю, а линии напряженности снаружи искривятся и станут перпендикулярными к его поверхности . Следовательно, нейтральный проводник, внесенный в электрическое поле, разрывает часть линий напряженности - они заканчиваются на отрицательных индуцированных зарядах и вновь начинаются на положительных (рис. 4.3).

Индуцированные заряды распределяются только по внешней поверхности проводника. Если внутри проводника имеется полость, то при равновесном распределении индуцированных зарядов поле внутри нее также будет обращаться в нуль. На этом основана электростатическая защита приборов. Например, для защиты прибора от воздействия внешних электрических полей его корпус делают из хорошо проводящего ток металла. Экран можно сделать не сплошным, а в виде густой сетки.

В рамках электростатики мы рассматриваем задачи, в которых распределение зарядов отличается статичностью . Другими словами, такие состояния тел, которые реализуются после того, когда тела рассматриваемых систем пришли в равновесие после некоторых воздействий, например, сообщения заряда, помещения в электрическое поле и т.п. Проводники , в отличие от, диэлектриков, имеют в своем составе свободные носители заряда , которые могут перемещаться по объему проводника. В случае металлов такими носителями заряда являются электроны. Скорость их перемещения по металлу весьма высока, поэтому металлы приходят в равновесие в очень малые доли секунды. В случае других материалов может оказаться, что переход в равновесие происходит гораздо медленнее, однако мы сейчас будем рассматривать ситуации, когда равновесие достигнуто.

В состоянии равновесия выполняются следующие условия:

1. Напряженность поля внутри проводника была равна нулю: .

2. На поверхности (вблизи, в непосредственной окрестности…) проводника напряженность электрического поля перпендикулярна поверхности.

Эти условия являются следствиями наличия в проводнике свободных носителей заряда. Действительно, в равновесии перемещение зарядов должно отсутствовать, а, значит, напряженность поля внутри проводника должна быть равна нулю. Следствием этого условия является утверждение о том, что все точки проводника должны иметь одинаковый потенциал, и поверхность проводника является эквипотенциальной .

Поскольку внутри проводника в равновесии не может быть некомпенсированных зарядов (они создавали бы ненулевое поле внутри проводника), то заряд сообщаемый проводнику, располагается в очень тонком слое проводника вблизи поверхности, т.е. на поверхности проводника .

На поверхности проводника у вектора напряженности электрического поля должна отсутствовать тангенциальная (направленная по касательной к поверхности составляющая) составляющая . При ее наличии должно было бы происходить движение зарядов вдоль поверхности, чего в равновесии не может быть. Это утверждение справедливо для любого направления, поэтому вектор напряженностидолжен быть перпендикулярен поверхности .

Заряд, сообщенный проводнику, располагается на его поверхности с плотностью . Поток вектора электрической индукции через поверхность цилиндра, показанного на рисунке 16.1, по теореме Гаусса должен быть равен величине свободного заряда, заключенного внутри поверхности – . Однако поток через боковую поверхность отсутствует, поскольку вектор напряженности (а значит и вектор индукции) параллелен ей, поток через основание внутри проводника отсутствует – там нет электрического поля, а поток через внешнее основание равен . Поэтому

Представим уединенный проводник которому сообщен некоторый заряд. На большом, по сравнению с размерами проводника, расстоянии от него, независимо от формы проводника, его можно считать точечным заряженным телом . Эквипотенциальные поверхности точечного заряда являются сферами. Вблизи проводника эквипотенциальные поверхности должны приблизительно повторять его форму. Вследствие этого вблизи концов проводника эквипотенциальные поверхности сгущаются. Это означает, что потенциал в этих точках пространства изменяется быстро, а напряженность поля, соответственно достигает больших значений. Вследствие большой напряженности поля вблизи острых концов проводников возможно возникновение газового разряда, сопровождающегося стеканием заряда с проводника. По этой причиной элементы высоковольтных линий электропередач обязательно выполняются с округлыми поверхностями.

При помещении проводника во внешнее поле свободные заряды проводника смещаются до тех пор, пока не будут выполнены условия равновесия. При этом на различных участках проводника возникают заряды, распределенные по его поверхности с некоторой плотностью так, чтобы выполнялись условия равновесия. Эти заряды называют индуцированными, а само явление их возникновения – электрической индукцией (не путать с вектором электрической индукции!).

Равновесие зарядов на проводнике

В рамках электростатики мы рассматриваем задачи, в которых распределение зарядов отличается статичностью . Другими словами, такие состояния тел, которые реализуются после того, когда тела рассматриваемых систем пришли в равновесие после некоторых воздействий, например, сообщения заряда, помещения в электрическое поле и т.п. Проводники , в отличие от, диэлектриков, имеют в своем составе свободные носители заряда , которые могут перемещаться по объему проводника. В случае металлов такими носителями заряда являются электроны. Скорость их перемещения по металлу весьма высока, поэтому металлы приходят в равновесие в очень малые доли секунды. В случае других материалов может оказаться, что переход в равновесие происходит гораздо медленнее, однако мы сейчас будем рассматривать ситуации, когда равновесие достигнуто.

В состоянии равновесия выполняются следующие условия:

1. Напряженность поля внутри проводника была равна нулю: .

2. На поверхности (вблизи, в непосредственной окрестности…) проводника напряженность электрического поля перпендикулярна поверхности.

Эти условия являются следствиями наличия в проводнике свободных носителей заряда. Действительно, в равновесии перемещение зарядов должно отсутствовать, а, значит, напряженность поля внутри проводника должна быть равна нулю. Следствием этого условия является утверждение о том, что все точки проводника должны иметь одинаковый потенциал, и поверхность проводника является эквипотенциальной .

Поскольку внутри проводника в равновесии не может быть некомпенсированных зарядов (они создавали бы ненулевое поле внутри проводника), то заряд сообщаемый проводнику, располагается в очень тонком слое проводника вблизи поверхности, т.е. на поверхности проводника .

На поверхности проводника у вектора напряженности электрического поля должна отсутствовать тангенциальная (направленная по касательной к поверхности составляющая) составляющая . При ее наличии должно было бы происходить движение зарядов вдоль поверхности, чего в равновесии не может быть. Это утверждение справедливо для любого направления, поэтому вектор напряженностидолжен быть перпендикулярен поверхности .

Заряд, сообщенный проводнику, располагается на его поверхности с плотностью . Поток вектора электрической индукции через поверхность цилиндра, показанного на рисунке 16.1, по теореме Гаусса должен быть равен величине свободного заряда, заключенного внутри поверхности – . Однако поток через боковую поверхность отсутствует, поскольку вектор напряженности (а значит и вектор индукции) параллелен ей, поток через основание внутри проводника отсутствует – там нет электрического поля, а поток через внешнее основание равен . Поэтому

Представим уединенный проводник которому сообщен некоторый заряд. На большом, по сравнению с размерами проводника, расстоянии от него, независимо от формы проводника, его можно считать точечным заряженным телом . Эквипотенциальные поверхности точечного заряда являются сферами. Вблизи проводника эквипотенциальные поверхности должны приблизительно повторять его форму. Вследствие этого вблизи концов проводника эквипотенциальные поверхности сгущаются. Это означает, что потенциал в этих точках пространства изменяется быстро, а напряженность поля, соответственно достигает больших значений. Вследствие большой напряженности поля вблизи острых концов проводников возможно возникновение газового разряда, сопровождающегося стеканием заряда с проводника. По этой причиной элементы высоковольтных линий электропередач обязательно выполняются с округлыми поверхностями.

Носители заряда в проводнике способны перемещаться под действием сколь угодно малой силы. Поэтому для равновесия зарядов на проводнике необходимо выполнение следующих условий:

В соответствии с (8.2) это означает, что потенциал внутри проводника должен быть постоянным ).

2. Напряженность поля на поверхности проводника должна быть в каждой точке направлена по нормали к поверхности:

Следовательно, в случае равновесия зарядов поверхность проводника будет эквипотенциальной.

Если проводящему телу сообщить некоторый заряд q, то он распределится так, чтобы соблюдались условия равновесия. Представим себе произвольную замкнутую поверхность, полностью заключенную в пределах тела. При равновесии зарядов поле в каждой точке внутри проводника отсутствует; поэтому поток вектора электрического смещения через поверхность равен нулю. Согласно теореме Гаусса сумма зарядов внутри поверхности также будет равна нулю. Это справедливо для поверхности любых размеров, проведенной внутри проводника произвольным образом. Следовательно, при равновесии ни в каком месте внутри проводника не может быть избыточных зарядов - все они распределятся по поверхности проводника с некоторой плотностью о.

Поскольку в состоянии равновесия внутри проводника избыточных зарядов нет, удаление вещества из некоторого объема, взятого внутри проводника, никак не отразится на равновесном расположении зарядов. Таким образом, избыточный заряд распределяется на полом проводнике так же, как и на сплошном, т. е. по его наружной поверхности.

На поверхности полости в состоянии равновесия избыточные заряды располагаться не могут. Этот вывод вытекает также из того, что одноименные элементарные заряды, образующие данный заряд q, взаимно отталкиваются и, следовательно, стремятся расположиться на наибольшем расстоянии друг от друга.

Представим себе небольшую цилиндрическую поверхность, образованную нормалями к поверхности проводника и основаниями величины dS, одно из которых расположено внутри, а другое вне проводника (рис. 24.1). Поток вектора электрического смещения через внутреннюю часть поверхности равен нулю, так как внутри проводника Е, а значит и D, равно нулю. Вне проводника в непосредственной близости к нему напряженность поля Е направлена по нормали к поверхности. Поэтому для выступающей наружу боковой поверхности цилиндра а для внешнего основания (внешнее основание предполагается расположенным очень близко к поверхности проводника). Следовательно, поток смещения через рассматриваемую поверхность равен , где D - величина смещения в непосредственной близости к поверхности проводника. Внутри цилиндра содержится сторонний заряд ( - плотность заряда в данном месте поверхности проводника). Применив теорему Гаусса, получим: Отсюда следует, что напряженность поля вблизи поверхности проводника равна

где - диэлектрическая проницаемость среды, окружающей проводник (ср. с формулой (14.6), полученной для случая )

Рассмотрим поле, создаваемое изображенным на рис. 24.2 заряженным проводником. На больших расстояниях от проводника эквипотенциальные поверхности имеют характерную для точечного заряда форму сферы (на рисунке из-за недостатка места сферическая поверхность изображена на небольшом расстоянии от проводника; пунктиром показаны линии напряженности поля). По мере приближения к проводнику эквипотенциальные поверхности становятся все более сходными с поверхностью проводника, которая является эквипотенциальной. Вблизи выступов эквипотенциальные поверхности располагаются гуще, значит, и напряженность поля здесь больше. Отсюда следует, что плотность зарядов на выступах особенно велика (см. (24.3)). К такому же выводу можно прийти, учтя, что из-за взаимного отталкивания заряды стремятся расположиться как можно дальше друг от друга.

Вблизи углублений в проводнике эквипотенциальные поверхности расположены реже (см. рис. 24.3). Соответственно напряженность поля и плотность зарядов в этих местах будут меньше. Вообще, плотность зарядов при данном потенциале проводника определяется кривизной поверхности - она растет с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости). Особенно велика бывает плотность зарядов на остриях. Поэтому напряженность поля вблизи остриев может быть настолько большой, что возникает ионизация молекул газа, окружающего проводник.

Ионы иного знака, чем q, притягиваются к проводнику и нейтрализуют его заряд. Ионы того же знака, что и q, начинают двигаться от проводника, увлекая с собой нейтральные молекулы газа. В результате возникает ощутимое движение газа, называемое электрическим ветром. Заряд проводника уменьшается, он как бы стекает с острия и уносится ветром. Поэтому такое явление называют истечением заряда с острия.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей