Материал защита от магнитного поля. Материалы для магнитных экранов

Источником электрических по­лей промышленной частоты яв­ляются токоведущие части дей­ствующих электроустановок (линии электропередач, индукторы, конден­саторы термических установок, фидерные линии, генераторы, трансформаторы, электромагниты, соленоиды, импульсные установки полупериодного или конденсатор­ного типа, литые и металлокерамические магниты и др.).

Длительное воздействие электрического поля на организм человека может выз­вать нарушение функционального состояния нервной и сердечно-со­судистой систем. Это выражается в повышенной утомляемости, сниже­нии качества выполнения рабочих операций, болях в области сердца, изменении кровяного давления и пульса.

Основными видами средств кол­лективной защиты от воздействия электрического поля токов промыш­ленной частоты являются экраниру­ющие устройства - составная часть электрической установки, предназ­наченная для защиты персонала в открытых распределительных уст­ройствах и на воздушных линиях электропередач.

Экранирующее устройство необ­ходимо при осмотре оборудования и при оперативном переключении, наблюдении за производством ра­бот. Конструктивно экранирующие устройства оформляются в виде козырьков, навесов или перегоро­док из металлических канатов, прут­ков, сеток.

Переносные экраны также исполь­зуются при работах по обслужива­нию электроустановок в виде съем­ных козырьков, навесов, перегоро­док, палаток и щитов.

Экранирующие устройства долж­ны иметь антикоррозионное покры­тие и заземлены.

Источником электромагнитных полей радиочастот являются:

в диапазоне 60 кГц - 3 МГц - не­экранированные элементы обору­дования для индукционной обра­ботки металла(закалка, отжиг, плав­ка, пайка, сварка и т.д.) и других материалов, а также оборудования и приборов, применяемых в радио­связи и радиовещании;

в диапазоне 3 МГц - 300 МГц -неэкранированные элементы обо­рудования и приборов, применяе­мых в радиосвязи, радиовещании, телевидении, медицине, а также оборудования для нагрева диэлек­триков (сварка пластикатов, нагрев пластмасс, склейка деревянных изделий и др.);



в диапазоне 300 МГц - 300 ГГц -неэкранированные элементы обо­рудования и приборов, применяе­мых в радиолокации, радиоастро­номии, радиоспектроскопии, физи­отерапии и т.п.

Длительное воздействие радио­волн на различные системы орга­низма человека по последствиям имеют многообразные проявления.

Наиболее характерными при воз­действии радиоволн всех диапазо­нов являются отклонения от нор­мального состояния центральной нервной системы и сердечно-сосу­дистой системы человека. Субъек­тивными ощущениями облучаемого персонала являются жалобы на ча­стую головную боль, сонливость или общую бессонницу, утомляемость, слабость, повышенную потливость, снижение памяти, рассеянность, го­ловокружение, потемнение в гла­зах, беспричинное чувство тревоги, страха и др.

Для обеспечения безопасности работ с источниками электромаг­нитных волн производится систе­матический контроль фактических нормируемых параметров на рабо­чих местах и в местах возможного нахождения персонала. Контроль осуществляется измерением напря­женности электрического и магнит­ного поля, а также измерением плот­ности потока энергии по утверж­денным методикам Министерства здравоохранения.

Защита персонала от воздей­ствия радиоволн применяется при всех видах работ, если усло­вия работы не удовлетворяют требованиям норм. Эта защита осуществляется следующими способами и средствами:

согласованных нагрузок и погло­тителей мощности, снижающих на­пряженность и плотность поля пото­ка энергии электромагнитных волн;

экранированием рабочего места и источника излучения;

рациональным размещением обо­рудования в рабочем помещении;

подбором рациональных режимов работы оборудования и режима тру­да персонала;

применением средств предупре­дительной защиты.

Для изготовления отражающих экранов используются материалы с высокой электропроводностью, на­пример металлы (в виде сплошных стенок) или хлопчатобумажные тка­ни с металлической основой. Сплош­ные металлические экраны наибо­лее эффективны и уже при толщине 0,01 мм обеспечивают ослабление электромагнитного поля примерно на 50 дБ (в 100 000 раз).

Для изготовления поглощающих экранов применяются материалы с плохой электропроводностью. По­глощающие экраны изготавливают­ся в виде прессованных листов ре­зины специального состава с кони­ческими сплошными или полыми шипами, а также в виде пластин из пористой резины, наполненной кар­бонильным железом, с впрессован­ной металлической сеткой. Эти ма­териалы приклеиваются на каркас или на поверхность излучающего оборудовани

3.5.Защита от лазерного излучения.
Лазер или оптический квантовый генератор - это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения. Благодаря своим уникальным свойствам (высокая направленность луча, когерентность) находят исключительно широкое применение в различных областях промышленности, науки, техники, связи, сельском хозяйстве, медицине, биологии и др.
В основу классификации лазеров положена степень опасности лазерного излучения для обслуживающего персонала. По этой классификации лазеры разделены на 4 класса:
класс 1 (безопасные) - выходное излучение не опасно для глаз;

класс II (малоопасные) - опасно для глаз прямое или зеркально отраженное излучение;
класс III (среднеопасные) - опасно для глаз прямое, зеркально, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и (или) для кожи прямое или зеркально отраженное излучение;
класс IV (высокоопасные)- опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.
В качестве ведущих критериев при оценке степени опасности генерируемого лазерного излучения приняты величина мощности (энергии), длина волны, длительность импульса и экспозиция облучения.
Предельно допустимые уровни, требования к устройству, размещению и безопасной эксплуатации лазеров регламентированы "Санитарными нормами и правилами устройства и эксплуатации лазеров" № 2392-81, которые позволяют разрабатывать мероприятия по обеспечению безопасных условий труда при работе с лазерами. Санитарные нормы и правила позволяют определить величины ПДУ для каждого режима работы, участка оптического диапазона по специальным формулам и таблицам. Предельно допустимые уровни облучения дифференцированы с учетом режима работы лазеров -непрерывный режим, моноимпульсный, импульсно-периодический.
В зависимости от специфики технологического процесса работа с лазерным оборудованием может сопровождаться воздействием на персонал главным образом отраженного и рассеянного излучения. Энергия излучения лазеров в биологических объектах (ткань, орган) может претерпевать различные превращения и вызывать органические изменения в облучаемых тканях (первичные эффекты) и неспецифические изменения функционального характера (вторичные эффекты), возникающие в организме в ответ на облучение.
Влияние излучения лазера на орган зрения (от небольших функциональных нарушений до полной потери зрения) зависит в основном от длины волны и локализации воздействия.
При применении лазеров большой мощности и расширении их практического использования возросла опасность случайного повреждения не только органа зрения, но и кожных покровов и даже внутренних органов с дальнейшими изменениями в центральной нервной и эндокринной системах.
Предупреждение поражений лазерным излучением включает систему мер инженерно-технического, планировочного, организационного, санитарно-гигиенического характера.
При использовании лазеров II-III классов в целях исключения облучения персонала необходимо либо ограждение лазерной зоны, либо экранирование пучка излучения. Экраны и ограждения должны изготавливаться из материалов с наименьшим коэффициентом отражения, быть огнестойкими и не выделять токсических веществ при воздействии на них лазерного излучения.
Лазеры IV класса опасности размещаются в отдельных изолированных помещениях и обеспечиваются дистанционным управлением их работой.
При размещении в одном помещении нескольких лазеров следует исключить возможность взаимного облучения операторов, работающих на различных установках. Не допускаются в помещения, где размещены лазеры, лица, не имеющие отношения к их эксплуатации. Запрещается визуальная юстировка лазеров без средств защиты.
Для защиты от шума принимаются соответствующие меры звукоизоляции установок, звукопоглощения и др.
К индивидуальным средствам защиты, обеспечивающим безопасные условия труда при работе с лазерами, относятся специальные очки, щитки, маски, обеспечивающие снижение облучения глаз до ПДУ.
Средства индивидуальной защиты применяются только в том случае, когда коллективные средства защиты не позволяют обеспечить требования санитарных правил.

МАГНИТНОЕ ЭКРАНИРОВАНИЕ

МАГНИТНОЕ ЭКРАНИРОВАНИЕ

(магнитная ) - защита объекта от воздействия магн. полей (постоянных и переменных). Совр. исследования в ряде областей науки (физика , геология, палеонтология, биомагнетизм) и техники (космич. исследования, атомная энергетика, материаловедение) часто связаны с измерениями очень слабых магн. полей ~10 -14 -10 -9 Тл в широком частотном диапазоне. Внешние магнитные поля (например, Земли Тл с шумом Тл, магн. от электрич. сетей и городского транспорта) создают сильные помехи для работы высокочувствит. магнитометрич. аппаратуры. Уменьшение влияния магн. полей в сильной степени определяет возможности проведения магн. измерений (см., напр., Магнитные поля биологических объектов). Среди методов М. э. наиболее распространены следующие.

Экранирующее полого цилиндра из ферромагнитного вещества с (1 - внеш. цилиндра, 2 -внутр. поверхность). Остаточное магнитное поле внутри цилиндра

Ферромагнитный экран - лист, цилиндр, сфера (или к.-л. иной формы) из материала с высокой магнитной проницаемостью m низкой остаточной индукцией В r и малой коэрцитивной силой Н с. Принцип действия такого экрана можно проиллюстрировать на примере полого цилиндра, помещённого в однородное магн. поле (рис.). Линии индукции внеш. магн. поля B внеш при переходе из среды с в материал экрана заметно сгущаются, а в полости цилиндра густота линий индукции уменьшается, т. е. поле внутри цилиндра оказывается ослабленным. Ослабление поля описывается ф-лой

где D - диаметр цилиндра, d - толщина его стенки, - магн. проницаемость материала стенки. Для расчёта эффективности М. э. объёмов разл. конфигурации часто используют ф-лу

где - радиус эквивалентной сферы (практически ср. значение размеров экрана в трёх взаимно перпендикулярных направлениях, т. к. форма экрана мало влияет на эффективность М. э.).

Из ф-л (1) и (2) следует, что использование материалов с высокой магн. проницаемостью [таких, как пермаллой (36-85% Ni, остальное Fe и легирующие добавки) или мю-металл (72-76% Ni, 5% Сu, 2% Сr, 1% Мn, остальное Fe)] существенно улучшает качество экранов (у железа ). Кажущийся очевидным способ улучшения экранирования за счёт утолщения стенки не оптимален. Эффективнее работают многослойные экраны с промежутками между слоями, для к-рых коэф. экранирования равен произведению коэф. для отд. слоев. Именно многослойные экраны (внеш. слои из магн. материалов, насыщающихся при высоких значениях В, внутренние - из пермаллоя или мю-металла) составляют основу конструкций магнитозащищённых комнат для биомагнитных, палеомагнитных и т. п. исследований. Следует отметить, что применение защитных материалов типа пермаллоя связано с рядом трудностей, в частности с тем, что их магн. свойства при деформациях и значит. нагревах ухудшаются, они практически не допускают сварки, значит. изгибов и др. механич. нагрузок. В совр. магн. экранах широко применяются ферромагн. металлические стёкла (метглассы), близкие по магн. свойствам к пермаллою, но не столь чувствительные к механич. воздействиям. Полотно, сотканное из полосок метгласса, допускает изготовление мягких магн. экранов произвольной формы, а многослойное экранирование этим материалом много проще и дешевле.

Экраны из материала с высокой электропроводностью (Сu, А1 и др.) служат для защиты от переменных магн. полей. При изменении внеш. магн. поля в стенках экрана возникают индукц. токи, к-рые охватывают экранируемый объём. Магн. поле этих токов направлено противоположно внеш. возмущению и частично компенсирует его. Для частот выше 1 Гц коэф. экранировки К растёт пропорционально частоте:

где - магнитная постоянная, - электропроводность материала стенки, L - размер экрана, - толщина стенки, f - круговая частота.

Магн. экраны из Сu и А1 менее эффективны, чем ферромагнитные, особенно в случае низкочастотного эл.-магн. поля, но простота изготовления и невысокая стоимость часто делают их более предпочтительными в применении.

Сверхпроводящие экраны. Действие экранов этого типа основано на Мейснера эффекте - полном вытеснении магн. поля из сверхпроводника. При всяком изменении внеш. магн. потока в сверхпроводниках возникают токи, к-рые в соответствии с Ленца правилом компенсируют эти изменения. В отличие от обычных проводников в сверхпроводниках индукц. токи не затухают и поэтому компенсируют изменение потока в течение всего времени существования внеш. поля. То обстоятельство, что сверхпроводящие экраны могут работать при очень низких темп-pax и полях, не превышающих критич. значения (см. Критическое магнитное поле), приводит к существенным трудностям при конструировании больших магнитозащищённых "тёплых" объёмов. Однако открытие оксидных высокотемпературных сверхпроводников (ОВС), сделанное Й. Беднорцем и К. Мюллером (J. G. Bednorz, К. A. Miiller, 1986), создаёт новые возможности в использовании сверхпроводящих магн. экранов. По-видимому, после преодоления технологич. трудностей в изготовлении ОВС, будут применяться сверхпроводящие экраны из материалов, становящихся сверхпроводниками при темп-ре кипения азота (а в перспективе, возможно, и при комнатных темп-рах).

Следует отметить, что внутри магнитозащищённого сверхпроводником объёма сохраняется остаточное поле, существовавшее в нём в момент перехода материала экрана в сверхпроводящее состояние. Для уменьшения этого остаточного поля необходимо принять спец. . Напр., переводить экран в сверхпроводящее состояние при малом по сравнению с земным магн. поле в защищаемом объёме или использовать метод "раздувающихся экранов", при к-ром оболочка экрана в сложенном виде переводится в сверхпроводящее состояние, а затем расправляется. Подобные меры позволяют пока в небольших объёмах, ограниченных сверхпроводящими экранами, свести остаточные поля до величины Тл.

Активная защита от помех осуществляется при помощи компенсирующих катушек, создающих магн. поле, равное по величине и противоположное по направлению полю помехи. Алгебраически складываясь, эти поля компенсируют друг друга. Наиб. известны катушки Гельмгольца, представляющие собой две одинаковые соосные круговые катушки с током, раздвинутые на расстояние, равное радиусу катушек. Достаточно однородное магн. поле создаётся в центре между ними. Для компенсации по трём пространств. компонентам необходимы минимум три пары катушек. Существует много вариантов таких систем, и выбор их определяется конкретными требованиями.

Система активной защиты, как правило, используется для подавления НЧ-помех (в диапазоне частот 0-50 Гц). Одно из её назначений - компенсация пост. магн. поля Земли, для чего необходимы высокостабильные и мощные источники тока; второе - компенсация вариаций магн. поля, для к-рой могут использоваться более слабые источники тока, управляемые датчиками магн. поля, напр. магнитометрами высокой чувствительности - сквидами или феррозондами. В большой степени полнота компенсации определяется именно этими датчиками.

Существует важное отличие активной защиты от магн. экранов. Магн. экраны устраняют шумы во всём объёме, ограниченном экраном, в то как активная защита устраняет помехи лишь в локальной области.

Все системы подавления магн. помех нуждаются в антивибрац. защите. Вибрация экранов и датчиков магн. поля сама может стать источником дополнит. помех.

Лит.: Роуз-Инс А., Родерик Е., Введение в физику сверхпроводимости, пер. с англ., М., 1972; Штамбергер Г. А., Устройства для создания слабых постоянных магнитных полей, Новосиб., 1972; Введенский В. Л., Ожогин В. И., Сверхчувствительная магнитометрия и биомагнетизм, М., 1986; Bednorz J. G., Мullеr К. А., Possible high Тс superconductivity in the Ba-La-Сr-О system, "Z. Phys.", 1986, Bd 64, S. 189. С. П. Наурзаков.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "МАГНИТНОЕ ЭКРАНИРОВАНИЕ" в других словарях:

    магнитное экранирование - Ограждение из магнитных материалов, которое окружает место установки магнитного компаса и значительно уменьшает магнитное поле на этом участке. [ГОСТ Р 52682 2006] Тематики средства навигации, наблюдения, управления EN magnetic screening DE… … Справочник технического переводчика

    магнитное экранирование

    Защита от магнитного поля при помощи экранов из ферромагнитных материалов с низкими значениями остаточной индукции и коэрцитивной силы, но с высокой магнитной проницаемостью … Большой Энциклопедический словарь

    Защита от магнитного поля при помощи экранов из ферромагнитных материалов с низкими значениями остаточной индукции и коэрцитивной силы, но с высокой магнитной проницаемостью. * * * ЭКРАНИРОВАНИЕ МАГНИТНОЕ ЭКРАНИРОВАНИЕ МАГНИТНОЕ, защита от… … Энциклопедический словарь

    Защита от магн. поля при помощи экранов из ферромагн. материалов с низкими значениями остаточной индукции и коэрцитивной силы, но с высокой магн. проницаемостью … Естествознание. Энциклопедический словарь

    Термин момент применительно к атомам и атомным ядрам может означать следующее: 1) спиновый момент, или спин, 2) магнитный дипольный момент, 3) электрический квадрупольный момент, 4) прочие электрические и магнитные моменты. Различные типы… … Энциклопедия Кольера

    - (биомагнетиз м). Жизнедеятельность любого организма сопровождается протеканием внутри него очень слабых электрич. токов биотоков (они возникают как следствие электрич. активности клеток, гл. обр. мышечных и нервных). Биотоки порождают магн. поле… … Физическая энциклопедия

    blindage magnétique - magnetinis ekranavimas statusas T sritis fizika atitikmenys: angl. magnetic screening vok. magnetische Abschirmung, f rus. магнитное экранирование, n pranc. blindage magnétique, m … Fizikos terminų žodynas

    magnetic screening - magnetinis ekranavimas statusas T sritis fizika atitikmenys: angl. magnetic screening vok. magnetische Abschirmung, f rus. магнитное экранирование, n pranc. blindage magnétique, m … Fizikos terminų žodynas

    magnetinis ekranavimas - statusas T sritis fizika atitikmenys: angl. magnetic screening vok. magnetische Abschirmung, f rus. магнитное экранирование, n pranc. blindage magnétique, m … Fizikos terminų žodynas

Для экранирования магнитного поля применяются два метода:

Метод шунтирования;

Метод магнитного поля экраном.

Рассмотрим подробнее каждый из этих методов.

Метод шунтирования магнитного поля экраном.

Метод шунтирования магнитного поля экраном применяется для защиты от постоянного и медленно изменяющего переменного магнитного поля. Экраны изготавливаются из ферромагнитных материалов с большой относительной магнитной проницательностью (сталь, пермаллой). При наличии экрана линии магнитной индукции проходят в основном по его стенкам (рисунок 8.15), которые обладают малым магнитным сопротивлением по сравнению с воздушным пространством внутри экрана. Качество экранирования зависит от магнитной проницаемости экрана и сопротивления магнитопровода, т.е. чем толще экран и чем меньше швов, стыков, идущих поперек направления линий магнитной индукции, эффективность экранирования будет выше.

Метод вытеснения магнитного поля экраном.

Метод вытеснения магнитного поля экраном применяется для экранирования переменных высокочастотных магнитных полей. При этом используются экраны из немагнитных металлов. Экранирование основано на явлении индукции. Здесь явление индукции полезно.

Поставим на пути равномерного переменного магнитного поля (рисунок 8.16, а) медный цилиндр. В нем возбудятся переменные ЭД, которые, в свою очередь, создадут переменные индукционные вихревые токи (токи Фуко). Магнитное поле этих токов (рисунок 8.16,б) будет замкнутым; внутри цилиндра оно будет направлено навстречу возбуждающему полю, а за его пределами – в ту же сторону, что и возбуждающее поле. Результирующее поле (рисунок 8.16, в) оказывается ослабленным у цилиндра и усиленным вне его, т.е. происходит вытеснение поля из пространства, занимаемого цилиндром, в чем и заключается его экранирующее действие, которое будет тем эффективнее, чем меньше электрическое сопротивление цилиндра, т.е. чем больше протекающие по нему вихревые токи.

Благодаря поверхностному эффекту («скинэффекту») плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону

, (8.5)

где (8.6)

– показатель уменьшения поля и тока, которое называется эквивалентной глубиной проникновения.

Здесь – относительная магнитная проницаемость материала;

– магнитная проницаемость вакуума, равная 1.25*10 8 гн*см -1 ;

– удельное сопротивление материала, Ом*см;

– частота, Гц.

Величиной эквивалентной глубины проникновения удобно характеризовать экранирующий эффект вихревых токов. Чем меньше х 0 , тем больше создаваемое ими магнитное поле, вытесняющее из пространства занятого экраном, внешнее поле источника наводки.

Для немагнитного материала в формуле (8.6) =1, экранирующий эффект определяется только и . А если экран сделать из ферромагнитного материала?

При равных эффект будет лучше, так как >1 (50..100) и х 0 будет меньше.

Итак, х 0 является критерием экранирующего эффекта вихревых токов. Представляет интерес оценить, во сколько раз плотность тока и напряженность магнитного поля становится меньше на глубине х 0 по сравнению, чем на поверхности. Для этого в формулу (8.5) подставим х=х 0 , тогда

откуда видно, что на глубине х 0 плотность тока и напряженность магнитного поля падают в е раз, т.е. до величины 1/2.72, составляющей 0.37 от плотности и напряженности на поверхности. Так как ослабление поля всего в 2.72 раза на глубине х 0 недостаточно для характеристики экранирующего материала , то пользуются еще двумя величинами глубины проникновения х 0,1 и х 0,01 , характеризующими падение плотности тока и напряжения поля в 10 и 100 раз от их значений на поверхности.

Выразим значения х 0,1 и х 0,01 через величину х 0 , для этого на основание выражения (8.5) составим уравнение

И ,

решив которые получим

х 0.1 =х 0 ln10=2.3x 0 ; (8.7)

х 0.01 =х 0 ln100=4.6x 0

На основании формул (8.6) и (8.7) для различных экранирующих материалов в литературе приведены значения глубин проникновения. Эти же данные, с целью наглядности, приведем и мы в виде таблицы 8.1.

Из таблицы видно, что для всех высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5..1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует исходить не из электрических свойств материала, а руководствоваться соображениями механической прочности, жесткости, стойкости против коррозии, удобства стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобства пайки, сварки и пр.

Из данных таблицы следует, что для частот больше 10 МГЦ пленка из меди и тем более из серебра толщиной меньше 0.1 мм дает значительный экранирующий эффект . Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием.

Сталь можно использовать в качестве экранов, только нужно помнить, что из-за большого удельного сопротивления и явления гистерезиса экран из стали может вносить в экранирующие цепи значительные потери.

Изготовление и исследование свойств магнитных экранов

Целью работы является изучение методов экранирования с помощью ВТСП устройств, получение объемного и толстопленочного экранов, исследование их коэффициентов ослабления поля.

Общие сведения

Экранирование представляет собой защиту объема от воздействия внешнего электрического, магнитного или электромагнитного полей. Как правило, в этом объеме располагается устройство, нуждающееся в защите от данного поля. В зависимости от вида и ориентации экранируемого поля выбираются материал и конструкция экрана. Так, например, магнитное поле традиционно экранируют с помощью конструкций из ферромагнетиков, а электромагнитные поля – с помощью проводниковых конструкций. Конструкция может иметь форму сферы, стакана с дном, длинного цилиндра и т.д.

Применение сверхпроводниковых материалов позволило существенно улучшить массогабаритные показатели экранирующих конструкций, однако необходимость использования жидкого гелия ограничивает применение таких экранов.

Применение ВТСП электромагнитных экранов на частотах порядка звуковых представляется достаточно перспективным, поскольку использование обычных металлов, например меди или алюминия, требует большой толщины экрана (соответствующие толщины скин-слоя составляют несколько сантиметров). Пермаллоевые и другие экраны с высоким значением магнитной проницаемости характеризуются также большими габаритами и массой.

Для монокристаллических образцов ВТСП значения глубины проникновения составляют доли микрометра. Для поликристаллических образцов она существенно больше (10 мкм), однако использование ВТСП экранов, экранирующих корпусов интегральных схем и т.д. является перспективным в сравнении с другими методами. Физической основой работы экрана является эффект Мейсснера-Оксенфельда. Внешнее магнитное поле в сверхпроводнике убывает с глубиной:

B (x ) = B (0) exp(-x / λ L ), (4.9)

где x – расстояние от поверхности,

λ L – лондоновская глубина проникновения.

Для низкотемпературных сверхпроводников λ L =10 -7 м, поэтому слабые поля в объемный сверхпроводник практически не проникают. Для реальных ВТСП, как уже отмечалось, эта величина много больше. Если величина внешнего магнитного поля становится сравнимой со значением нижнего критического поля, сверхпроводник второго рода может перейти в промежуточное состояние. При этом образец разбивается на чередующиеся сверхпроводящие и нормальные области (состояние Шубникова) и в него проникает магнитное поле. Индукция поля, при котором образец переходит в состояние Шубникова, определяется его формой и критическими свойствами материала. Для экрана в виде цилиндра с плоским дном и отношением внутреннего диаметра к внешнему не более 0,7 это поле (перпендикулярные оси цилиндра) можно определить из выражения

B ││ = В С 1 [(1-d /D )/2] 1/2 , (4.10)

где В С 1 – индукция первого критического поля материала;

D , d – внешний и внутренний диаметры экрана.

Индукция аксиального поля, при котором материал экрана переходит в промежуточное состояние, приблизительно равна критической индукции поля.

Для ВТСП материалов картина усложняется вследствие того, что они представляют собой гранулированные конгломераты, где между СП гранулами есть джозефсоновские контакты. В этом случае экранирующие свойства связывают с величиной критического поля межгранульных связей, при котором начинается проникновение поля в ВТСП.

Обычно ВТСП магнитные экраны выполняются путем одностороннего, двухстороннего или гидростатического прессования ВТСП порошка и последующего обжига. Такой способ пригоден для изготовления небольших экранов. Однако для изготовления длинномерных цилиндров или экранов более сложной формы (сфера) такой способ не подходит. В этом случае пользуются дискретными экранами, состоящими из фрагментов-колец. В предыдущей работе были изготовлены такие кольца-фрагменты, которые можно собрать в длинномерный цилиндр. Такие фрагменты могут быть выполнены нанесением тонких или толстых пленок на керамическое основание.

Коэффициент экранирования (ослабления поля) К определяется как отношение величины внутреннего поля B i к внешнему – B e :

К = B i / B e . (4.11)

Измерение производят следующим образом. Экран с датчиком поля помещают внутри соленоида, задающего внешнее поле. В качестве датчика используют феррозондовый датчик или, как в нашем случае, датчик Холла. Соленоид на штанге опускают в сосуд Дьюара с жидким азотом. Вся система располагается внутри установленного вертикально двухслойного ферромагнитного экрана с коэффициентом ослабления магнитного поля Земли около 100.

Последовательно с обмоткой соленоида включен резистор. Падение напряжения на резисторе пропорционально величине внешнего магнитного поля соленоида, ЭДС Холла пропорциональна величине внутреннего поля. Из графика U x = f(I c ) можно оценить коэффициент ослабления поля для данного экрана.

Рис. 4.8. Толстопленочный фрагмент-кольцо магнитного экрана:
1 – керамика, 2 – пленка

Рис. 4.9. Температурный режим вжигания ВТСП пленки: Т 1 =120°С (30 мин) V 1 =30ºС/ч; Т 2 =910-915°С (10-20 мин); Т 3 =895°С, V 2 =6ºС/ч; Т 4 =860°С

Задания

1). Получите толстопленочные фрагменты-кольца.

1.1. На керамическое основание (рис. 4.8) нанесите пасту (порошок Bi-2212 и 10–15% органической связки).

1.2. В электрической печи проведите вжигание пасты (рис. 4.9).

Рис. 4.10. Магнитный экран: Ф – кольца-фрагменты экрана; Д – датчик Холла;
a – расстояние между кольцами-фрагментами; L – обмотка соленоида

2). Соберите магнитные экраны.

2.1. Соберите экран из объемных колец-фрагментов.

2.2. Соберите экран из пленочных колец-фрагментов.

3). Измерьте коэффициент экранирования объемного и пленочного экранов.

3.1. Соберите схему для измерения коэффициента экранирования (рис. 4.11).

Рис. 4.11. Схема установки для измерения коэффициента экранирования: ИП – источники питания, Д – датчик Холла, С – двухкоординатный самописец; L – соленоид;
R – резистор

3.2. Получите графики B i = f(B e ).

3.3. Изменяя расстояние между кольцами, получите графики K =B i /B e = f(a ).

4). Оформите отчет, содержащий графики и их сравнительную оценку.

Контрольные вопросы

1. Как осуществляют экранирование?

2. Какие существуют экраны?

3. Какие устройства требуют экранирования?

4. Опишите и объясните эффект Мейсснера.

5. Охарактеризуйте состояние Шубникова.

6. Что такое вихри Абрикосова?

7. Поясните характер зависимости x =f(a ).

8. Как работает устройство измерения коэффициента ослабления?

Литература

1. Красов В.Г. и др. Толстопленочная технология в СВЧ микроэлектронике / Красов В.Г., Петрацскас Г.Б., Чернозубов Ю.С. – М.: Радио и связь, 1985.- 168 с.

2. Бондаренко С.И., Шеремет В.И. Применение сверхпроводимости в магнитных измерениях – Л.: Энергоатомиздат, 1982.-132 с.

Заключение

Мы рассмотрели в этой книге основные вопросы проектирования и технологии высокотемпературной криоэлектроники. Из-за ограниченности объема пособия и желания сэкономить время читателя рассматривались наиболее важные в теоретическом и практическом плане вопросы. Многие существенные моменты, недостаточно “продвинутые” в практическом плане, остались вне поля зрения.

Недавно исполнилось 90 лет со дня открытия сверхпроводимости и 40 лет с тех пор, как на базе сверхпроводниковых материалов и криогенной техники гелиевых температур зародились низкотемпературные сверхпроводниковые технологии, в числе которых была и криоэлектроника. Одним из первых её элементов был проволочный криотрон. За прошедшие годы низкотемпературная криоэлектроника получила существенное развитие: были изобретены цифровые устройства на базе криотронов (в начале пленочных, а затем джозефсоновских); приемники и преобразователи СВЧ сигналов, приборы на базе СКВИДов и т. д.

Более 15 лет прошло со дня открытия высокотемпературной сверхпроводимости – события, которое должно было стимулировать работы в области сверхпроводимости вообще и криоэлектроники в частности. Так и случилось: количество и объем исследований в этой области резко возросли в 1996 году и в настоящее время являются довольно значительными.

Однако, несмотря на явные успехи, высокотемпературная криоэлектроника все еще находится на стадии становления, чему имеются различные причины.

Сегодня сохранилось драматичное и напряженное состояние в области исследований ВТСП. По-прежнему велики ожидания в этом плане. Правительство и промышленные фирмы, вложившие и продолжающие вкладывать в исследования ВТСП крупные средства, внимательно следят за прикладными аспектами исследований, опасаясь пропустить момент рывка в наукоемкий (а значит перспективный, престижный и доходный) ВТСП рынок. Большие ожидания заставляют скрупулезно оценивать и сегодняшнее состояние исследований, и их рыночный потенциал.

К причинам, тормозящим развитие криоэлектроники, можно отнести также:

· слабую изученность криоэлектронных процессов в охлаждаемых структурах и пленках,

· недостаточность реальных конструкторско-технологических идей по созданию интегральных криоэлектронных приборов и особенно – надежных, воспроизводимых, многоэлементных, многослойных интегральных схем с субмикронными зазорами.

Практически отсутствуют методы снижения энергоемкости и массогабаритных показателей криостатов, увеличения срока их непрерывной работы.

Иными словами, необходимо найти решения, с помощью которых полученные результаты будут дешевыми, воспроизводимыми, доступными. Мы надеемся, что приобретенные вами знания и навыки помогут решить поставленные задачи.

Принципы экранирования магнитного поля

Для экранирования магнитного поля применяются два метода:

Метод шунтирования;

Метод магнитного поля экраном.

Рассмотрим подробнее каждый из этих методов.

Метод шунтирования магнитного поля экраном.

Метод шунтирования магнитного поля экраном применяется для защиты от постоянного и медленно изменяющего переменного магнитного поля. Экраны изготавливаются из ферромагнитных материалов с большой относительной магнитной проницательностью (сталь, пермаллой). При наличии экрана линии магнитной индукции проходят в основном по его стенкам (рисунок 8.15), которые обладают малым магнитным сопротивлением по сравнению с воздушным пространством внутри экрана. Качество экранирования зависит от магнитной проницаемости экрана и сопротивления магнитопровода, т.е. чем толще экран и чем меньше швов, стыков, идущих поперек направления линий магнитной индукции, эффективность экранирования будет выше.

Метод вытеснения магнитного поля экраном.

Метод вытеснения магнитного поля экраном применяется для экранирования переменных высокочастотных магнитных полей. При этом используются экраны из немагнитных металлов. Экранирование основано на явлении индукции. Здесь явление индукции полезно.

Поставим на пути равномерного переменного магнитного поля (рисунок 8.16, а) медный цилиндр. В нем возбудятся переменные ЭД, которые, в свою очередь, создадут переменные индукционные вихревые токи (токи Фуко). Магнитное поле этих токов (рисунок 8.16,б) будет замкнутым; внутри цилиндра оно будет направлено навстречу возбуждающему полю, а за его пределами – в ту же сторону, что и возбуждающее поле. Результирующее поле (рисунок 8.16, в) оказывается ослабленным у цилиндра и усиленным вне его, т.е. происходит вытеснение поля из пространства, занимаемого цилиндром, в чем и заключается его экранирующее действие, которое будет тем эффективнее, чем меньше электрическое сопротивление цилиндра, т.е. чем больше протекающие по нему вихревые токи.

Благодаря поверхностному эффекту («скинэффекту») плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону

, (8.5)

где (8.6)

– показатель уменьшения поля и тока, которое называется эквивалентной глубиной проникновения.

Здесь – относительная магнитная проницаемость материала;

– магнитная проницаемость вакуума, равная 1.25*10 8 гн*см -1 ;

– удельное сопротивление материала, Ом*см;

– частота, Гц.

Величиной эквивалентной глубины проникновения удобно характеризовать экранирующий эффект вихревых токов. Чем меньше х 0 , тем больше создаваемое ими магнитное поле, вытесняющее из пространства занятого экраном, внешнее поле источника наводки.

Для немагнитного материала в формуле (8.6) =1, экранирующий эффект определяется только и . А если экран сделать из ферромагнитного материала?

При равных эффект будет лучше, так как >1 (50..100) и х 0 будет меньше.

Итак, х 0 является критерием экранирующего эффекта вихревых токов. Представляет интерес оценить, во сколько раз плотность тока и напряженность магнитного поля становится меньше на глубине х 0 по сравнению, чем на поверхности. Для этого в формулу (8.5) подставим х=х 0 , тогда

откуда видно, что на глубине х 0 плотность тока и напряженность магнитного поля падают в е раз, т.е. до величины 1/2.72, составляющей 0.37 от плотности и напряженности на поверхности. Так как ослабление поля всего в 2.72 раза на глубине х 0 недостаточно для характеристики экранирующего материала , то пользуются еще двумя величинами глубины проникновения х 0,1 и х 0,01 , характеризующими падение плотности тока и напряжения поля в 10 и 100 раз от их значений на поверхности.

Выразим значения х 0,1 и х 0,01 через величину х 0 , для этого на основание выражения (8.5) составим уравнение

И ,

решив которые получим

х 0.1 =х 0 ln10=2.3x 0 ; (8.7)

х 0.01 =х 0 ln100=4.6x 0

На основании формул (8.6) и (8.7) для различных экранирующих материалов в литературе приведены значения глубин проникновения. Эти же данные, с целью наглядности, приведем и мы в виде таблицы 8.1.

Из таблицы видно, что для всех высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5..1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует исходить не из электрических свойств материала, а руководствоваться соображениями механической прочности, жесткости, стойкости против коррозии, удобства стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобства пайки, сварки и пр.

Из данных таблицы следует, что для частот больше 10 МГЦ пленка из меди и тем более из серебра толщиной меньше 0.1 мм дает значительный экранирующий эффект . Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием.

Сталь можно использовать в качестве экранов, только нужно помнить, что из-за большого удельного сопротивления и явления гистерезиса экран из стали может вносить в экранирующие цепи значительные потери.

Фильтрация

Фильтрация является основным средством ослабления конструктивных помех, создаваемых в цепях питания и коммутации постоянного и переменного тока ЭС. Предназначенные для этой цели помехоподавляющие фильтры позволяют снижать кондуктивные помехи, как от внешних, так и от внутренних источников. Эффективность фильтрации определяется вносимым затуханием фильтра:

дБ,

К фильтру предъявляются следующие основные требования:

Обеспечение заданной эффективности S в требуемом частотном диапазоне (с учетом внутреннего сопротивления и нагрузки электрической цепи);

Ограничение допустимого падения постоянного или переменного напряжения на фильтре при максимальном токе нагрузки;

Обеспечение допустимых нелинейных искажений питающего напряжения, определяющих требования к линейности фильтра;

Конструктивные требования – эффективность экранирования, минимальные габаритные размеры и масса, обеспечение нормального теплового режима, стойкость к механическим и климатическим воздействиям, технологичность конструкции т.д.;



Элементы фильтра должны выбираются с учетом номинальных токов и напряжений электрической цепи, а также вызванных в них бросков напряжений и токов, вызванных нестабильностью электрического режима и переходными процессами.

Конденсаторы. Применяются как самостоятельные помехоподавляющие элементы и как параллельные звенья фильтров. Конструктивно помехоподавляющие конденсаторы делятся на:

Двухполюсные типа К50-6, К52-1Б, ЭТО, К53-1А;

Опорные типа КО, КО-Е, КДО;

Проходные некоаксиальные типа К73-21;

Проходные коаксиальные типа КТП-44, К10-44, К73-18, К53-17;

Конденсаторные блоки;

Основной характеристикой помехоподавляющего конденсатора является зависимость его импеданса от частоты. Для ослабления помех в диапазоне частот примерно до 10МГц можно использовать двухполюсные конденсаторы с учетом малой длины их выводов. Опорные помехоподавляющие конденсаторы применяются до частот 30-50 МГц. Симметричные проходные конденсаторы используются в двухпроводной цепи до частот порядка 100 МГц. Проходные конденсаторы работают в широком диапазоне частот примерно до 1000 Мгц.

Индуктивные элементы . Применяются как самостоятельные элементы подавления помех и как последовательные звенья помехоподавляющих фильтров. Конструктивно наиболее распространены дроссели специальных видов:

Витковые на ферромагнитном сердечнике;

Безвитковые.

Основной характеристикой помехоподавляющего дросселя является зависимость его импеданса от частоты. При низких частотах рекомендуется применение магнитодиэлектрических сердечников марок ПП90 и ПП250, изготовленных на основе м-пермалоя. Для подавления помех в цепях аппаратуры с токами до 3А рекомендуется использовать ВЧ- дроссели типа ДМ, при больших номинальных значениях токов – дроссели серии Д200.

Фильтры. Керамические проходные фильтры типа Б7, Б14, Б23 предназначены для подавления помех в цепях постоянного, пульсирующего и переменного токов в диапазоне частот от 10 МГц до 10ГГц. Конструкции таких фильтров представлены на рисунке 8.17


Вносимые фильтрами Б7, Б14, Б23 затухания в диапазоне частот 10..100 МГц возрастает приблизительно от 20..30 до 50..60 дБ и в диапазоне частот свыше 100 МГц превышает 50 дБ.

Керамические проходные фильтры типа Б23Б построены на основе дисковых керамических конденсаторов и безвитковых ферромагнитных дросселей (рисунок 8.18).

Безвитковые дроссели представляют собой трубчатый ферромагнитный сердечник из феррита марки 50 ВЧ-2 , одетый на проходной вывод. Индуктивность дросселя составляет 0.08…0.13 мкГн. Корпус фильтра выполнен из керамического материала УФ-61, имеющего высокую механическую прочность. Корпус металлизирован слоем серебра для обеспечения малого переходного сопротивления между наружной обкладкой конденсатора и заземляющей резьбовой втулкой, с помощью которой осуществляется крепление фильтра. Конденсатор по наружному периметру припаян к корпусу фильтра., а по внутреннему – к проходному выводу. Герметизация фильтра обеспечивается заливкой торцов корпуса компаундом.

Для фильтров Б23Б:

номинальные емкости фильтров – от 0.01 до 6.8 мкФ,

номинальное напряжение 50 и 250В,

номинальный ток до 20А,

Габаритные размеры фильтра:

L=25мм, D= 12мм

Вносимое фильтрами Б23Б затухание в диапазоне частот от 10 кГц до 10 МГц возрастает приблизительно от 30..50 до 60..70 дБ и в диапазоне частот свыше 10 МГц превышает 70 дБ.

Для бортовых ЭС перспективным является применение специальных помехоподавляющих проводов с ферронаполнителями, имеющими высокую магнитную проницаемость и большие удельные потери. Так у проводов марки ППЭ вносимое затухание в диапазоне частот 1…1000 МГц возрастает с 6 до 128 дБ/м.

Известна конструкция многоштыревых разъемов, в которых на каждый контакт устанавливается по одному П-образному помехоподавляющему фильтру.

Габаритные размеры встроенного фильтра:

длина 9.5 мм,

диаметр 3.2 мм.

Вносимое фильтром затухание в 50-омной цепи составляет 20 дБ на частоте 10МГц и до 80 дБ на частоте 100МГц.

Фильтрация цепей питания цифровых РЭС.

Импульсные помехи в шинах питания, возникающие в процессе коммутации цифровых интегральных схем (ЦИС), а также проникающие внешним путем, могут приводить к появлению сбоев в работе устройств цифровой обработки информации.

Для снижения уровня помех в шинах питания применяются схемно-конструкторские методы:

Уменьшение индуктивности шин «питание», с учетом взаимной магнитной связи прямого и обратного проводников;

Сокращение длин участков шин «питания», которые являются общими для токов для различных ЦИС;

Замедление фронтов импульсных токов в шинах «питание» с помощью помехоподавляющих конденсаторов;

Рациональная топология цепей питания на печатной плате.

Увеличение размеров поперечного сечения проводников приводит к уменьшению собственной индуктивности шин, а также снижает их активное сопротивление. Последнее особенно важно в случае шины «земля», в которая является обратным проводником для сигнальных цепей. Поэтому в многослойных печатных платах желательно выполнить шины «питание» в виде проводящих плоскостей, расположенных в соседних слоях (рисунок 8.19).

Навесные шины питания, применяемые в печатных узлах на цифровых ИС, имеют большие поперечные размеры по сравнению с шинами, выполненными в виде печатных проводников, а следовательно, и меньшую индуктивность и сопротивление. Дополнительными преимуществами навесных шин питания являются:

Упрощенная трассировка сигнальных цепей;

Повышение жесткости ПП за счет создания дополнительных ребер, выполняющих роль ограничителей, которые предохраняют ИС с навесными ЭРЭ от механических повреждений при монтаже и настройке изделия (рисунок 8.20).

Высокой технологичностью отличаются шины «питания», изготовленные печатным способом и крепящиеся на ПП вертикально (рисунок 6.12в).

Известны конструкции навесных шин, установленных под корпус ИС, которые располагаются на плате рядами (рисунок 8.22).

Рассмотренные конструкции шин «питания» обеспечивают также большую погонную емкость, что приводит к уменьшению волнового сопротивления линии «питания» и, следовательно, снижению уровня импульсных помех.

Разводка питания ИС на ПП должно осуществляться не последовательно (рисунок 8.23а), а параллельно (рисунок 8.23б)

Необходимо использовать разводку питания в виде замкнутых контуров (рис.8.23в). Такая конструкция приближается по своим электрическим параметрам к сплошным плоскостям питания. Для защиты от влияния внешнего помехонесущего магнитного поля по периметру ПП следует предусмотреть внешний замкнутый контур.


Заземление

Система заземления – это электрическая цепь, обладающая свойством сохранять минимальный потенциал, являющийся уровнем отсчета в конкретном изделии. Система заземления в ЭС должна обеспечивать сигнальные и силовые цепи возврата, защитить людей и оборудование от неисправностей в цепях источников питания, снимать статические заряды.

К системам заземления предъявляют следующие основные требования:

1) минимизация общего импеданса шины «земля»;

2) отсутствие замкнутых контуров заземления, чувствительных к воздействию магнитных полей.

В ЭС требуется как минимум три раздельные цепи заземления:

Для сигнальных цепей с низким уровнем токов и напряжений;

Для силовых цепей с высоким уровнем потребляемой мощности (источники питания, выходные каскады ЭС и т.д.)

Для корпусных цепей (шасси, панелей, экранов и металлизации).

Электрические цепи в ЭС заземляются следующим способами: в одной точке и в нескольких точках, ближайших к опорной точке заземления (рисунок 8.24)

Соответственно системы заземления могут быть названы одноточечной и многоточечной.

Наибольший уровень помех возникает в одноточечной системе заземления с общей последовательно включенной шиной «земля» (рисунок 8.24 а).

Чем дальше удалена точка заземления, тем выше её потенциал. Её не следует применять для цепей с большим разбросом потребляемой мощности, так как мощные ФУ создают большие возвратные токи заземления, которые могут влиять на малосигнальные ФУ. При необходимости наиболее критичный ФУ следует подключить как можно ближе к точке опорного заземления.

Многоточечную систему заземления (рисунок 8.24 в) следует использовать для высокочастотных схем (f≥10Мгц), подключая ФУ РЭС в точках, ближайших к опорной точке заземления.

Для чувствительных схем применяется схема с плавающим заземлением (рисунок 8.25). Такая заземляющая система требует полной изоляции схемы от корпуса (высокого сопротивления и низкой емкости), в противном случае она оказывается малоэффективной. В качестве источников питания схем могут использоваться солнечные элементы или аккумуляторы, а сигналы должны поступать и покидать схему через трансформаторы или оптроны.

Пример реализации рассмотренных принципов заземления для девятидорожечного цифрового накопителя на магнитной ленте показан на рисунке 8.26.

Здесь имеются следующие шины земли: три сигнальные, одна силовая и одна корпусная. Наиболее восприимчивые к помехам аналоговые ФУ (девять усилителей считывания) заземлены с помощью двух разделенных шин «земля». Девять усилителей записи, работающих с большими, чем усилители считывания, уровнями сигналов, а также ИС управления и схемы интерфейса с изделиями передачи данных подключены к третьей сигнальной шине «земля». Три двигателя постоянного тока и их схемы управления, реле и соленоиды соединены с силовой шиной «земля». Наиболее восприимчивая схема управления двигателем ведущего вала подключена ближе других к опорной точке заземления. Корпусная шина «земля» служит для подключения корпуса и кожуха. Сигнальная, силовая и корпусная шины «земля» соединяются вместе в одной точке в источнике вторичного электропитания. Следует отметить целесообразность составления структурных монтажных схем при проектировании РЭС.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей