Полезные ископаемые: Железные руды. Интересные факты, удивительные факты, неизвестные факты в музее фактов

Железо играет важную роль в жизни практически всех организмов, за исключением некоторых бактерий. В организме животных железо входит в состав множества ферментов и белков, участвующих в окислительно-восстановительных реакциях, главным образом в процессе дыхания. Обычно железо входит в ферменты в виде комплекса, называемого гемом. В частности, этот комплекс присутствует в гемоглобине - важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

В организме человека содержится около 5 г железа. Из них 57% приходится на гемоглобин крови, 7% – на миоглобин мышц, 16% связаны с тканевыми ферментами, а 20% – это запас, отложенный в печени, селезёнке, костном мозге и почках.

Гемоглобин – сложный по составу белок, содержащий и небелковую гем -группу, на долю которого приходится около 4% массы гемоглобина. Гем представляет собой комплекс железа (II) с макроциклическим лигандом – порфирином и имеет плоское строение. В этом комплексе атом железа связан с четырьмя донорными атомами азота макрокольца так, что атом железа находится в центре этого порфиринового кольца. Пятую связь атом железа образует с атомом азота имидазольной группы гистидина – аминокислотного остатка глобина (рис. 4).

Комплексы железа, отличные от гема, встречаются, например, в ферменте метан-моноксигеназе, окисляющем метан в метанол, в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК. Неорганическое железо встречается в некоторых бактериях, иногда используется ими для связывания азота воздуха.

Суточная норма потребности человека составляет около 15 мг железа. Много железа в сливовом соке, кураге, изюме, орехах, тыквенных и подсолнечных семечках. В 10 г проросшей пшеницы содержится 1 мг железа. Черный хлеб, отруби, хлеб грубого помола также богаты железом. Следует учесть, что организмом усваивается всего лишь 10% от всего железа, получаемого с пищей. Витамины и пищевые продукты растительного происхождения способствуют усвоению железа, а в присутствии щавелевой и фитиновой кислот железо не всасывается.

При недостаточном поступлении железа в организм используют содержащие его лекарственные препараты. Для этих целей когда-то применяли даже обычные железные опилки. Из истории известно, что граф А.П.Бестужев-Рюмин (1693–1766) предложил в качестве укрепляющего и возбуждающего средства капли (они получили название «бестужевские»), представлявшие собой раствор трихлорида железа в смеси этанола и этилового эфира. Сейчас для устранения дефицита железа обычно используют порошкообразное железо в таблетках или капсулах и препараты на основе ферроцена.

  • В организм животных и человека железо поступает с пищей, наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, свёкла. Интересно, что некогда шпинат ошибочно был внесен в этот список (из-за опечатки в результатах анализа - был потерян «лишний» ноль после запятой).
  • На основании косвенных данных можно заключить, что ядро Земли представляет собой главным образом сплав железа. Его радиус приблизительно равен 3470 км, тогда как радиус Земли составляет 6370 км.
  • Железо в свободном виде обнаружено на луне. Определение возраста лунных минералов с помощью радиоактивных изотопов показало, что они кристаллизовались от 3.2 до 4.2 миллиардов лет назад. Это приблизительно совпадает с возрастом древнейших минералов, обнаруженных на Земле.

14.02.2016

Металл, именем которого названа целая эпоха цивилизации - железный век, не теряет актуальности и в настоящие дни. Способы получения железа, разработки новых его сплавов, продолжаются в нынешние дни. Железо остается древнейшим и самым распространенным металлом, известным человеку. Также существует множество интересных и удивительных фактов о железе.

  1. Железо является основным компонентом в составе чугуна и стали.
  2. Первое место в мире по добыче железа принадлежит России. Такие руды, как гематит, сидерит и пирит используют для промышленного получения железа. Железо в чистом виде содержится только в метеоритах и нескольких месторождениях на западе Гренландии.
  3. Нехватка железа в растениях, железный хлороз, наиболее часто встречающееся заболевание растений. Это заболевание обуславливается катастрофическим недостатком железа. Для лечения этого заболевания необходимо использовать специальные агротехнические приёмы.
  4. Ледник Тейлора в Антарктиде знаменит Кровавым водопадом. Содержащееся в нем в двухвалентное железо, окисляясь кислородом воздуха, образует красного цвета окись железа, которое придаёт водопаду кроваво-рыжий оттенок. Производят двухвалентное железо бактерии, живущие на глубине под толщей льда.
  5. На дне Индийского океана в области гидротермальных источников существуют улитки, раковина которых состоит из трех слоев: арагонита (материала обычного для моллюска), мягкого среднего слоя из органического наполнителя и внешнего из минерала железа. Кроме того, минералы железа входят в состав чешуек, покрывающих ногу улитки.
  6. Самая высокая и знаменитая немецкая награда в 1813 году Железный крест состояла из железа с небольшим обрамлением из серебра.
  7. Прусская принцесса Марианна ввела в моду украшения из железа во время военных действий с Наполеоном. Она предложила золотые украшения обменять на ювелирные изделия из железа. Этой акцией поддерживался патриотизм населения Германии.
  8. Количество золота, добытого на земле за всю его историю, составляет165 000 тонн, такая же масса железа, добывающая промышленность извлекает на поверхность из земных недр в течение 45 минут.
  9. Железо обладает высокими магнитными свойствами, которые способно терять при нагревании. Магнитные качества железа полностью исчезают при +800 °C, при комнатной температуре железо способно к быстрому намагничиванию.
  10. Заболевание растений, связанное с нехваткой в них железа, называется хлорозом, в организме человека недостаток этого элемента вызывает заболевание анемию, лечение которой основано на использовании препаратов, содержащих железо.
  11. Элемент таблицы Менделеева поддается ковке, кованые железные изделия обладают высокой износостойкостью в процессе эксплуатации. Ковкой железа оформляют массивные кованые ворота и уникальные скульптурные произведения, всевозможные светильники для внутреннего убранства помещений и улицы, миниатюрные украшения и цветы.
  12. В мире насчитывается свыше 300 минералов, в состав которых входит железная руда, промышленные руды содержат до 70% железа.
  13. В начале VIII века до нашей эры в Китае широкое развитие получило производство изделий из железа.
  14. Эпоху массового производства железных изделий называют Железным веком. Основным способом получения железа в древности был сыродутный метод. Для большей прочности изделий из железа использовали его дополнительный розжиг с углем:
  15. Самая глубокая часть нашей планеты, её ядро, геосфера, по утверждению ученых представляет железо-никелевый сплав с примесью ряда переходных элементов таблицы Менделеева.

Промышленное производство и техника использует железо как основной конструкционный материал. Сплавы железа с углеродом заложены в конструкциях машиностроительной и тяжелых отраслях промышленности. Автомобили, станки, корпуса судов, каркасы мостов, каркасы современных зданий это сталь, масштаб производства которой определяет уровень развития государства.

Когда о чём-нибудь говорят «железный», имеют в виду - прочный, крепкий, несокрушимый. Не удивительно услышать: «железная воля», железное здоровье» и даже «железный кулак». Что же такое железо?

История названия

Железо в чистом виде - металл серебристого цвета, по латыни оно называется Fe (феррум). О происхождении русского названия учёные спорят. Одни считают, что оно возникло от слова «джальджа», что в переводе с санскрита значит металл, другие уверяют, что это слово «жель», означающее «блестеть».

Как люди получили железо?

Впервые железо очутилось в руках человека, обрушившись с неба. Ведь многие метеориты были почти полностью железными. Поэтому в изображали предметы из этого металла синими - цвета неба. Многие народы имеют мифы о небесном происхождении железных орудий - якобы их дали боги.

Что такое «железный век»?

Когда человек открыл бронзу, начался «бронзовый век». Позже ему на смену пришел «железный». Так назвали время, когда халибы, народ, живший на берегу Чёрного моря, научились плавить в специальных печах особый песок. Полученный метал был красивого серебристого цвета и не ржавел.

Всегда ли золотые изделия ценились выше?

В те времена, когда железо выплавлялось из метеоритов, из него в основном делали украшения, носить которые могли лишь люди знатного рода. Часто эти украшения имели золотую оправу, а в Древнем Риме даже обручальные кольца были железными. Сохранилось письмо, написанное одним из фараонов Египта царю хеттов, где тот просил выслать ему железо, обещая заплатить золотом в любом количестве.

Мировые чудеса, сделанные из железа

В Индии, в Дели, стоит древняя колонна высотой больше семи метров. Она сделана из чистого железа ещё в 415 году нашей эры. Но и сейчас на ней нет ни следа ржавчины. По легенде, прикосновение к колонне спиной дает исполнение заветного желания. Ещё одно грандиозное железное сооружение - Эйфелева башня. Для изготовления символа Парижа потребовалось более семи тысяч тонн металла.

Откуда берется железо?

Чтобы получить железо, нужна железная руда. Это минералы, камни, в которых железо соединено с разными другими веществами. Очищая железо от примесей, и получают нужный металл. Например, сырьём может быть магнитный железняк, в котором содержится до 70% железа. Железняк - чёрный или тёмно-серый камень. В России его добывают на Урале, например, в недрах горы, которая так и называется - Магнитная.

Как добывают руду?

Месторождения железной руды имеются не только в России, но также на Украине, в Швеции, в Норвегии, в Бразилии, в США и некоторых других странах. Запасы этого ископаемого не везде одинаковые, его начинают добывать только в том случае, если это представляется выгодным, ведь разработка стоит дорого и не окупится, если железа окажется слишком мало.

Чаще всего железную руду добывают открытым методом. Копают огромную яму, которая называется карьер. Она очень глубокая - полкилометра в глубину. А ширина зависит от того, много ли вокруг руды. Специальные машины вычерпывают руду, отделяя её от ненужной породы. Затем грузовики отвозят её на заводы.

Однако не любое месторождение можно разрабатывать таким способом. Если руда глубоко, приходится для её добычи делать шахты. Для шахты сначала роют глубокий колодец, который называется ствол, а внизу от него отходят коридоры - штреки. Вниз спускаются шахтеры. Это отважные люди, они находят руду и взрывают её, а потом по кускам переправляют на поверхность. Работа шахтёров очень опасна, ведь шахта может обрушиться, а ещё внизу бывают опасные газы, да и при взрыве люди могут пострадать, хотя они очень осторожны и соблюдают правила техники безопасности.

Как из руды получается железо?

Но добыть руду - это еще не все! Ведь получение железа из руды - тоже непростой процесс. Хотя выплавлять железо из руды научились уже давно. В древности выплавкой его занимались кузнецы, они были очень уважаемыми людьми. В специальную печь, которая называется горн, клали руду и древесный уголь, а затем поджигали. Однако обычная температура горения недостаточно высока для выплавки, поэтому огонь раздували, используя мехИ - приспособление, выдувающее воздух с большой силой. Сначала их двигали руками, а позже научились использовать силу воды. В результате нагревания получалась спекшаяся масса, которую потом кузнец ковал, придавая железу нужную форму.

Сплавы

Чаще использовалось (да и сейчас используется) не чистое железо, а сталь или чугун. Это сплав железа с углекислым газом. Если в сплаве более 2% углерода, то получается чугун. Он непрочный, зато легко плавится и ему можно придать любую форму. Если углерода меньше 2%, то . Она очень прочная и используется для изготовления множества нужных вещей, машин, оружия.

Сейчас, конечно, применяются другие методы, хотя принцип их тот же: выплавка с добавлением углекислоты при высокой температуре. В настоящее время для этой цели используют электричество.

Зачем железо человеческому организму?

Если человеку не хватает железа, он болеет. Этот металл нужен для образования гемоглобина, который доставляет кислород каждой клеточке тела. Поэтому надо есть продукты, богатые железом - печень, бобовые, яблоки.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Железо - это химический элемент, имеющий 26-й атомный номер в периодической таблице Дмитрия Ивановича Менделеева. Металл серебристо-белого цвета, обозначается символами Fe (от латинского Ferrum). В чистом виде железо является пластичным переходным металлом, применяется человеком в различных сферах с давних пор. Небольшое содержание примесей или добавок делают железо тверже, например, примеси углерода превращают железо в сталь. Железо, встречающееся в природе, является смесью четырех нуклидов, имеющих массовые числами 54 (доля содержания в природной смеси составляет 5,82% по массе), 56 (доля содержания в природной смеси составляет 91,66%), 57 (доля содержания в природной смеси составляет 2,19%) и 58 (доля содержания в природной смеси составляет 0,33%).

Железо стало известно человеку еще в древние времена, однако широкое распространение получила намного позже, т.к. в чистом виде металл встречается крайне редко, а добыча металла из железной руды требует наличия необходимого производственного процесса. Впервые, вероятно, человек познакомился с железом, содержащимся в метеоритах. Так, на древнеегипетском языке железо звучит как «бени-пет» и означает «небесное железо», древнегреческое название «sideros» происходит от латинского «sidus», что означает «небесное тело», хеттинские тексты XIV века до нашей эры вспоминают о железе, как о металле, упавшем с неба.

Способ получения железа из руды был изобретен во II веке до нашей эры в Западной Азии. Затем метод получил широкое распространение в Вавилоне, Греции и Египте. В Древней Руси и Европе железо получали сыродутным способом, в XII - XIII веках более распространенным стал кричный способ, в середине XVIII века широкое распространение получил тигельный процесс, известный в Сирии еще в период раннего средневековья, но забытый, стал развиваться пудлинговый процесс, к концу XVIX века получили развитие процессы, позволяющие получать железо на промышленном уровне: мартеновский бессемеровский и томасовский процессы. Позднее возник электросталеплавильный процесс, позволяющий получать высококачественную сталь.

Железо с его сплавами является важнейшим конструкционным материалом в промышленном производстве и технике. Из стали, т.е. сплава железа с углеродом, изготавливают большую часть конструкций в тяжелой промышленности и машиностроении. Железная дорога, станки, грузовые и легковые автомобили, силовые установки и корпуса судов, а также многие другие конструкции изготавливают по большей части из стали. Производственные масштабы сталепроизводящей и сталепотребляющей отраслей промышленности на сегодняшний день являютсяодним из основных показателей технико-экономического уровня развития региона или государства в целом.

Содержание железной руды в земной коре довольно большое. Залежи руды располагаются по всему земному шару, а добыча и производство металла не составляет каких-то особых сложностей. Железо довольно легко выплавляется из железной руды. Железо стало недорогим и очень распространенным материалом во многом благодаря всеобщей распространенности железной руды, а также относительной несложности обработки руды и производства металла. На основе производятся самые разные конструкционные материалы различные по своим свойствам и характеристикам. К примеру, чугун является прочным металлом с низкой температурой плавления, путем литья металлу можно придать любую необходимую форму. В зависимости от состава сталь может быть прочным и пластичным материалом, используемым в изготовлении, например, профильного проката, который используется в строительстве мостов и морских судов, или тугоплавким и очень твердым металлом, который служит материалом при производстве металлорежущего инструмента и др.

Биологические свойства

За исключением нескольких бактерий, железо, как микроэлемент, играет одну из важнейших ролей в протекании жизнедеятельности всех живых организмов. У животных железо можно встретить в составе многих белков и ферментов, которые участвуют в окислительно-восстановительных реакциях, в основном в процессе дыхания. Железо, как правило, входит в состав ферментов в виде комплекса по названием гем. Данный комплекс присутствует в гемоглобине, являющемся важнейшим белком, обеспечивающим доставку кислорода по крови ко всем органам в организме животных и человека. Именно гемоглобин окрашивает кровь в характерный для нее красный цвет.

В организме здорового человека содержится примерно 5 грамм железа. Более половины этого железа (57%) приходится на гемоглобин в крови, 16% на тканевые ферменты, 7% на миоглобин мышечной ткани, ну и 20 % отлаживается в таких органах как печень, почки, селезенка и костный мозг в качестве запаса.

Гемоглобин является сложным по составу белком, содержащим в том числе и небелковую гем-группу, доля которой занимает примерно 4% всего гемоглобина в организме. Гем является комплексом железа (II) с макроциклическим лигандом-порфирином, гемм имеет характерное плоское строение. В данном комплексе атом Fe связывается с четырьмя донорными атомами А макрокольца таким образом, что атом Fe располагается в самом центре данного порфиринового кольца. Атом железа образует пятую связь с атомом азота имидазольной группы гистидина, то есть аминокислотного остатка глобина.

Те комплексы железа,которые отличны от гема, встречаются, к примеру, в очень важном ферменте рибонуклеотид-редуктаза, участвующем в синтезе ДНК, в ферменте метан-моноксигеназа, превращающим метан в метанол. Неорганические соединения железа встречаются в некоторых представителях царства бактерий, в некоторых случаях они используют железо для связывания азота из воздуха.

Ежесуточная потребность человека в железе составляет примерно 15 миллиграмм. Много железа содержится в сливовом соке, изюме, орехах, кураге, подсолнечных и тыквенных семечках. В проросшей пшенице содержание железа составяляет 1 миллиграмм на 10 грамм веса. Богат железом также и хлеб: с отрубями, хлебные изделия грубого помола и т.д. Следует понимать, что из всего потребляемого с пищей железа, организмом усваивается лишь 20 процентов. Пищевые продукты и витамины растительного происхождения помогают усваиванию железа. Железо совершенно не всасывается, если в пище присутствует фитиновая или щавелевая кислоты.

Если организм испытывает недостаток железа, начинают использовать специальные медицинские препараты на основе лекарственных растений. Когда-то для подобных целей широко применялись обыкновенные железные опилки. История оставила упоминание о том, что граф Бестужев-Рюмин (года жизни 1693–1766) в качестве возбуждающего и общеукрепляющего средства предложил специальные капли, которые являлись ни чем иным, как раствором трихлорида железа, в смеси с этанолом и этиловым эфиром. Такие капли даже получили название от своего создателя «бестужевские капли».В современной медицине для устранения недостатка железа в организме используются препараты в таблетках и капсулах с содержанием железного порошка, а также лекарства на основе ферроцена.

  • - Первое железо, как металл, попало в руки человека «с неба». Не зря люди считали железо - небесным металлом, т.к. впервые его добыли из падающих на поверхность земли метеоритов. В древнейших предметах из железа есть существенная доля примесей никеля, именно такое железо содержится в метеоритах. Крупнейший железный метеорит нашли в 1920 году в юго-западной Африке. Метеорит назвали «Гоба», он весил 60 тонн.
  • - Железо в организм животных и человека поступает с пищей. Наиболее богаты железом такие продукты, как мясо, печень, яйца, бобовые, крупы, хлеб, свёкла. Интересно заметить, что когда-то в этот список был ошибочно внесен шпинат (по причине опечатки в записях результатов анализа, а именно был утерян «лишний» ноль после разделительной запятой).
  • - Многие косвенные данные подтверждают тот факт, что ядро нашей планеты главным образом состоит из сплавов железа. Радиус ядра Земли составляет приблизительно 3470 км, в то время как радиус самой Земли равен 6370 км.
  • - В свободном виде железо было обнаружено на луне. Процесс определения возраста лунных минералов при помощи радиоактивных изотопов показал, что они были кристаллизованы примерно 3,2 - 4,2 миллиарда лет назад. Данные цифры приблизительно совпадают с возрастом самых древних минералов, когда-либо обнаруженных на Земле.
  • - Неоднократные клинические эксперименты подтвердили тот факт, что крапива отлично справляется с лечением анемии, не уступая при этом синтетическим препаратам железа. В деревне каждая хозяйка знает, что курочки несутся лучше, когда в корм добавляют сушеную крапиву. Народные врачи-травники часто советуют пролечиться свежим соком крапивы, который выжимают из стволов и листьев молодых растений, собрать крапиву нужно перед цветением. Делается это довольно просто: нужно собрать, промыть, пропустить через соковыжималку либо миксер с малым количеством воды, ну а затем просто отжать сок. Полученный сок принимать по три столовые ложки в сутки. Сок крапивы не обладает приятным вкусом, зато он очень полезен. Его можно разбавлять с медом. Крапивный сок хорошо хранится в течение несколько дней в холодильнике.
  • - В 1941 году соединенные Штаты Америки вступили в мировую войну. Американская национальная конференция по вопросам питания в условиях военной обороны решила обогащать хлеб и муку железом, во избежание анемии в рядах американского населения. Первым признаком недостатка железа является усталость, а также вызванная этим анемия, а, как известно война усталых людей не терпит! Но есть одно но… В Северной Америке производили лишь белый хлеб и белую муку (таким образом это был чистый крахмал), а вот ценная часть зерна уходила на отходы. В оном килограмме муки грубого помола, изготавливаемой из неочищенных зерен, содержание железа составляет примерно 30 миллиграмм, а в одном килограмме очищенной муки, произведенной из очищенного зерна — 8,2 миллиграмма. В соответствии с тогдашними нормами один килограмм обогащенной муки был должен содержать примерно 26 миллиграмм железа. В период с 1968 по 1970 год началась проверка данной акции в десяти штатах США. Тридцать тысяч семей, употребляющих обогащенные железом муку и хлеб, подвергли тщательному обследованию. В результате у всех у нихбыл обнаружен недостаток железа в организме.
В Европе ранний железный век продлился примерно с 1000 до 450 гг. до н. э. Данную эпоху называют голыптаттской, от названия города в Австрии, где археологами было найдено много железных предметов. В древности у определенных народов железо было дороже золота. Только представители знати имели право украшать себя железными изделиями, нередко они были в золотой оправе. Из железа даже изготавливали обручальные кольца, как в Древнем Риме.

История

Железо известно с древних времен. Самые первые изделия, выполненные из железа, были найдены во время археологических раскопок. Датируются предметы IV тысячами лет до нашей эры, это наследие древнеегипетской и древнешумерской цивилизаций. Железные изделия того времени представляли собой украшения и наконечники для оружия. При изготовлении этих предметов использовали метеоритное железо, а вернее сплав железа с никелем, который встречается в падающих на землю метеоритах. Во многих языках остались реминисценции о железе, как небесном металле.

В Месопотамии, Египте, Анатолии во II -III вв. до н.э. стали появляться первые изделия, выполненные из переплавленного железа, в их составе уже не было никеля. В основном железо использовалось в культовых принадлежностях. Вероятнее всего, в то далекое время железо было самым дорогим металлом, дороже даже золота.

Во времена античной Греции оружие изготавливали в основном из бронзы. Но в 23-й песне «Илиады» Гомер рассказал, что по окончании соревнования по дискоболу Ахилл наградил победителя железным диском. В середине II века до нашей эры производство железа повсеместно распространялось в Передней Азии (Ближний Восток), но большую часть все же составляли изделия из бронзы.

В XII - X вв. до н.э. в Передней Азии произошел скачок в производстве металлических приспособлений. Теперь оружие и другие предметы производили не из бронзы, а из железа. Такой скачок вероятнее всего был вызван не появлением прогрессивных методов производства железа, а перебоями поставок олова – одного из главных компонентов бронзы. Период массового перехода на производство железных изделий называют Железным веком.

В древние времена основным способом получения железа был сыродутный метод. В специальных горнах прокаливались перемежающиеся слои древесного угля и железной руды. В результате такого прокаливания получалось тестообразное губчатое или кричное железо. Такое железо освобождалось от шлака в процессе ковки. В первых горнах температура была довольно низкой, даже ниже температуры плавления чугуна. Поэтому железо было малоуглеродистым, а, значит, хрупким. Для увеличения прочности металла предметы из железа дополнительно еще раз прокаливали в присутствии угля, в результате поверхность металла насыщалась углеродом, а изделия становились заметно прочнее, намного прочнее таких же изделий из бронзы.

С развитием производства железа стали появляться более совершенные горны (на Руси говорили домны или домница), через какое-то время люди научились достигать температуры плавления чугуна. Изначально чугун считался побочным продуктом, от которого нет никакой пользы. В английском языке есть выражение «pig iron», что в переводе на русский означает «свинское железо» или «чушки», а в свою очередь от слова «чушки» и произошло название «чугун». Спустя какое-то время был обнаружен тот факт, что при дополнительном прожигании чугуна в горне при достижении высокой температуры чугун переплавляется в железо очень высокой прочности. Процесс, состоящий из двух стадий, оказался не только более эффективным, но и более выгодным. Несколько последующих веков использовался именно такой двухстадийный способ.

Первые упоминания о производстве железа из метеоритов в Китае относятся к тому же времени, что и в древнеевропейских странах. Вероятно, начиная с VIII века до нашей эры, там стало развиваться производство изделий из железа. В I веке до нашей эры в Китае научились производить чугун.

Нахождение в природе

По распространенности в природе железо является вторым металлом после алюминия и находится на четвертом месте среди всех элементов, уступаю лишь кислороду, алюминию и кремнию. Содержание химического элемента в земной коре по массе составляет 4,65%. Известно более 300 минералов, содержащихся в составе железных руд (сульфиды, окислы, силикаты, фосфаты, карбонаты, титанаты, и т. д.).

Важнейшие рудные минералы железа: магномагнетит, Титаномагнетит, Магнетит, Гематит, гидрогематит, Сидерит, Гётит, гидрогётит, железистые хлориты (тюрингит шамозит, и т.д.). В промышленных рудах содержание железа составляет16 - 70%. Существуют богатые (менее 50% железа), рядовые (50—25% железа) и бедные (≥ 25% железа) железные руды. В зависимости от того, каков химический состав железной руды, ее применяют для выплавки чугуна после обогащения или в естественном виде. Железные руды, содержание металла в которых менее 50%, обогащаются до 60%, в основном способами магнитной сепарации либо гравитационным обогащением. Рыхлые или сернистые (менее 0,3% серы) богатые руды и концентраты обогащения окусковывают агломерацией, из концентратов производят окатыши. Жедезые руды, которые идут в доменную шихту, не должны содержать S, Р и Cu более 0,1 - 0,3% и As, Sn, Zn, Pb 0,05-0,09%, т.к. могут ухудшиться условия плавки или качество стали. Примесь в железной руде кремния, никеля, титана и вольфрама в большинстве случаев полезна. Mn, Cr и Ni улучшают качество стали, титан и вольфрам попутно извлекаются в процессах обогащения и металлургического передела.

Месторождения железной руды по происхождению разделяют на три группы: магматогенные, метаморфогенные и экзогенные. Магматогенные делятся на: магматические - это дайкообразные, пластообразные и неправильные залежи титаномагнетитов, которые связаны с габбро-пироксенитовыми породами (Лиганга в Танзании, Бушвельдские месторождения в ЮАР), апатито-магнетитовые залежи, которые связаны с сиенитдиоритами и сиенитами (Елливарс и Кируна в Швеции, Лебяжинское на Урале), скарновые или контактово-метасоматические, поялвяются вблизи интрузивных массивов или на контактах, и др.

Экзогенные месторождения: осадочные - механические и химические осадки озерных и морских бассейнов, более редко в дельтах и долинах рек, возникают в процессе местного обогащения соединениями железа вод бассейна, а также в результате сноса в воды железистых продуктов суши; слагают линзы или пласты среди осадочных, реже - вулканогенно-осадочных пород; сюда относят месторождения бурых железняков, часть силикатных руд, сидеритов, (Керченское на Украине, Аятское в Казахстане; Лан-Диль в Германии, и т.д.). Месторождения коры выветривания появляются после выветривания железосодержащих горных пород; различаются элювиальные или остаточные месторождения, где продукты выветривания, обогащены железом (в результате выноса из горной породы других элементов) и остаются на месте (Украина - руды Кривого Рога, Россия - Курская магнитная аномалия, США - район оз. Верхнего) и цементационные (инфильтрационные), здесь железо выносится из выветривающихся пород, а затем отложено заново в пролегающих ниже горизонтах (Россия - Алапаевское месторождение Урала).

Метаморфогенные (или метаморфизованные) месторождения - это преобразованные под высоким давлением и температурой ранее существовавшие, в основном осадочные месторождения. Сидериты и гидроокислы железа при этом, как правило, переходят в магнетит и гематит. Метаморфические процессы могут дополняться гидротермально-метасоматическими образованиями магнетитовых руд. Подобные месторождения есть в России, Индии, Украине, США, Австралии и др.

Применение

Чистое железо применяется довольно ограниченно. Оно используется в производстве сердечников для электрических магнитов, в качестве катализатора при протекании химических процессов, в некоторых других сферах. Но такие сплавы на основе железа, как сталь и чугун, являются основой современной техники во всем мире. Многие соединения железа также находят свое применение. Например, сульфат железа (III ) используется в процессе водоподготовки, цианид и оксиды железа применяют как пигменты в производстве различных красителей, в других областях используются другие соединения железа.

Железо с его сплавами выступает важнейшим конструкционным материалом в промышленном производстве и технике. Практически все конструкции машиностроения и тяжелых отраслей промышленности производятся в основном из сплавов железа с углеродом. Из стали производят и автомобили, и станки, и железные дороги, и корпуса судов с силовыми установками, и каркасы мостов и зданий, и многое другое. По масштабу производства стали можно судить об общем технико-экономическом уровне развития определенного государства или региона. В доле общемирового производства продукции, изготовленной из металла, сталь занимает первое место, имея долю 95%.

Железо иногда может входить в состав и других сплавов в качестве примеси. Например, никелевые сплавы. В производстве устройств долговременной компьютерной памяти, таких как дискеты и жесткие диски, магнитная окись железа является очень важным, даже незаменимым материалом.

Хлоридное железо, т.е. хлорид железа III, радиолюбители используют на практике в процессе травления печатных плат. Железный купорос (десятиводный сульфат железа) вперемешку с медным купоросом используется в строительстве и садоводстве для борьбы с вредными грибками. Железо применяют в качестве анода при производстве железо-никелевых аккумуляторов, а также железо-воздушных аккумуляторов.

В черно-белых лазерных принтерах, которые так распространены сегодня, в качестве тонера используют ультрадисперсный порошок магнетита. Ряд сплавов на основе железа обладают уникальными ферромагнитными свойствами, благодаря чему они нашли широкое применение в электротехнике при производстве различных электродвигателей магнитопроводов трансформаторов.

Для производства сплавов железа ответственного назначения и сталей служат совершенно новые процессы - электрошлаковый переплав, вакуумный процесс, электронно-лучевая и плазменная плавка и т.д. Разрабатываются способы получения стали в агрегатах с непрерывным процессом, что позволит обеспечить автоматизации процесса и полувчения высокого качества металла.

На основе железа изготавливаются материалы, которые способны выдерживать воздействие низких и высоких температур, высоких давлений и вакуума, больших переменных напряжений, агрессивных сред, ядерных излучений и т. д. Объемы производства железа и железных сплавов неуклонно растет.

С древности железо использовалось как художественный материал в Индии, Египте и Месопотамии. Со средневековых времен сохранилось множество произведений искусства выполненных из железа в странах Европы (Италии, Англии, России, Франции и др.) - дверные петли, кованые ограды, настенные кронштейны, флюгера, светцы, оковки сундуков. Изделия кованые насквозь из прутьев, а также предметы, выполненные из просечного листового железа (зачастую имеют слюдяную подкладку) отличаются четким линейно-графическим силуэтом, плоскостными формами, и эффектно просматриваются на фоне света и воздуха. В XX веке железо широко используется при изготовлении оград, решеток, ажурных интерьерных перегородок, монументов, подсвечников, и других элементов внешнего и внутреннего дизайна.

Производство

Производство чугуна

Чугун производят в вертикальных печах, называемых домнами. Чугун получают из шихты, которая содержит кусочки обогащенной руды, в присутствии кокса и флюсов. В доменную печь снизу вдувается обогащенный кислородом воздух. Углерод, содержащийся в коксе сгорает, а диоксид углерода, полученный таким путем, восстанавливается за монооксида счет до избытка углерода. Монооксид углерода, образующийся в печи, в последовательном порядке восстанавливает оксид железа, содержащийся в руде, до железа как металла:

3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2

2Fe 3 O 4 + 2CO = 6FeO + 2CO 2

FeO + CO = Fe + CO 2

CaCO 3 = Ca + CO 2

В результате образуется известь, которая способствует переводу силикатных примесей в жидкий шлак. Доменный процесс дает в результате шлака почти столько же, сколько и смого чугуна.

На сегодняшний день доменная печь является крупным сооружением, производящим 1000 тонн чугуна за сутки. Высота печи, составляет около 30 мметров, а диаметр на уровне заплечиков - около 8 метров. Нижняя часть печи охлаждается водой.

Производство стали

Производство стали представляет собой переплавку чугуна в присутствии окислителей. Во время выплавки стали содержание С снижается до полутора – двух процентов. Оксид FeO, образующийся в условиях окисления, реагирует с примесями и углеродом, окисляя их, при этом восстанавливается до Fe.

В бессемеровском (кислородно-конверторном) методе получения стали используется специальная емкость для выплавки, т.е. конвертер, который представляет собой ретортообразный резервуар.

Внутрь конвертера заливается жидкий чугун, продуваемый смесью кислорода, воздуха и углеводородов, загружают шихту, которая содержит стальной лом, руду, чугун и флюсы, затем подается чистый кислород.

Перед стартом кислородно-конвертерного процесса необходимо наклонить конвертер в сторону загрузочного пролета, а металлоломзасыпается через горловину. После в конвертер заливается жидкий металл из доменной печи, который содержит примерно 1,5% кремния м 4,5% углерода. Углерод окисляется до CO 2 или CO, а кремний до SiO 2 . По загрузочному лотку добавляют известь, чтобы образовался шлак с диоксидом кремния. Вместе со шлаком выводится большая часть кремния

Существует еще и кислородно-конвертерный процесс с подачей кислорода в струе топлива через днище конвертера. В днище конвертера фурмы защищаются синхронной продувкой природного газа. Данный процесс протекает быстрее, он производительнее, процесса с верхней продувкой, но он не так эффективен в расплавлении металлолома. Но есть возможность сочетать нижнюю продувку с верхней.

Электрическая печь . Сначала электропечи применялись лишь для выплавки инструментальных и нержавеющих сталей, которые до этого выплавляли в тиглях. Но со временем электропечи заняли играть важное место в производстве стали из металлолома в случаях, когда не нужен передел чугуна. Сейчас около 30% нерафинированной стали производится в электропечах. Самые распространенные - дуговые электропечи. Пол такой печи облицовывают огнеупорным кирпичом, свод охлаждают водой. В своде есть три отверстия, в которые вводят угольные электроды. Между металлоломом и электродами на дне печи возникает дуговой разряд. В крупной печи сила тока достигает размера 100 000 А.

Физические свойства

Железо может иметь две кристаллические решетки: α- или γ- объемно-центрированной кубической и гранецентрированной кубической. Ниже температуры 910°С устойчива с α- модификация ОЦК-решёткой (при 20°С а = 2,86645 Å), γ-модификация устойчива при 910°С - 1400°С, ГЦК-решётка (а = 3,64 Å). При достижении 1400°С снова образуется ОЦК-решётка, δ-Fe (а = 2,94 Å), которая устойчива до температуры 1539°С. α - модификация ферромагнитная вплоть до токи Кюри (769°С). Модификации δ-Fe и γ-Fe парамагнитные.

В 1868 Д. К. Черновоткрыл полиморфные превращения железа и стали после нагревания и охлаждения. Углерод образует с железом твёрдые растворы внедрения, где атомы углерода, имеют малый атомный радиус (0,77 Å), они размещаются в междоузлиях кристаллической решётки металла, которая состоит из более крупных атомов. У железа атомный радиус составляет 1,26 Å.

Сочетание закалки и отпуска (нагрева до относительно низкой температуры с целью уменьшения внутреннего напряжения) придает стали требуемое сочетание пластичности и твёрдости.

Физические свойства железа напрямую зависят от чистоты металла. В промышленных материалах железу обычно сопутствуют примеси азота, углерода, кислорода, фосфора, водорода, серы. Даже очень малые концентрации данных примесей существенно изменяют свойства железа. Например, сера вызывает так называемую красноломкость, а фосфор (до 10 -20 % Р) такое свойство как хладноломкость, на пластичность железа влияют углерод и азот, примесь водорода увеличивает хрупкость (водородная хрупкость). Снижение содержания примесей до 10 -7 -10 -9 % приводит к сильным изменениям физических свойств металла, а в частности повышается пластичность.

Давайте рассмотрим физические свойства чистого железа (примесей не более 0,01% по массе). Итак, атомный радиус железа составляет 1,26 Å, ионные радиусы Fe3+O,67 Å, Fe2+O,80 Å. Температура плавления 1539 °С, температура кипения примерно 3200 °С, плотность (при 20°С) равна7,874 г/см3. Температурный коэффициент линейного расширения железа (при 20°С) составляет 11,7·10 -6 , теплопроводность металла (при 25°С) равна 74,04 вт/(м*К) =

Теплоёмкость железа сильно зависит от структуры, с температурой изменяется сложным образом. Средняя удельная теплоёмкость железа (при 0-1000°С) составляет 640,57 дж/(кг·К) = . Параметр удельного электрического сопротивления (при 20°С) равен 9,7·10-8ом·м = , Модуль Юнга составляет 190—210·10 3 Мн/м. 2 = = (19-21·10 3 кгс/мм 2), температурный коэффициент электрического сопротивления (при 0-100°С) равен 6,51·10 -3 , температурный коэффициент модуля Юнга равен 4·10 -6 , Кратковременная прочность на разрыв составляет 170-210Мн/м2, модуль сдвига равен 84,0·10 3 Мн/м 2 , относительное удлинение равно 45-55%, твёрдость металла по Бринеллю составляет 350-450 Мн/м 2 , предел текучести равен100Мн/м 2 , и ударная вязкость железа равна 300 Мн/м 2 .

Конфигурация внешней электронной оболочки атома железа имеет вид 3d64s2. Железо имеет переменную валентность (более устойчивы соединения двух- и трехвалентного железа). Железо образует с кислородом окись Fe 2 O 3 , закись FeO, и закись-окись Fe 3 O 4 . При обычной температуре во влажном воздухе железо покрывается рыхлой ржавчиной. Ржавчина по причине своей пористости не препятствует доступу воздуха и влаги к поверхности металла, поэтому она не предохраняет железо от дальнейшего окисления. Из-за разных видов коррозии каждый год теряются миллионы тонн железа. В результате нагревания железа в сухом воздухе выше температуры 200°С его поверхность покрывается тонкой окисной плёнкой, защищающей металл от коррозии в обычной температуре, что и лежит в основании технического способа защиты железа - методе воронения.

Химические свойства

При нагревании железа на водяном паре, металл окисляется с выделением Fe 3 O 4 (при температуре ниже 570°С) либо FeO (при температуре выше 570°С), а также выделением водорода.

Такая гидроокись, как Fe(OH) 2 образуется в результате действия аммиака или едких щелочей на водные растворы солей Fe 2+ в атмосфере азота или водорода, имеет вид белого осадка. Впоследствии соприкосновения с воздухом гидроокись сначала зеленеет, а затем чернеет, ну а после быстро превращается в красно-бурую Fe(OH) 3 . Закись железа FeO проявляет его основные свойства. А Окись Fe 2 O 3 является амфотерной и обладает плохо выраженной окисляющей функцией, реагирует с основными окислами (к примеру, с MgO), образует ферриты, т.е. такие соединения, как Fe2O3·nMeO, которые имеют ферромагнитные свойства, они широко применяются в радиоэлектронике. У шестивалентного железа, которое существует в виде ферратов, также выражены кислотные свойства. К примеру, K 2 FeO 4 , соль, не выделенная в обычном состоянии железной кислоты.

Железо способно легко реагировать с галогеноводородами и галогенами, давая при этом соли. Яркий пример - хлориды FeCl 3 и FeCl 2 . В результате нагревания железа вместе с серой, образуются сульфиды FeS 2 и FeS. У железа есть и карбиды — Fe 2 C (ε-карбид), Fe 3 C (цементит), выпадающие из твёрдых растворов углерода в железе при охлаждении данных растворов. Fe 3 C может также выделяться из раствора углерода в жидком железе если концентрации С будут высокими. Азот, почти, как и углерод, углерод, образует твёрдые растворы внедрения с железом. Из этих растворов выделяют нитриды Fe2N и Fe4N. С водородом железо способно давать только малоустойчивые гидриды, чей состав точно так и не установлен. Вследствие нагревания железо довольно энергично вступает в реакцию с фосфором и кремнием, при этом образуются фосфиды (к примеру, Fe3P) и силициды (к примеру, Fe3Si).

Соединения железа со многими элементами (кислород, сера и другими), которые образуют кристаллическую структуру, обладают переменным составом (например, в составе моносульфида содержание серы может изменяться от 50 до 53,3%). Данное явление объясняется наличием дефектов кристаллической структуры. К примеру, в закиси железа FeO некоторые ионы Fe 2+ в узлах решётки замещаются ионами Fe 3+ . С целью сохранения такого свойства, как электронейтральность, некоторые узлы решётки, которые принадлежат ионам вида Fe 2+ , остаются пустыми, а фаза при обычных условиях записывется формулой Fe 0,947 O.

Величина нормального электродного потенциала железа в водных растворах солей Fe для реакции

Fe <- Fe 2+ +2

Fe -> Fe 2+ +2

равна 0,44 в, а для реакции

Fe <- Fe 3+ +3

Fe -> Fe 3+ +3

равен - 0,036 в. Таким образом, в ряду активностей железо имеет место левее водорода. Элемент может легко растворяться в разбавленных кислотах, выделяя водород и образовывая ионы Fe 2+ .

Довольно своеобразно взаимодействует железо с азотной кислотой. Концентрат азотной кислоты (плотность 1,45 г/см 3) пассивирует железу в результате возникновения на поверхности металла окисной плёнки, а более разбавленная азотная кислотоа растворяет железо, образуя ионы Fe 3+ и Fe 2+ либо, восстанавливается до MH 3 либо N 2 O и N 2 .

Растворы солей двухвалентного железа не устойчивы на воздухе: Fe 2+ со временем окисляется и превращается в Fe 3+ . Водные растворы солей железа в результате процесса гидролиза осуществляют кислую реакцию. Добавка в растворы солей Fe 3+ тиоцианат-ионов SCN способствует появлению яркой кроваво-красной окраски в результате возникновения Fe(SCN) 3 , а это в свою очередь позволяет осуществлять присутствие одной части Fe 3+ в примерно 106-ти частях H 2 O. Для железа характерны образования комплексных соединений.

Железо (обозначается химическим симво­лом Fe, произносится по-латыни как ferrum) - это серебристо-белый металл. Железо без примесей других элементов мягкое, гибкое и пластичное (его можно вытягивать в тонкую проволоку).

При комнатной температуре железо легко намагничивается. Однако его трудно на­магнитить в нагретом виде. Магнитные свойства железа исчезают при температу­ре около +800 °С.

В чистом природном состоянии железо встречается лишь в немногих местах на Зем­ле например на западе Гренландии. Беспри­месное железо иногда находят в метеоритах. Гораздо чаще железо встречается в виде хи­мических соединений. Железо извлекают из руд, содержащих такие минералы, как гема- тит, гетит, магнетит, сидерит и пирит.

Железо также является одной из составля­ющих гемоглобина, сложного белка, при­сутствующего в красных кровяных тельцах - эритроцитах. Эритроциты переносят кисло­род и углекислый газ в человеческом теле.
Железо легко вступает в химические реак­ции. Оно, например, реагирует с галоге­нами (фтором, хлором, бромом, йодом), с серой, фосфором и углеродом.

Железо растворимо в большинстве разбавленных кислот. Оно может гореть в присутствии кислорода. При этом чистое железо используется для произ­водства оцинкованного листового прока­та и электромагнитов.

В медицине железосодержащие препараты назначают больным анемией (при слишком низком содержании эритроцитов в крови). При контакте с влажным воздухом железо окисляется до гидроксида (Fe2Os + Н20), красновато-коричневого слоистого веще­ства, которое также называют ржавчиной.

Железо можно ковать. Для этого его раска­ляют докрасна, а затем многократно расплю­щивают или сдавливают Этот процесс делает железо более прочным и износостойким.

Сталь представляет собой ковкий сплав же­леза (основа) с углеродом (при содержа­нии углерода 0,1 -1,5 %). У стали такие же химические свойства, как и у железа. Для улучшения механических свойств сталь обычно подвергают закалке. Для этого ее сначала нагревают докрасна, а потом опускают в холодную жидкость. Это прида­ет стали большую твердость (закаленная сталь). Сталь используется в качестве кон­струкционных материалов, в производстве инструментов, оружия. Существуют специ­альные сорта стали с особыми свойствами (нержавеющая, жаропрочная).

Чугун - это сплав железа (основа) с углеро­дом (2-5 %). Из-за повышенного содержа­ния углерода чугун, как правило, хрупок. В меньшем количестве чугун содержит по­сторонние примеси - кремний, серу, фос­фор и марганец. Из чугуна можно отливать различные изделия, такие как, например, сковородки или решетки ограждений. Чугун используется при выплавке стали.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей