Активность радиоактивного вещества. Применение радиоактивных изотопов

Радиоактивное излучение (или ионизирующее) – это энергия, которая высвобождается атомами в форме частиц или волн электромагнитной природы. Человек подвергается такому воздействию как через природные, так и через антропогенные источники.

Полезные свойства излучения позволили успешно использовать его в промышленности, медицине, научных экспериментах и исследованиях, сельском хозяйстве и других областях. Однако с распространением применения этого явления возникла угроза здоровью людей. Малая доза радиоактивного облучения способна повысить риск приобретения серьёзных заболеваний.

Отличие радиации от радиоактивности

Радиация, в широком смысле, означает излучение, то есть распространение энергии в виде волн или частиц. Радиоактивные излучения делят на три вида:

  • альфа-излучение – поток ядер гелия-4;
  • бета-излучение – поток электронов;
  • гамма-излучение – поток высокоэнергетических фотонов.

Характеристика радиоактивных излучений основана на их энергии, пропускных свойствах и виде испускаемых частиц.

Альфа-излучение, которое представляет собой поток корпускул с положительным зарядом, может быть задержано толщей воздуха или одеждой. Этот вид практически не проникает через кожный покров, но при попадании в организм, например, через порезы, очень опасен и пагубно действует на внутренние органы.

Бета-излучение обладает большей энергией – электроны движутся с высокой скоростью, а их размеры малы. Поэтому данный вид радиации проникает через тонкую одежду и кожу глубоко в ткани. Экранировать бета-излучение можно при помощи алюминиевого листа в несколько миллиметров или толстой деревянной доски.

Гамма-излучение – это высокоэнергетическое излучение электромагнитной природы, которое обладает сильной проникающей способностью. Для защиты от него нужно использовать толстый слой бетона или пластину из тяжёлых металлов таких, как платина и свинец.

Феномен радиоактивности был обнаружен в 1896 году. Открытие сделал французский физик Беккерель. Радиоактивность – способность предметов, соединений, элементов испускать ионизирующее изучение, то есть радиацию. Причина явления заключается в нестабильности атомного ядра, которое при распаде выделяет энергию. Существует три вида радиоактивности:

  • естественная – характерна для тяжёлых элементов, порядковый номер которых больше 82;
  • искусственная – инициируется специально с помощью ядерных реакций;
  • наведённая – свойственна объектам, которые сами становятся источником радиации, если их сильно облучить.

Элементы, обладающие радиоактивностью, называют радионуклидами. Каждый из них характеризуется:

  • периодом полураспада;
  • видом испускаемой радиации;
  • энергией радиации;
  • и другими свойствами.

Источники радиации

Человеческий организм регулярно подвергается действию радиоактивного излучения. Приблизительно 80% ежегодно получаемого количества приходится на космические лучи. В воздухе, воде и почве содержатся 60 радиоактивных элементов, являющихся источниками естественной радиации. Основным природным источником излучения считается инертный газ радон, высвобождающийся из земли и горных пород. Радионуклиды также проникают в организм человека с пищей. Часть ионизирующего облучения, которому подвергаются люди, исходит от антропогенных источников, начиная от атомных генераторов электричества и ядерных реакторов до используемой для лечения и диагностики радиации. На сегодняшний день распространёнными искусственными источниками излучения являются:

  • медицинское оборудование (основной антропогенный источник радиации);
  • радиохимическая промышленность (добыча, обогащение ядерного топлива, переработка ядерных отходов и их восстановление);
  • радионуклиды, применяющиеся в сельском хозяйстве, лёгкой промышленности;
  • аварии на радиохимических предприятиях, ядерные взрывы, радиационные выбросы
  • строительные материалы.

Радиационное облучение по способу проникновения в организм делится на два типа: внутреннее и внешнее. Последнее характерно для распылённых в воздухе радионуклидов (аэрозоль, пыль). Они попадают на кожу или одежду. В таком случае источники радиации можно удалить, смыв их. Внешнее же облучение вызывает ожоги слизистых оболочек и кожных покровов. При внутреннем типе радионуклид попадает в кровоток, например, введением в вену или через раны, и удаляется путём экскреции или с помощью терапии. Такое облучение провоцирует злокачественные опухоли.

Радиоактивный фон существенно зависит от географического положения – в некоторых регионах уровень радиации может превышать средний в сотни раз.

Влияние радиации на здоровье человека

Радиоактивное излучение из-за ионизирующего действия приводит к образованию в организме человека свободных радикалов – химически активных агрессивных молекул, которые вызывают повреждение клеток и их гибель.

Особенно чувствительны к ним клетки ЖКТ, половой и кроветворной систем. Радиоактивное облучение нарушает их работу и вызывает тошноту, рвоту, нарушение стула, температуру. Воздействуя на ткани глаза, оно может привести к лучевой катаракте. К последствиям ионизирующего излучения также относят такие повреждения, как склероз сосудов, ухудшение иммунитета, нарушение генетического аппарата.

Система передачи наследственных данных имеет тонкую организацию. Свободные радикалы и их производные способны нарушать структуру ДНК – носителя генетической информации. Это приводит к возникновению мутаций, которые сказываются на здоровье последующих поколений.

Характер воздействия радиоактивного излучения на организм определяется рядом факторов:

  • вид излучения;
  • интенсивность радиации;
  • индивидуальные особенности организма.

Результаты радиоактивного излучения могут проявиться не сразу. Иногда его последствия становятся заметны через значительный промежуток времени. При этом большая однократная доза радиации более опасна, чем долговременное облучение малыми дозами.

Поглощённое количество радиации характеризуется величиной, называемой Зиверт (Зв).

  • Нормальный радиационный фон не превышает 0,2 мЗв/ч, что соответствует 20 микрорентгенам в час. При рентгенографии зуба человек получает 0,1 мЗв.
  • Смертельная разовая доза составляет 6-7 Зв.

Применение ионизирующих излучений

Радиоактивное излучение широко применяется в технике, медицине, науке, военной и атомной промышленности и других сферах человеческой деятельности. Явление лежит в основе таких устройств, как датчики задымления, генераторы электроэнергии, сигнализаторы обледенения, ионизаторы воздуха.

В медицине радиоактивное излучение используется в лучевой терапии для лечения онкологических заболеваний. Ионизирующая радиация позволила создать радиофармацевтические препараты. С их помощью проводят диагностические обследования. На базе ионизирующего излучения устроены приборы для анализа состава соединений, стерилизации.

Открытие радиоактивного излучения было без преувеличения революционным – применение этого явления вывело человечество на новый уровень развития. Однако это также стало причиной возникновения угрозы экологии и здоровью людей. В связи с этим поддержание радиационной безопасности является важной задачей современности.

Радиация, радиоактивность и радиоизлучение - понятия, которые даже звучат достаточно опасно. В этой статье вы узнаете, почему некоторые вещества радиоактивные, и что это значит. Почему все так боятся радиации и насколько она опасна? Где мы можем встретить радиоактивные вещества и чем нам это грозит?

Понятие радиоактивности

Радиоактивностью называю «умение» атомов некоторых изотопов расщепляться и создавать этим излучения. Термин «радиоактивность» появился не сразу. Изначально такое излучение называли лучами Беккереля, в честь ученого, открывшего его в работе с изотопом урана. Уже теперь мы называем этот процесс термином «радиоактивное излучение».

В этом достаточно сложном процессе изначальный атом превращается в атом совсем другого химического элемента. За счет выбрасывания альфа- или бета-частиц, массовое число атома изменяется и, соответственно, это перемещает его по таблице Д. И. Менделеева. Стоит заметить, что массовое число изменяется, но сама масса остается практически такой же.

Опираясь на данную информацию, можем немного перефразировать определение понятия. Итак, радиоактивность - это также способность неустойчивых ядер атомов самостоятельно превращаться в другие, более стабильные и устойчивые ядра.

Вещества - что это такое?

Перед тем как говорить о том, что такое вещества радиоактивные, давайте вообще определим, что называется веществом. Итак, в первую очередь, это разновидность материи. Логичным есть и тот факт, что эта материя состоит из частиц, и в нашем случае это чаще всего электроны, протоны и нейтроны. Здесь уже можно говорить об атомах, которые состоят из протонов и нейтронов. Ну а из атомов получаются молекулы, ионы, кристаллы и так далее.

Понятие химического вещества основывается на этих же принципах. Если в материи невозможно выделить ядро, то ее нельзя причислить к химическим веществам.

О радиоактивных веществах

Как уже говорилось выше, чтобы проявлять радиоактивность, атом должен самопроизвольно распадаться и превращаться в атом совсем другого химического элемента. Если все атомы вещества нестабильны до такой степени, чтобы распасться таким образом, значит перед вами радиоактивное вещество. Более техническим языком определение прозвучало бы так: вещества радиоактивные, если они содержат радионуклиды, причем в высокой концентрации.

Где в таблице Д. И. Менделеева находятся радиоактивные вещества?

Довольно простой и легкий способ узнать, относиться ли вещество к радиоактивным, это посмотреть в таблицу Д. И. Менделеева. Все, что находится после элемента свинец - это радиоактивные элементы, а также еще прометий и технеций. Важно помнить, какие вещества радиоактивные, ведь это может спасти вам жизнь.

Существует также ряд элементов, которые имеют хотя бы один радиоактивный изотоп в своих природных смесях. Вот их неполный список, где указаны одни из самых распространенных элементов:

  • Калий.
  • Кальций.
  • Ванадий.
  • Германий.
  • Селен.
  • Рубидий.
  • Цирконий.
  • Молибден.
  • Кадмий.
  • Индий.

К радиоактивным веществам относятся те, которые содержат любые радиоактивные изотопы.

Виды радиоактивного излучения

Радиоактивное излучение бывает нескольких типов, о которых сейчас и пойдет речь. Уже упоминалось альфа- и бета-излучение, но это не весь список.

Альфа-излучение - это самое слабое излучение, которое представляет опасность в том случае, если частицы попадают непосредственно в тело человека. Такое излучение реализуется тяжелыми частицами, и именно поэтому легко останавливается даже листом бумаги. По этой же причини альфа-лучи не пролетают больше 5 см.

Бета-излучение более сильное, чем предыдущее. Это излучение электронами, которые намного легче альфа-частиц, поэтому могут проникать на несколько сантиметров в кожу человека.

Гамма-излучение реализуется фотонами, которые достаточно легко проникают еще дальше к внутренним органам человека.

Самое мощное по проникновению излучение - это нейтронное. От него спрятаться достаточно сложно, но в природе его, по сути, и не существует, разве что в непосредственной близости к ядерным реакторам.

Воздействие радиации на человека

Радиоактивно опасные вещества часто могут быть смертельными для человека. К тому же радиационное облучение имеет необратимый эффект. Если вы подверглись облучению, значит, вы обречены. В зависимости от масштабов повреждения, человек погибает в течение нескольких часов или на протяжении многих месяцев.

Вместе с этим нужно сказать, что люди непрерывно подвергаются радиоактивному излучению. Слава Богу, оно достаточно слабое, чтобы иметь летальный исход. Например, посмотрев футбольный матч по телевиденью, вы получаете 1 микрорад радиации. До 0,2 рад в год - это вообще естественный радиационный фон нашей планеты. 3 дар - ваша порция радиации при рентгене зубов. Ну а облучение свыше 100 рад уже является потенциально опасным.

Вредные радиоактивные вещества, примеры и предостережения

Самое опасное радиоактивное вещество - это Полоний-210. Из-за излучения вокруг него даже видно своеобразную светящуюся «ауру» голубого цвета. Стоит сказать о том, что существует стереотип, будто все радиоактивные вещества светятся. Это совсем не так, хотя и встречаются такие варианты, как Полоний-210. Большинство радиоактивных веществ внешне совсем не подозрительные.

Самым радиоактивным металлом на данный момент считают ливерморий. Его изотопу Ливерморию-293 достаточно 61 миллисекунды, чтобы распасться. Это выяснили еще в 2000 году. Немного уступает ему унунпентий. Время распада Унунпентия-289 составляет 87 миллисекунды.

Также интересный факт состоит в том, что одно и то же вещество может быть как безвредным (если его изотоп стабильный), так и радиоактивным (если ядра его изотопа вот-вот разрушатся).

Ученные, которые изучали радиоактивность

Вещества радиоактивные долгое время не считались опасными, и потому из свободно изучали. К сожалению, печальные смерти научили нас тому, что с такими веществами нужна осторожность и повышенный уровень безопасности.

Одним их первых, как уже упоминалось, был Антуан Беккерель. Это великий французский физик, которому и принадлежит слава первооткрывателя радиоактивности. За свои заслуги он удостоился членства в Лондонском королевском обществе. Из-за своего вклада и эту сферу он скончался достаточно молодым, в возрасте 55 лет. Но его труд помнят по сей день. В его честь были названа сама единица радиоактивности, а также кратеры на Луне и Марсе.

Не менее великим человеком была Мария Склодовская-Кюри, которая работала с радиоактивными веществами вместе со своим мужем Пьером Кюри. Мария также была француженкой, хоть и с польскими корнями. Кроме физики она занималась преподаванием и даже активной общественной деятельностью. Мария Кюри - первая женщина лауреат Нобелевской премии сразу в двух дисциплинах: физика и химия. Открытие таких радиоактивных элементов, как Радий и Полоний, - это заслуга Марии и Пьера Кюри.

Заключение

Как мы видим, радиоактивность - достаточно сложный процесс, который не всегда остается подконтрольным человеку. Это один из тех случаев, когда люди могут оказаться абсолютно бессильными перед лицом опасности. Именно поэтому важно помнить, что действительно опасные вещи могут быть внешне очень обманчивыми.

Узнать вещество радиоактивное или нет, чаще всего можно уже попав под его воздействие. Поэтому будьте осторожны и внимательны. Радиоактивные реакции во многом нам помогают, но также не стоит забывать, что это практически не подконтрольная нам сила.

К тому же стоит помнить вклад великих ученных в изучение радиоактивности. Они передали нам невероятно много полезных знаний, которые теперь спасают жизни, обеспечивают целые страны энергией и помогаю лечить страшные заболевания. Радиоактивные химические вещества - это опасность и благословение для человечества.

Введение……………………………………………………………………3

Применение радиоактивных источников в различных

сферах деятельности человека………………………………………………………….3

Химическая промышленность

Городское хозяйство

Медицинская промышленность

Радиационная стерилизация изделий и материалов

Производство радиоизотопных электрокардиостимуляторов

Предпосевное облучение семян и клубней

Радиоизотопная диагностика (введение в организм радиоактивного препарата)

Радиоактивные отходы, проблемы их захоронения…………………..8

Неразработанность метода……………………………………………………………....12

Давление внешних обстоятельств……………………………………………………....13

Принятие решений и технологическая сложность проблемы………………………...13

Неопределённость концепции…………………………………………………………...14

Список литературы……………………………………………………….16

Введение

В настоящее время трудно найти отрасль науки, техники, промышленности, сельского хозяйства и медицины, где бы не применялись источники радиоактивности (радиоактивные изотопы). Искусственные и естественные радиоактивные изотопы – мощный и тонкий инструмент для создания чувствительных способов анализа и контроля в промышленности, уникальное средство для медицинской диагностики и лечения злокачественных опухолевых заболеваний, эффективное средство воздействия на различные вещества, в том числе органические. Наиболее важные результаты получены при использовании изотопов как источников излучения. Создание установок с мощными источниками радиоактивного излучения позволило использовать его для контроля и управления технологическими процессами; технической диагностики; терапии заболеваний человека; получения новых свойств веществ; преобразования энергии распада радиоактивных веществ в тепловую и электрическую и др. Наиболее часто для этих целей используются такие изотопы как ⁶⁰CO, ⁹⁰Sr, ¹³⁷Cs и изотопы плутония. Для недопущения разгерметизации источников к ним предъявляются жёсткие требования по механической, термической и коррозийной устойчивости. Это обеспечивает гарантию сохранения герметичности в течение всего периода эксплуатации источника.

Применение радиоактивных источников в различных сферах деятельности человека.

Химическая промышленность

Радиационно-химическое модифицирование полиамидного полотна для придания ему гидрофильных и антистатических свойств.

Модифицирование текстильных материалов для получения шерстоподобных свойств.

Получение хлопчатобумажных тканей с антимикробными свойствами.

Радиационное модифицирование хрусталя для получения хрустальных изделий различного цвета.

Радиационная вулканизация резинотканевых материалов.

Радиационное модифицирование полиэтиленовых труб для повышения термостойкости и стойкости к агрессивным средам.

Отвердение лакокрасочных покрытий на различных поверхностях.

Деревообрабатывающая промышленность

В результате облучения мягкое дерево приобретает значительно низкую способность сорбировать воду, высокую стабильность геометрических размеров и более высокую твёрдость (изготовление мозаичного паркета).

Городское хозяйство

Радиационная очистка и обеззараживание сточных вод.

Медицинская промышленность

Радиационная стерилизация изделий и материалов

Номенклатура радиационно-стерилизуемой продукции включает свыше тысячи наименований, в том числе шприцы одноразового пользования, системы службы крови, медицинский инструментарий, шовные и перевязочные материалы, различные протезы, применяемые в сердечно-сосудистой хирургии, травматологии и ортопедии. Основное преимущество радиационной стерилизации состоит в том, что она может осуществляться непрерывно с большой производительностью. Пригодна для стерилизации готовой продукции, упакованной в транспортную тару или вторичную упаковку, а также применима для стерилизации термолабильных изделий и материалов.

Производство радиоизотопных электрокардиостимуляторов с источниками питания на основе ²³⁸Pu. Имплантируемые в организм человека, они применяются для лечения различных нарушений ритма сердца, не поддающихся медикаментозному воздействию. Применение радиоизотопного источника питания повышает их надёжность, увеличивает срок службы до 20-ти лет, возвращает больных к нормальной жизнедеятельности за счёт сокращения числа повторных операций по вживлению электрокардиостимулятора.

Сельское хозяйство и пищевая промышленность

Сельское хозяйство – важная область применения ионизирующих излучений. К настоящему времени в практике сельского хозяйства и научных исследованиях сельскохозяйственного профиля можно выделить следующие основные направления использования радиоизотопов:

Облучение с/х объектов (в первую очередь – растений) малой дозой в целях стимуляции их роста и развития;

Применение ионизирующих излучений для радиационного мутагенеза и селекции растений;

Использование метода лучевой стерилизации для борьбы с насекомыми – вредителями с/х растений.

Предпосевное облучение семян и клубней (пшеница, ячмень, кукуруза, картофель, свекла, морковь) приводит к улучшению посевных качеств семян и клубней, ускорению процессов развития растений (скороспелость), повышает устойчивость растений к неблагоприятным факторам среды.

В области селекции проводятся исследования по мутагенезу. Целью является отбор макромутаций для выведения высокоурожайных сортов. Представляющие интерес радиационные мутанты уже получены для более чем 50-ти культур.

Применение ионизирующих излучений для стерилизации насекомых-вредителей на элеваторах и в зернохранилищах позволяет уменьшить потери урожая до 20%.

Известно , что ионизирующие γ-излучения предупреждают прорастание картофеля и лука, используются для дезинсекции сушёных фруктов, пищевых концентратов, замедляют микробиологическую порчу и продлевают сроки хранения плодов, овощей, мяса, рыбы. Выявлена возможность ускорения процессов старения вин и коньяка, изменение скорости созревания плодов, удаления неприятного запаха лечебных вод. В консервной промышленности (рыбной, мясомолочной, овощной и фруктовой) широкое применение имеет стерилизация консервов. Следует заметить, что исследование облучённых продуктов питания показало, что γ -облученные продукты безвредны.

Мы рассмотрели применение радиоизотопов, специфическое для отдельных отраслей промышленности. Кроме того, повсеместно в промышленности применяются радиоизотопы для следующих целей:

Измерение уровней жидкостей расплавов;

Измерение плотностей жидкостей и пульп;

Счёт предметов на контейнере;

Измерение толщины материалов;

Измерение толщины льда на летательных и других аппаратах;

Измерение плотности и влажности почво-грунтов;

Неразрушающая γ -дефектоскопия материалов изделий.

Непосредственно в медицинской практике нашло клиническое применение радиоизотопных терапевтических аппаратов, а также клиническая радиоизотопная диагностика.

Освоены γ -терапевтические аппараты для наружного γ -облучения. Эти аппараты значительно расширили возможности дистанционной γ -терапии опухолей за счёт использования вариантов статического и подвижного облучения.

К отдельным локализациям опухолей используются различные варианты и способы лучевого лечения. Стойкие пятилетние излечения при 1, 2 и 3 стадиях получены соответственно у

90-95, 75-85 и 55-60% больных. Хорошо известна также положительная роль лучевой терапии в лечении рака молочной железы, лёгкого, пищевода, полости рта, гортани, мочевого пузыря и других органов.

Радиоизотопная диагностика (введение в организм радиоактивного препарата) стала неотъемлемой частью диагностического процесса на всех этапах развития заболевания или оценки функционального состояния здорового организма. Радиоизотопные диагностические исследования могут быть сведены к следующим основным разделам:

Определение радиоактивности всего тела, его частей, отдельных органов в целях выявления патологического состояния органа;

Определение скорости передвижения радиоактивного препарата по отдельным участкам сердечно-сосудистой системы;

Изучение пространственного распределения радиоактивного препарата в теле человека для визуализации органов, патологических образований и др.

К числу наиболее важных аспектов диагностики относятся патологические изменения сердечно-сосудистой системы, своевременное обнаружение злокачественных новообразований, оценка состояния костной, кроветворной и лимфатической систем организма, которые представляют собой труднодоступные объекты для исследования традиционными клинико-интрументальными методами.

В клинической практике внедрены Nay, меченный ¹³y для диагностики заболеваний щитовидной железы; NaCe, меченный ²⁴Na для изучения местного и общего кровотока;

Na₃PO₄, меченный ³³P для изучения процессов накопления его в пигментных образованиях кожи и других опухолевых образованиях.

Ведущее значение получил метод диагностики в неврологии и нейрохирургии с использованием изотопов ⁴⁴Tc, ¹³³Xeи ¹⁶⁹Y. Он необходим для уточненного диагноза заболеваний головного мозга, а также заболеваний сердечно-сосудистой системы. В нефрологии и урологии применяются радиоактивные препараты, содержащие ¹³¹Y, ¹⁹⁷Hg,

¹⁶⁹Yb, ⁵¹Cr и ¹¹³Yn. Благодяря внедрению радиоизотопных методов обследования улучшилась ранняя заболеваемость почек и других органов.

Научно-прикладное применение р/изотопов очень широко. Остановимся на некоторых:

Практический интерес представляет использование радиоизотопных энергетических установок (РЭУ) электрической мощностью от нескольких единиц до сотен Ватт. Наибольшее пратическое применение нашли радиоизотопные термоэлектрические генераторы, в которых преобразование энергии р/а распада в электрическую осуществляется с использованием термоэлектрических преобразователей, такие энергоустановки отличаются полной автономностью, возможностью работы в любых климатических условиях, большим сроком службы и надёжностью в работе.

Радиоизотопные источники питания обеспечивают работу в системах автоматических метеорологических станций; в системах навигационного оборудования в отдалённых и необжитых районах (эл. питание маяков, створных знаков, навигационных огней).

Благодаря положительному опыту применения их в условиях низкой температуры, стало возможным использование их в Антарктиде.

Известно также, что на аппаратах, перемещавшихся по поверхности Луны (луноходах) были использованы изотопные энергетические установки с ²¹ºPo.

Применение р/а изотопов в научных исследованиях невозможно переоценить, так как все практикующие методы вытекают из положительных результатов в исследованиях.

Кроме того, следует упомянуть и такие совсем узкие специализации как борьба с вредителями в старинных предметах искусства, а также применение естественных р/а изотопов в радоновых ваннах и грязях при санаторно-курортном лечении.

По окончании срока эксплуатации р/а источники в установленном порядке должны быть доставлены на специальные комбинаты для переработки (кондиционирования) с последующим захоронением как радиоактивные отходы.

Радиоактивные отходы, проблемы их захоронения

Проблема радиоактивных отходов является частным случаем общей проблемы загрязнения окружающей среды отходами человеческой деятельности. Но в то же время резко выраженная специфика РАО требует применения специфичных методов обеспечения безопасности для человека и биосферы.

Исторический опыт обращения с производственными и бытовыми отходами сформировался в условиях, когда осознание опасности отходов и программ её нейтрализации опиралось на непосредственные ощущения. Возможности последних обеспечивали адекватность осознания связей непосредственно воспринимаемых органами чувств воздействий с наступающими последствиями. Уровень знаний позволял представить логику механизмов воздействия отходов на человека и биосферу, достаточно точно соответствующую реальным процессам. К практически выработанным традиционным представлениям о методах обезвреживания отходов исторически присоединились и разработанные с открытием микроорганизмов качественно иные подходы, образовав не только эмпирически, но и научно обоснованное методическое обеспечение безопасности человека и среды его обитания. В медицине и системах управления обществом были сформированы соответствующие подотрасли, например, санитарно-эпидемиологическое дело, коммунальная гигиена и т.п.

С бурным развитием химии и химических производств в производственных и бытовых отходах в массовых количествах появились новые, ранее не попадавшие в них элементы и химические соединения, в том числе не существующие в природе. По масштабам это явление стало сопоставимо с естественными геохимическими процессами. Человечество оказалось перед необходимостью выйти на другой уровень оценки проблемы, где должны учитываться, например, аккумулятивные и отложенные эффекты, методы выявления дозировок воздействий, необходимость применения новых методов и специальной высокочувствительной аппаратуры для обнаружения опасности и т.п.

Качественно иную опасность, хотя и сходную с химической по некоторым из признаков, принесла человеку «радиоактивность» , как явление, не воспринимаемое органами чувств человека непосредственно, не уничтожаемое известными человечеству способами и пока ещё в целом недостаточно изученное: нельзя исключить обнаружение новых свойств, воздействий и последствий этого явления. Поэтому при формировании общих и конкретных научных и практических задач «по ликвидации опасности РАО» и, в особенности, при решении этих задач возникают постоянные затруднения, показывающие, что традиционная постановка недостаточно точно отражает реальный, объективный характер «проблемы РАО». Тем не менее, идеология такой постановки широко распространена в правовых и не правовых документах общегосударственного и межгосударственного характера, которые, как можно предположить, охватывают широкий спектр современных научных воззрений, направлений, исследований и практических мероприятий; учитывают разработки всех известных отечественных и иностранных организаций, занимающихся «проблемой РАО».

Постановлением Правительства РФ от 23.10.1995 г. № 1030 утверждена Федеральная целевая Программа «Обращение с радиоактивными отходами и отработавшими ядерными материалами, их утилизация и захоронение на 1996-2005 годы».

Радиоактивные отходы рассматриваются в ней «как не подлежащие дальнейшему использованию вещества (в любом агрегатном состоянии), материалы, изделия, оборудования, объекты биологического происхождения, в которых содержание радионуклидов превышает уровни, установленные нормативными актами. В Программе выделен специальный раздел «Состояние проблемы», содержащий описание конкретных объектов и общественных сфер, где происходит «обращение с радиоактивными отходами», а также общие количественные характеристики «проблемы РАО» в России.

«Большое количество накопленных некондиционированных радиоактивных отходов, недостаточность технических средств для обеспечения безопасного обращения с этими отходами и отработавшим ядерным топливом, отсутствие надёжных хранилищ для их длительного хранения и (или) захоронения повышают риск возникновения радиационных аварий и создают реальную угрозу радиоактивного загрязнения окружающей среды, переоблучения населения и персонала организаций и предприятий, деятельность которых связана с использованием атомной энергии и радиоактивных материалов».

Основные источники радиоактивных отходов (РАО) высокого уровня активности – атомная энергетика (отработанное ядерное топливо) и военные программы (плутоний ядерных боеголовок, отработанное топливо транспортных реакторов атомных подводных лодок, жидкие отходы радиохимических комбинатов и др.).

Возникает вопрос: следует ли рассматривать РАО просто как отходы или как потенциальный источник энергии? От ответа на этот вопрос зависит, хотим ли мы их хранить (в доступном виде) или захоранивать (т.е. делать недоступными). Общепринятый ответ в настоящее время состоит в том, что РАО – это действительно отходы, за исключением, может быть, плутония. Плутоний теоретически может служить источником энергии, хотя технология получения энергии их него сложна и довольно опасна. Многие страны, в том числе Россия и США, находятся теперь на распутье: «запускать» плутониевую технологию, используя плутоний, высвобождаемый при разоружении , или захоранивать этот плутоний? Недавно правительство России и Минатом объявили, что они хотят перерабатывать оружейный плутоний совместно с США; это означает возможность развития плутониевой энергетики.

В течение 40 лет учёные сравнивали варианты избавления от РАО. Главная идея – их надо поместить в такое место, чтобы они не могли попасть в окружающую среду и нанести вред человеку. Эту способность вредить РАО сохраняют в течение десятков и сотен тысяч лет. Облучённое ядерное топливо, которое мы извлекаем из реактора, содержит радиоизотопы с периодами полураспада от нескольких часов до миллиона лет (период полураспада – это время, в течение которого количество радиоактивного вещества уменьшается вдвое, причём в ряде случаев возникают новые радиоактивные вещества). Но общая радиоактивность отходов значительно снижается со временем. Для радия период полураспада составляет 1620 лет, и нетрудно подсчитать, что через 10 тысяч лет останется около 1/50 первоначального количества радия. Нормативы большинства стран предусматривают обеспечение безопасности отходов на срок 10 тысяч лет. Конечно, это не значит, что по истечении этого времени РАО более не будут опасны: мы попросту перелагаем дальнейшую ответственность за РАО на отдалённое потомство. Для этого надо, чтобы места и форма захоронения этих отходов были известны потомству. Заметим, что вся письменная история человечества меньше 10 тысяч лет. Задачи, возникающие при захоронении РАО, беспрецедентны в истории техники: люди никогда не ставили себе таких долговременных целей.

Интересный аспект проблемы состоит в том, что надо не только защищать человека от отходов, но одновременно защищать отходы от человека. За срок, отводимый на их захоронение, сменятся многие социально-экономические формации. Нельзя исключить, что в определённой ситуации РАО могут стать желанным объектом для террористов, мишенями для удара при военном конфликте и т.п. Понятно, что, рассуждая о тысячелетиях, мы не можем полагаться, скажем, на правительственный контроль и охрану – невозможно предвидеть, какие изменения могут произойти. Может быть, лучше всего сделать отходы физически недоступными для человека, хотя, с другой стороны, это затруднило бы нашим потомкам дальнейшие меры безопасности.

Понятно, что ни одно техническое решение, ни один искусственный материал не может «работать» в течение тысячелетий. Очевидный вывод: изолировать отходы должна сама природная среда. Рассматривались варианты: захоронить РАО в глубоких океанических впадинах, в донных осадках океанов, в полярных шапках; отправлять их в космос ; закладывать их в глубокие слои земной коры. В настоящее время общепринято, что оптимальный путь – захоронение отходов в глубоких геологических формациях.

Понятно, что РАО в твёрдой форме менее склонны к проникновению в окружающую среду (миграции), чем жидкие РАО. Поэтому предполагается, что жидкие РАО будут вначале переводиться в твёрдую форму (остекловываться, превращаться в керамику и т.п.). Тем не менее, в России всё ещё практикуется закачка жидких высокоактивных РАО в глубокие подземные горизонты (Красноярск, Томск, Димитровград).

В настоящее время принята так называемая «многобарьерная» или «глубоко эшелонированная» концепция захоронения. Отходы сперва сдерживаются матрицей (стекло, керамика, топливные таблетки), затем многоцелевым контейнером (используемым для транспортировки и для захоронения), затем сорбирующей (поглощающей) отсыпкой вокруг контейнеров и, наконец, геологической средой.

Итак, мы попытаемся захоранивать РАО в глубокие геологические фракции. При этом нам поставлено условие: показать, что наше захоронение будет работать, как мы это планируем, на протяжении 10 тысяч лет. Посмотрим теперь, какие проблемы мы встретим на этом пути.

Первые проблемы встречаются на этапе выбора участков для изучения.

В США, например, ни один штат не хочет. Чтобы общегосударственное захоронение размещалось на его территории. Это привело к тому, что усилиями политиков многие потенциально подходящие площади были вычеркнуты из списка, причём не на основании научного подхода, а вследствии политических игр.

Как это выглядит в России? В настоящее время в России всё ещё можно изучать площади, не ощущая значительного давления местных властей (если не предполагать при этом захоронение вблизи городов!). Полагаю, что по мере усиления реальной независимости регионов и субъектов Федерации ситуация будет смещаться в сторону ситуации США. Уже сейчас ощущается склонность Минатома переместить свою активность на военные объекты, над которыми практически нет контроля: например, для создания захоронения предполагается архипелаг Новая Земля (российский полигон № 1), хотя по геологическим параметрам это далеко не лучшее место, о чём ещё будет речь дальше.

Но предположим, что первый этап позади и площадка выбрана. Надо её изучить и дать прогноз функционирования захоронения на 10 тысяч лет. Тут появляется новая проблема.

Неразработанность метода.

Геология – описательная наука. Отдельные разделы геологии занимаются предсказаниями (например, инженерная геология предсказывает поведение грунтов при строительстве и т.п.), но никогда ещё перед геологией не ставилась задача предсказать поведение геологических систем на десятки тысяч лет. Из многолетних исследований в разных странах возникли даже сомнения, возможен ли вообще более или менее надёжный прогноз на такие сроки.

Представим всё же, что нам удалось выработать разумный план изучения площадки. Понятно, что для осуществления этого плана понадобится много лет: например, гора Яка в штате Невада изучается уже более 15 лет, но заключение о пригодности или непригодности этой горы будет сделано не ранее чем через 5 лет. При этом программа захоронения будет испытывать всё возрастающее давление.

Давление внешних обстоятельств.

В годы холодной войны на отходы не обращали внимания; они накапливались, хранились во временных контейнерах, терялись и т.п. Пример – военный объект Хэнфорд (аналог нашего «Маяка»), где находится несколько сот гигантских баков с жидкими отходами, причём для многих из них не известно, что находится внутри. Одна проба стоит 1 миллион долларов! Там же, в Хэнфорде, примерно раз в месяц обнаруживаются закопанные и «забытые» бочки или ящики с отходами.

В целом, за годы развития ядерных технологий, отходов скопилось очень много. Временные хранилища на многих атомных станциях близки к заполнению, а на военных комплексах они часто находятся на грани выхода из строя «по старости» или даже за этой гранью.

Итак, проблема захоронения требует срочного решения. Осознание этой срочности становится всё более острым, тем более что 430 энергетических реакторов, сотни исследовательских реакторов, сотни транспортных реакторов атомных подводных лодок, крейсеров и ледоколов продолжают непрерывно накапливать РАО. Но у людей, прижатых к стенке, не обязательно возникают лучшие технические решения, и возрастает вероятность ошибок. Между тем в решениях, связанных с ядерной технологией, ошибки могут очень дорого стоить.

Предположим, наконец, что мы истратили 10-20 миллиардов долларов и 15-20 лет на изучение потенциальной площадки. Пришло время принимать решение. Очевидно, идеальных мест на Земле не существует, и любое место будет иметь с точки зрения захоронения положительные и отрицательные свойства. Очевидно, придётся решить, перевешивают ли положительные свойства отрицательные, и обеспечивают ли эти положительные свойства достаточную безопасность.

Принятие решений и технологическая сложность проблемы

Проблема захоронения технически чрезвычайно сложна. Поэтому очень важно иметь, во-первых, науку высокого качества, а во-вторых, эффективное взаимодействие (как говорят в Америке – «интерфейс») между наукой и политиками, принимающими решения.

Российская концепция подземной изоляции РАО и отработанного ядерного топлива в многолетнемёрзлых породах разработана в Институте промышленной технологии Минатома России (ВНИПИП). Она была одобрена Государственной экологической экспертизой Министерства экологии и природных ресурсов РФ, Минздравом РФ и Госатомнадзором РФ. Научная поддержка концепции проводится кафедрой мерзлотоведения Московского государственного университета. Следует заметить, что эта концепция уникальна. Ни в одной стране мира, насколько мне известно, вопрос о захоронении РАО в мерзлоте не рассматривается.

Основная идея такова. Помещаем тепловыделяющие отходы в мерзлоту и отделяем их от пород непроницаемым инженерным барьером. За счёт тепловыделения мерзлота вокруг захоронения начинает подтаивать, но через какое-то время, когда тепловыделение снизится (вследствие распада короткоживущих изотопов), породы снова промёрзнут. Поэтому достаточно обеспечить непроницаемость инженерных барьеров на то время, когда мерзлота будет протаивать; после промерзания миграция радионуклидов становится невозможной.

Неопределённость концепции

С этой концепцией связано, по меньшей мере, две серьёзных проблемы.

Во-первых, концепция предполагает, что промёрзшие породы непроницаемы для радионуклидов. На первый взгляд это кажется разумным: вся вода замёрзшая, лёд обычно неподвижен и не растворяет радионуклиды. Но если внимательно поработать с литературой, то оказывается, что многие химические элементы довольно активно мигрируют в промёрзших породах. Даже при температурах – 10-12ºC в породах присутствует незамерзающая, так называемая плёночная, вода. Что особенно важно, свойства радиоактивных элементов, составляющих РАО, с точки зрения их возможной миграции в мерзлоте совершенно не изучены. Поэтому предположение о непроницаемости мёрзлых пород для радионуклидов лишено всяких оснований.

Во-вторых, если даже окажется, что мерзлота действительно хороший изолятор РАО, то невозможно доказать, что сама мерзлота просуществует достаточно долго: напомним, что нормативы предусматривают захоронение на срок в 10 тысяч лет. Известно, что состояние мерзлоты определяется климатом, причём двумя наиболее важными параметрами – температурой воздуха и количеством атмосферных осадков. Как вы знаете, температура воздуха повышается в связи с глобальным изменением климата. Наивысший темп потепления приходится как раз на средние и высокие широты северного полушария. Ясно, что такое потепление должно привести к протаиванию льда и сокращению мерзлоты.

Как показывают расчёты, активное протаивание может начаться уже через 80-100 лет, и темп протаивания может достичь 50 метров в столетие. Таким образом, мёрзлые породы Новой Земли могут полностью исчезнуть за 600-700 лет, а это всего 6-7% от времени, требуемого для изоляции отходов. Без мерзлоты карбонатные породы Новой Земли обладают весьма низкими изолирующими свойствами по отношению к радионуклидам.

Проблема хранения и захоронения радиоактивных отходов (РАО) – важнейшая и нерешённая проблема ядерной энергетики.

Никто в мире пока не знает, где и как хранить высокоактивные РАО, хотя работы в данном направлении ведутся. Пока речь идёт о перспективных, а отнюдь не промышленных технологиях заключения высоко активных РАО в тугоплавкое стекло или керамические соединения. Однако неясно, как это материалы поведут себя под воздействием заключённых в них РАО в течение миллионов лет. Столь длительный срок хранения обусловлен огромным периодом полураспада ряда радиоактивных элементов. Ясно, что выход их наружу неизбежен, ибо материал контейнера, в котором они будут заключены столько не «живёт».

Все технологии обработки и хранения РАО условны и сомнительны. А если атомщики будут по своему обыкновению, оспаривать этот факт, то уместно будет спросить их: «Где гарантия, что все существующие хранилища и могильники уже сейчас не являются носителями радиоактивного заражения, так как все наблюдения за ними скрываются от общественности?».

В нашей стране существуют несколько могильников, хотя об их существовании стараются умолчать. Наиболее крупный расположен в районе Красноярска под Енисеем, где происходит захоронение отходов большинства российских атомных электростанций и ядерные отходы ряда европейских государств. При проведении научно-изыскательских работ по данному хранилищу результаты оказались положительными, но в последнее время наблюдения показывают нарушение экосистемы реки Енисей, что появились рыбы-мутанты, изменилась структура воды в определённых районах, хотя данные научных экспертиз тщательно скрываются.

В мире захоронения высокоактивных РАО ещё не осуществляется, имеется опыт лишь временного их сохранения.

Список литературы

1. Вершинин Н. В. Санитарно-технические требования к закрытым радиационным источникам.

В кн. «Труды симпозиума». М., Атомиздат, 1976 г.

2. Фрумкин М. Л. и др. Технологические основы радиационной обработки пищевых продуктов. М., Пищевая промышленность, 1973 г.

3. Брегер А. Х. Радиоактивные изотопы – источники излучений в радиационно-химической технологии. Изотопы в СССР, 1975 г., № 44 с 23-29.

4. Перцовский Е. С., Сахаров Э. В. Радиоизотопные приборы в пищевой, лёгкой и целлюлозно-бумажной промышленности. М., Атомиздат, 1972 г.

5. Воробьёв Е. И., Побединский М. Н. Очерки развития отечественной радиационной медицины. М., Медицина, 1972 г.

6. Выбор площадки для строительства хранилища радиоактивных отходов. Э. И. М., ЦНИИатоминформ, 1985 г., № 20.

7. Современное состояние проблемы захоронения радиоактивных отходов в США. Атомная техника за рубежом, 1988 г., № 9.

8. Хейнонен Дис, Дисера Ф. Захоронение ядерных отходов: процессы, происходящие в подземных хранилищах: Бюллетень МАГАТЭ, Вена, 1985 г., т. 27, № 2.

9. Геологические исследования площадок для окончательного удаления радиоактивных отходов: Э. И. М.: ЦНИИатоминформ, 1987 г., № 38.

10. Брызгалова Р. В., Рогозин Ю. М., Синицына Г. С. и др. Оценка некоторых радиохимических и геохимических факторов, определяющих локализацию радионуклидов при захоронении радиоактивных отходов в геологические формации. Материалы 6 симпозиума СЭВ, т. 2, 1985 г.


Содержание

Введение 3
1 Радиоактивность 5
1.1 Типы радиоактивного распада и радиоактивного излучения 5
1.2 Закон радиоактивного распада 7
1.3 Взаимодействие радиоактивного излучения с веществом и счетчики
излучения 8
1.4 Классификация источников радиоактивного излучения и радиоактивных изотопов 10
2 Методики анализа, основанные на измерении радиоактивности 12
2.1 Использование естественной радиоактивности в анализе 12
2.2 Активационный анализ 12
2.3 Метод изотопного разбавления 14
2.4 Радиометрическое титрование 14
3 Применение радиоактивности 18
3.1 Применение радиоактивных индикаторов в аналитической химии 18
3.2 Применение радиоактивных изотопов 22
Заключение 25
Список использованных источников 26

Введение

Методы анализа, основанные на радиоактивности, возникли в эпоху развития ядерной физики, радиохимии, атомной техники и с успехом применяются в настоящее время при проведении разнообразных анализов, в том числе в промышленности и геологической службе.
Основными достоинствами аналитических методов, основанных на измерении радиоактивного излучения, являются низкий порог обнаружения анализируемого элемента и широкая универсальность. Радиоактивационный анализ имеет абсолютно низший порог обнаружения среди всех других аналитических методов (10 -15 г). Достоинством некоторых радиометрических методик является анализ без разрушения образца, а методов, основанных на измерении естественной радиоактивности, - быстрота анализа. Ценная особенность радиометрического метода изотопного разведения заключена в возможности анализа смеси близких по химико-аналитическим свойствам элементов, таких, как цирконий - гафний, ниобий - тантал и др.
Дополнительные осложнения в работе с радиоактивными препаратами обусловлены токсичными свойствами радиоактивного излучения, которые не вызывают немедленной реакции организма и тем самым осложняют своевременное применение необходимых мер. Это усиливает необходимость строгого соблюдения техники безопасности при работе с радиоактивными препаратами. В необходимых случаях работа с радиоактивными веществами происходит с помощью так называемых манипуляторов в специальных камерах, а сам аналитик остается в другом помещении, надежно защищенном от действия радиоактивного излучения.
Радиоактивные изотопы применяются в следующих методах анализа:
    метод осаждения в присутствии радиоактивного элемента;
    метод изотопного разбавления;
    радиометрическое титрование;
    активационный анализ;
    определения, основанные на измерении радиоактивности изотопов, встречающихся в природе.
В лабораторной практике радиометрическое титрование применяют сравнительно редко. Применение активационного анализа связано с использованием мощных источников тепловых нейтронов, и поэтому этот метод имеет пока ограниченное распространение.
В данной курсовой работе рассмотрены теоретические основы методов анализа, в которых используется явление радиоактивности, и их практическое применение.

1 Радиоактивность

1.1 Типы радиоактивного распада и радиоактивного излучения

Радиоактивность - это самопроизвольное превращение (распад) ядра атома химического элемента, приводящее к изменению его атомного номера или изменению массового числа. При таком превращении ядра происходит испускание радиоактивных излучений.
Открытие радиоактивности относится к 1896г., когда А. Беккерель обнаружил, что уран самопроизвольно испускает излучение, названное им радиоактивным (от. radio – излучаю и activas – действенный).
Радиоактивное излучение возникает при самопроизвольном распаде атомного ядра. Известно несколько типов радиоактивного распада и радиоактивного
излучения.
1) ?-Распад. Распад ядра с выделением?- частиц, которые являются ядрами He 2+ . Например,
Ra > Rn + He ;
U > Th + ? (He).

В соответствии с законом радиоактивного смещения, при?-распаде получается атом, порядковый номер которого на две единицы, а атомная масса на четыре единицы меньше, чем у исходного атома.
2) ?-Распад. Различают несколько видов?- распада: электронный?-распад; позитронный?-распад; К-захват. При электронном?-распаде, например,

Sn > Y + ? - ;
P > S + ? - .

Нейтрон внутри ядра превращается в протон. При испускании отрицательно заряженной?-частицы порядковый номер элемента возрастает на единицу, а атомная масса практически не меняется.
При позитронном?-распаде из атомного ядра выделяется позитрон (? + -частица), а потом внутри ядра превращается в нейтрон. Например:

Продолжительность жизни позитрона невелика, так как при столкновении его с электроном происходит аннигиляция, сопровождающаяся испусканием?-квантов.
При К-захвате ядро атома захватывает электрон из близлежащей электронной оболочки (из К-оболочки) и один из протонов ядра превращается в нейтрон.
Например,
Cu >Ni+n
K + e - = Ar + hv

На свободное место в К-оболочке переходит один из электронов внешней оболочки, что сопровождается испусканием жёсткого рентгеновского излучения.
3) Спонтанное деление. Оно характерно для элементов периодической системы Д. И. Менделеева с Z > 90. При спонтанном делении тяжёлые атомы делятся на осколки, которыми обычно являются элементы середины таблицы Л. И. Менделеева. Спонтанное деление и?-распад ограничивают получение новых трансурановых элементов.
Поток? и?-частиц называют соответственно? и?-излучением. Кроме того, известно?-излучение. Это электромагнитные колебания с очень короткой длиной волны. В принципе, ?-излучение близко к жёсткому рентгеновскому и отличается от него своим внутриядерным происхождением. Рентгеновское излучение при переходах в электронной оболочке атома, а?-излучение испускает возбуждённые атомы, получившиеся в результате радиоактивного распада (? и?).
В результате радиоактивного распада получаются элементы, которые по заряду ядер (порядковому номеру) должны быть помещены в уже занятые клетки периодической системы элементами с таким же порядковым номером, но другой атомной массой. Это так называемые изотопы. По химическим свойствам их принято считать неразличимыми, поэтому смесь изотопов обычно рассматривается как один элемент. Неизменность изотопного состава в подавляющем большинстве химических реакций иногда называют законом постоянства изотопного состава. Например, калий в природных соединениях представляет собой смесь изотопов, на 93,259% из 39 К, на 6,729% из 41 К и на 0,0119% из 40 К (К-захват и?-распад). Кальций насчитывает шесть стабильных изотопов с массовыми числами 40, 42, 43, 44, 46 и 48. В химико-аналитических и очень многих других реакциях это соотношение сохраняется практически неизменным, поэтому для разделения изотопов химической реакции обычно не применяются. Чаще всего для этой цели используются различные физические процессы – диффузия, дистилляция или электролиз.
Единицей активности изотопа является беккерель (Бк), равный активности нуклида в радиоактивном источнике, в котором за время 1с происходит один акт распада.

1.2 Закон радиоактивного распада

Радиоактивность, наблюдаемая у ядер, существующих в природных условиях, называется естественной, радиоактивность ядер, полученных посредством ядерных реакций, называется искусственной.
Между искусственной и естественной радиоактивностью нет принципиального различия. Процесс радиоактивного превращения в обоих случаях подчиняется одинаковым законам - закону радиоактивного превращения:

Если t = 0, то и, следовательно, const = -lg N 0 . Окончательно

Где А – активность в момент времени t; А 0 – активность при t = 0.
Уравнения (1.3) и (1.4) характеризуют закон радиоактивного распада. В кинетике они известны как уравнения реакции первого порядка. В качестве характеристики скорости радиоактивного распада обычно указывают период полураспада T 1/2 , который так же, как и?, является фундаментальной характеристикой процесса, не зависящей от количества вещества.
Периодом полураспада называют промежуток времени, в течение которого данное количество радиоактивного вещества уменьшается наполовину.
Период полураспада различных изотопов существенно различен. Он находится примерно от 10 10 лет до ничтожных долей секунды. Конечно, вещества, имеющие период полураспада 10 – 15 мин. и меньше, использовать в лаборатории трудно. Изотопы с очень большим периодом полураспада также нежелательны в лаборатории, так как при случайном загрязнении этими веществами окружающих предметов потребуется специальная работа по дезактивации помещения и приборов.

1.3 Взаимодействие радиоактивного излучения с веществом и счетчики

излучения

В результате взаимодействия радиоактивного излучения с веществом происходит ионизация и возбуждение атомов и молекул вещества, через которое оно проходит. Излучение производит также световое, фотографическое, химическое и биологическое действие. Радиоактивное излучение вызывает большое число химических реакций в газах, растворах, твердых веществах. Их обычно объединяют в группу радиационно-химических реакций. Сюда относятся, например, разложение (радиолиз) воды с образованием водорода, пероксида водорода и различных радикалов, вступающих в окислительно-восстановительные реакции с растворенными веществами.
Радиоактивное излучение вызывает разнообразные радиохимические превращения различных органических соединений – аминокислот, кислот, спиртов, эфиров и т.д. Интенсивное радиоактивное излучение вызывает свечение стеклянных трубок и ряд других эффектов в твердых телах. На изучении взаимодействия радиоактивного излучения с веществом основаны различные способы обнаружения и измерения радиоактивности.
В зависимости от принципа действия счетчики радиоактивных излучений подразделяют на несколько групп.
Ионизационные счетчики. Их действие основано на возникновении ионизации или газового разряда, вызванного ионизацией при попадании в счетчик радиоактивных частиц или?-квантов. Среди десятков приборов, использующих ионизацию, типичными являются ионизационная камера и счетчик Гейгера – Мюллера, который получил наибольшее распространение в химико-аналитических и радиохимических лабораториях.
Для радиохимических и других лабораторий промышленностью выпускаются специальные счетные установки.
Сцинтилляционные счетчики. Действие этих счетчиков основано на возбуждении атомов сцинтиллятора?-квантами или радиоактивной частицей, проходящей через счетчик. Возбужденные атомы, переходя в нормальное состояние, дают вспышку света.
В начальный период изучения ядерных процессов визуальный счет сцинтилляции сыграл большую роль, однако в дальнейшем он был вытеснен более совершенным счетчиком Гейгера – Мюллера. В настоящее время сцинтилляционный метод вновь стал широко применяться уже с использованием фотоумножителя.
Черенковские счетчики. Действие этих счетчиков основано на использовании эффекта Черенкова, который состоит в излучении света при движении заряженной частицы в прозрачном веществе, если скорость частиц превышает скорость света в данной среде. Факт сверхсветовой скорости частицы в данной среде, конечно, не противоречит теории относительности, поскольку скорость света в какой-либо среде всегда меньше, чем в вакууме. Скорость движения частицы в веществе может быть больше скорости света в этом веществе, оставаясь в то же время меньше скорости света в вакууме в полном соответствии с теорией относительности. Счетчики Черенкова применяются для исследовательских работ с очень быстрыми частицами, для исследований в космосе и т.д., поскольку с их помощью может быть определен ряд других важных характеристик частиц (их энергия, направление движения и др.).

1.4 Классификация источников радиоактивного излучения и

радиоактивных изотопов

Источники радиоактивного излучения делят на закрытые и открытые. Закрытые – должны быть герметичны. Открытые – любые негерметичные источники излучения, которые могут создавать радиоактивное загрязнение воздуха, аппаратуры, поверхностей столов, стен и т. п.
При работе с закрытыми источниками необходимые меры предосторожности сводятся к предохранению от внешнего облучения.
Закрытые источники излучения активностью выше 0,2 г-экв. радия должны быть помещены в защитные устройства с дистанционным управлением и устанавливаться в специально оборудованных помещениях.
При работе с закрытыми источниками меньшей активности следует применять экраны, соответствующие по толщине и материалу роду и энергии излучения радиоактивного источника, а также дистанционные инструменты, применение которых должно снижать дозу до предельно допустимой. Лаборатории при работе с закрытыми источниками могут быть обычными.
При работе с открытыми источниками необходимо учитывать: относительную радиотоксичность изотопа, которая зависит от его периода полураспада, вида и энергии излучения; активность на рабочем месте; физическое состояние вещества; особенность работы.
Для каждого радиоактивного изотопа установлена предельно допустимая концентрация (ПДК) в воздухе рабочих помещений.
По убывающей степени радиотоксичности радиоактивные изотопы делятся на четыре группы предельно допустимых концентраций:
Группа А – изотопы особо высокой радиотоксичности (ПДК не более
1 10 -13 кюри/л): 90 Sr, 226 Ra, 239 Pu и др.
Группа Б – изотопы высокой радиотоксичности (ПДК от 1 10 -13 до 1 10 -11 кюри/л): 22 Na, 45 Са, 60 Co, 89 Sr, 110 Ag, 131 I, 137 Cs, l41 Ce, 210 Pb, U (ест.) и др.
Группа В – изотопы средней радиотоксичности (ПДК от 1 10 -11 до 1 10 -9 кюри/л): 24 Na, 32 P, 35 S, 36 C1, 42 К, 56 Mn, 55, 59 Fe, 69 Zn, 76 As, 82 Br, 124, 125 Sb, 140 Ba и др.
Группа Г – изотопы наименьшей радиотоксичности (ПДК от 1 10 -9 кюри/л): 3 Н, 14 С и др.

2 Методики анализа, основанные на измерении радиоактивности

2.1 Использование естественной радиоактивности в анализе

Элементы, имеющие естественную радиоактивность, могут быть определены по этому свойству количественно. Это U, Th, Ra, Ac и др., всего более 20 элементов. Например, калий можно определить по его радиоактивности в растворе при концентрации 0,05 М. Определение различных элементов по их радиоактивности обычно проводят с помощью градуировочного графика, показывающего зависимость активности от процентного содержания определяемого элемента или методом добавок.
Большое значение имеют радиометрические методы в поисковой работе геологов, например при разведке месторождений урана.

2.2 Активационный анализ

При облучении нейтронами, протонами и другими частицами высокой энергии многие нерадиоактивные элементы становятся радиоактивными. Активационный анализ основан на измерении этой радиоактивности. Вообще для облучения могут быть использованы любые частицы, наибольшее практическое значение имеет процесс облучения нейтронами. Применение для этой цели заряженных частиц связано с преодолением более значительных технических трудностей, чем в случае нейтронов. Основными источниками нейтронов для проведения активационного анализа являются атомный реактор и так называемые портативные источники (радиево-бериллиевый и др.). В последнем случае?-частицы, получившиеся при распаде какого-либо?-активного элемента (Ra, Rn, и т. д.), взаимодействуют с ядрами бериллия, выделяя нейтроны:
9 Be + 4 He > 12 C + n

Нейтроны вступают в ядерную реакцию с компонентами анализируемой пробы, например:
55 Mn + n = 56 Mn или Mn (n,?) 56 Mn
Радиоактивный 56 Mn распадается с периодом полураспада 2,6 ч:

56 Mn > 56 Fe +

Для получения информации о составе образца некоторое время измеряют его радиоактивность и анализируют полученную кривую (рисунок 2.1). При проведении такого анализа необходимо располагать надёжными данными о периодах полураспада различных изотопов, чтобы провести расшифровку суммарной кривой.

Рисунок 2.1 - Уменьшение радиоактивности во времени

Другим вариантом активационного анализа является метод?-спектроскопии, основанный на измерении спектра?-излучения образца. Энергия?-излучения является качественной, а скорость счёта – количественной характеристикой изотопа. Измерения производят с помощью многоканальных?-спектрометров со сцинтилляционными или полупроводниковыми счётчиками. Это значительно более быстрый и специфичный, хотя и несколько менее чувствительный метод анализа, чем радиохимический.
Важным достоинством активационного анализа является его низкий предел обнаружения. С его помощью может быть обнаружено при благоприятных условиях до 10 -13 – 10 -15 г вещества. В некоторых специальных случаях удавалось достигнуть ещё более низких пределов обнаружения. Например, с его помощью контролируют чистоту кремния и германия в промышленности полупроводников, обнаруживая содержание примесей до 10 -8 – 10 -9 %. Такие содержания никаким другим методом, кроме активационного анализа определить невозможно. При получении тяжёлых элементов периодической системы, таких, как менделевий и курчатовий, исследователям удавалось считать почти каждый атом полученного элемента.
Основным недостатком активационного анализа является громоздкость источника нейтронов, а также нередко длительность самого процесса получения результатов.

2.3 Метод изотопного разбавления

Метод изотопного разбавления целесообразно применять для количественного определения близких по свойствам компонентов трудно разделяемых смесей В этом методе необходимо выделять не всё определяемое вещество, а лишь часть его в возможно более чистом состоянии. Метод изотопного разбавления открывает новые возможности в анализе сложных смесей и элементов, близких по своим химико-аналитическим свойствам. Например, при анализе смесей цирконий – гафний или ниобий – тантал можно получить чистый осадок одного из компонентов, но осаждение не будет полным. Если добиться полного осаждения, то полученный осадок будет загрязнен элементом-аналогом. В методе изотопного разбавления проводят неполное осаждение и, используя измерения активности, находят содержание анализируемого элемента с достаточной точностью. Аналогичный приём используется также при анализе различных смесей органических веществ.

2.4 Радиометрическое титрование

При радиометрическом титровании индикатором являются радиоактивные изотопы элементов. Например, при титровании фосфата магнием в анализируемый раствор вводят небольшое количество фосфата, содержащего радиоактивный P*.

Изменение активности в ходе этого титрования можно видеть на рисунке 2.2, а. Здесь же показано графическое определение точки эквивалентности. До точки эквивалентности активность раствора будет резко убывать, так как радиоактивный из раствора будет переходить в осадок. После точки эквивалентности активность раствора будет оставаться практически постоянной и очень небольшой.
Как видно из рисунка 2.2, б, добавление гидрофосфата к раствору до точки эквивалентности практически не будет вызывать увеличения активности раствора, так как радиоактивный изотоп будет переходить в осадок. После точки эквивалентности активность раствора начинает возрастать пропорционально концентрации гидрофосфата.

А) - изменение активности раствора фосфата, содержащего при титровании раствором; б) - изменение активности раствора при титровании фосфатом, содержащим.
Рисунок 2.2 - Типы кривых радиометрического титрования

Реакции радиометрического титрования должны удовлетворять требованиям, обычно предъявляемым к реакциям титриметрического анализа (скорость и полнота протекания реакции, постоянство состава продукта реакции и т. д.). Очевидным условием применимости реакции в данном методе является также переход продукта реакции из анализируемого раствора в другую фазу, с тем, чтобы устранить помехи при определении активности раствора. Этой второй фазой часто является образующийся осадок. Известны методики, где продукт реакции экстрагируется органическим растворителем. Например, при титровании многих катионов дитизоном в качестве экстрагента применяют хлороформ или тетрахлорид углерода. Применение экстрагента позволяет более точно установить точку эквивалентности, так как в этом случае её определения можно измерять активность обеих фаз.

2.5 Эффект Мессбауэра

Эффект открыт в 1958 г. Р. П. Мессбауэром. Под этим названием часто объединяют явления испускания, поглощения и рассеяния?-квантов ядрами атомов без затраты энергии на отдачу ядер. Обычно исследуется поглощение?-излучения, поэтому эффект Мессбауэра часто называют также?-резонансной спектроскопией (ГРС).
При испускании?-квантов ядро атома возвращается в нормальное состояние. Однако энергия испускаемого излучения будет определяться не только разностью энергетических состояний ядра в возбужденном и нормальном состояниях. Вследствие закона сохранения импульса ядро испытывает так называемую отдачу. Это приводит к тому, что в случае газообразного атома энергия испускаемого излучения будет меньше, чем в случае, когда излучатель будет находиться в твердом теле. В последнем случае потери энергии на отдачу уменьшаются до пренебрежимо малого значения. Таким образом, ?-кванты излучения, испускаемого без отдачи, могут поглощаться невозбужденными атомами того же элемента. Однако различие в химическом окружении ядра-излучателя и ядра-поглотителя вызывает некоторую разницу в энергетических состояниях ядер, достаточную, чтобы резонансное поглощение?-квантов не происходило. Разницу в энергетических состояниях ядер количественно компенсируют с помощью эффекта Допплера, в соответствии с которым частота излучения (в данном случае энергия?-квантов) зависит от скорости движения. При некоторой скорости движения излучателя (или поглотителя, так как значение имеет лишь их относительная скорость перемещения) наступает резонансное поглощение. Зависимость интенсивности поглощения?-квантов от скорости движения называют спектром Мессбауэра. Типичный мессбауэровский спектр представлен на рисунке 2.3, где в качестве меры интенсивности поглощения отложена обратно пропорциональная ей скорость счета.

Рисунок 2.3 - Мессбауэровский спектр поглощения

Скорость перемещения образца или излучателя обычно не превышает нескольких сантиметров в секунду. Спектр Мессбауэра являетсся очень важной характеристикой вещества. Он позволяет судить о природе химической связи в исследуемых соединениях, их электронной структуре и других особенностях и свойствах.

3 Применение радиоактивности

3.1 Применение радиоактивных индикаторов в аналитической химии

Использование радионуклидов в аналитической химии очень разнообразно. Широкое практическое применение имеет метод количественного анализа, основанный на том, что в различных химических процессах удельная радиоактивность

Где - радиоактивность образца, выраженная в беккерелях, а - масса образца определяемого вещества, в котором равномерно распределен радионуклид, остается постоянной как для всего образца, так и для любой его части.
Рассмотрим опыт по определению давления паров такого крайне труднолетучего и тугоплавкого металла, как вольфрам. В качестве метки можно использовать искусственно получаемый?-радиоактивный вольфрам-185. Приготовим металлический вольфрам, содержащий эту метку, и определим его удельную активность. Далее соберем пары металла, испарившиеся с поверхности вольфрама при выбранной температуре и содержавшиеся в определенном объеме пара. В тех же условиях, в которых определяли, найдем активность этих паров. Очевидно, что масса паров

Далее, зная объем паров, можно найти их плотность при температуре опыта, а затем, используя сведения о составе пара, и их давление.
Аналогичным образом с помощью радиоактивной метки можно найти концентрацию какого-либо вещества в растворе и определить, например, его концентрацию в насыщенном растворе. Сходным образом можно найти массу вещества, как оставшуюся после экстракции в водной среде, так и перешедшую в органическую фазу. Далее удается рассчитать коэффициенты распределения между фазами экстрагируемого вещества (здесь применение радиоактивных индикаторов важно тогда, когда коэффициенты распределения очень высоки и других аналитических методов определения сверхнизких количеств экстрагируемого вещества, оставшегося в водной фазе, нет).
Оригинально использование радиоактивных индикаторов в методе изотопного разбавления. Пусть нужно определить содержание какой-либо аминокислоты в смеси сходных по свойствам аминокислот, причем химическими методами выполнить полное (количественное) разделение аминокислот нельзя, но есть способ, позволяющий выделить из смеси в чистом виде небольшую долю этой аминокислоты (например, с помощью хроматографии). Сходная проблема возникает при определении содержания какого-либо лантаноида в смеси лантаноидов и при определении того, в каких именно химических формах содержится тот или иной элемент в природе, например в речной или морской воде.
Воспользуемся для определения общего содержания иода в морской воде порцией иодид-ионов массой и активностью. Введем эти меченые иодид-ионы в анализируемую пробу и нагреем ее для того, чтобы радиоактивная метка равномерно распределилась по всем содержащим иод химическим формам, находящимся в морской воде (такими формами в данном случае служат иодид-, иодат-, и периодат-ионы). Далее с помощью нитрата серебра выделим небольшую часть иодид-ионов в виде осадка AgI и определим его массу и радиоактивность. Если общее содержание иода в пробе равно, то оказывается, что

Используя несколько отличающуюся методику, можно найти содержание иода в морской воде в форме иодид-ионов. Для этого после введения радиоактивной метки в пробу следует создать такие условия, при которых изотопный обмен (обмен атомами иода) между иодид-ионами и другими содержащими иод формами (иодат- и периодат-ионами) не протекает (для этого надо использовать холодный раствор с нейтральной средой). Выделив далее из морской воды небольшую порцию иодид-ионов с помощью осадителя - нитрата серебра в виде AgI (масса порции) и измерив ее радиоактивность, по формуле (3.5) можно найти содержание иодид-ионов в образце.

На использовании радиоактивных атомов основан и такой универсальный чрезвычайно чувствительный метод аналитической химии, как активационный анализ. При выполнении активационного анализа необходимо с помощью подходящей ядерной реакции активировать атомы определяемого элемента в пробе, то есть сделать их радиоактивными. Чаще всего активационный анализ выполняют с использованием нейтронного источника. Если, например, необходимо найти содержание в твердой породе редкоземельного элемента диспрозия Dy, то поступают следующим образом.
Сначала готовят серию образцов, содержащих известные различные количества Dy (взятого, например, в форме DyF 3 или Dy 2 O 3 - атомы кислорода и фтора нейтронами не активируются). Эти образцы в одинаковых условиях облучают одним и тем же нейтронным потоком. Необходимый для этих экспериментов источник нейтронов представляет собой небольшую (размером с авторучку) ампулу, в которой находится материал, испускающий нейтроны (например, смесь америция-241 и бериллия). Безопасно хранить такой источник нейтронов можно, поместив его в отверстие, сделанное в центре парафинового блока размером с ведро для воды.
Для облучения образцы с известным содержанием диспрозия размещают в лунки, имеющиеся в парафиновом блоке и расположенные на одинаковом расстоянии от источника (рисунок 3.1).

1 – парафиновый блок, 2 – ампульный источник нейтронов,
3 – облучаемые образцы.
Рисунок 3.1 – Схема проведения нейтронного активационного анализа

В такие же лунки размещают и пробы анализируемой породы. Под воздействием нейтронов в образцах протекает ядерная реакция 164 Dy(n, g) 165 Dy. Через определенное время (например, через 6 ч) все образцы вынимают из лунок и их активности измеряют в одинаковых условиях. По данным измерений активности препаратов строят калибровочный график в координатах "содержание диспрозия в пробе - активность препарата", и по нему находят содержание диспрозия в анализируемом материале (рисунок 3.2).

Рисунок 3.2 – График зависимости регистрируемой активности/активированных нейтронами образцов от массы m диспрозия в образцах. В анализируемом образце около 3мкг диспрозия

Метод активационного анализа хорош не только высокой чувствительностью. Так как излучение образующихся при активации радионуклидов различается по виду и энергии, при использовании спектрометрической радиометрической аппаратуры оказывается возможным определять в пробе после ее активации одновременно до 10-15 элементов.
И еще одно важное достоинство активационного анализа: часто образующиеся в результате активации нейтронами радионуклиды довольно быстро распадаются, так что спустя некоторое время анализируемый объект оказывается нерадиоактивным. Таким образом, во многих случаях активационный анализ - это анализ, не связанный с разрушением анализируемого объекта. Это особенно важно, когда речь идет об определении состава археологических находок, метеоритов и других уникальных образцов.

3.2 Применение радиоактивных изотопов

Одним из наиболее выдающихся исследований, проведенных с помощью «меченых атомов», явилось исследование обмена веществ в организмах. Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Слагающие его атомы заменяются новыми. Лишь железо, как показали опыты по изотопному исследованию крови, является исключением из этого правила. Железо входит в состав гемоглобина красных кровяных шариков. При введении в пищу радиоактивных атомов железа было установлено, что свободный кислород, выделяемый при фотосинтезе, первоначально входил в состав воды, а не углекислого газа. Радиоактивные изотопы применяются в медицине как для постановки диагноза, так и для терапевтических целей. Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровообращения, йод интенсивно отлагается в щитовидной железе, особенно при базедовой болезни. Наблюдая с помощью счетчика за отложением радиоактивного йода, можно быстро поставить диагноз. Большие дозы радиоактивного йода вызывают частичное разрушение аномально развивающихся тканей, и поэтому радиоактивный йод используют для лечения базедовой болезни. Интенсивное?-излучение кобальта используется при лечении раковых заболеваний (кобальтовая пушка).
Не менее обширны применения радиоактивных изотопов в промышленности. Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца. Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д.
Мощное?-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них
дефектов.
Все более широкое применение получают радиоактивные изотопы в сельском хозяйстве. Облучение семян растений (хлопчатника, капусты, редиса и др.) небольшими дозами?-лучей от радиоактивных препаратов приводит к заметному увеличению урожайности. Большие дозы радиации вызывают мутации у растений и микроорганизмов, что в отдельных слу
и т.д.................

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Курсовая работа

На тему: "Радиоактивность. Применение радиоактивных изотопов в технике"

Введение

1.Виды радиоактивных излучений

2.Другие виды радиоактивности

3.Альфа-распад

4.Бета-распад

5.Гамма-распад

6.Закон радиоактивного распада

7.Радиоактивные ряды

9.Применение радиоактивных изотопов

Введение

Радиоактивность - превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения. Отсюда и название явления: на латыни radio - излучаю, activus - действенный. Это слово ввела Мария Кюри. При распаде нестабильного ядра - радионуклида из него вылетают с большой скоростью одна или несколько частиц высокой энергии. Поток этих частиц называют радиоактивным излучением или попросту радиацией.

Лучи Рентгена. Открытие радиоактивности было непосредственно связано с открытием Рентгена. Более того, некоторое время думали, что это один и тот же вид излучения. Конец 19 в. вообще был богат на открытие различного рода не известных до того «излучений». В 1880-е английский физик Джозеф Джон Томсон приступил к изучению элементарных носителей отрицательного заряда, в 1891 ирландский физик Джордж Джонстон Стони (1826-1911) назвал эти частицы электронами. Наконец, в декабре Вильгельм Конрад Рентген сообщил об открытии нового вида лучей, которые он назвал Х-лучами. До сих пор в большинстве стран они так и называются, но в Германии и России принято предложение немецкого биолога Рудольфа Альберта фон Кёлликера (1817-1905) называть лучи рентгеновскими. Эти лучи возникают, когда быстро летящие в вакууме электроны (катодные лучи) сталкиваются с препятствием. Было известно, что при попадании катодных лучей на стекло, оно испускает видимый свет - зеленую люминесценцию. Рентген обнаружил, что одновременно от зеленого пятна на стекле исходят какие-то другие невидимые лучи. Это произошло случайно: то в темной комнате светился находящийся неподалеку экран, покрытый тетрацианоплатинатом бария Ba, добавлен 03.05.2014

Сведения о радиоактивных излучениях. Взаимодействие альфа-, бета- и гамма-частиц с веществом. Строение атомного ядра. Понятие радиоактивного распада. Особенности взаимодействия нейтронов с веществом. Коэффициент качества для различных видов излучений.

реферат , добавлен 30.01.2010

Строение вещества, виды ядерных распадов: альфа-распад, бета-распад. Законы радиоактивности, взаимодействие ядерных излучений с веществом, биологическое воздействие ионизирующего излучения. Радиационный фон, количественные характеристики радиоактивности.

реферат , добавлен 02.04.2012

Ядерно-физические свойства и радиоактивность тяжелых элементов. Альфа- и бета-превращения. Сущность гамма-излучения. Радиоактивное превращение. Спектры рассеянного гамма-излучения сред с разным порядковым номером. Физика ядерного магнитного резонанса.

презентация , добавлен 15.10.2013

Ядерные ионизирующие излучения, их источники и биологическое воздействие на органы и ткани живого организма. Характеристика морфологических сдвигов на системном и клеточном уровнях. Классификация последствий облучения людей, радиозащитные средства.

презентация , добавлен 24.11.2014

Работы Эрнеста Резерфорда. Планетарная модель атома. Открытие альфа- и бета-излучения, короткоживущего изотопа радона и образования новых химических элементов при распаде тяжелых химических радиоактивных элементов. Воздействие радиации на опухоли.

презентация , добавлен 18.05.2011

Рентгеновское излучение - электромагнитные волны, спектр которых находится между ультрафиолетовым и гамма-излучением. История открытия; лабораторные источники: рентгеновские трубки, ускорители частиц. Взаимодействие с веществом, биологическое воздействие.

презентация , добавлен 26.02.2012

Понятие и классификация радиоактивных элементов. Основные сведения об атоме. Характеристики видов радиоактивного излучения, его проникающая способность. Периоды полураспада некоторых радионуклидов. Схема процесса индуцированного нейтронами деления ядер.

презентация , добавлен 10.02.2014

Гамма-излучение - коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жестким рентгеновским излучением, занимая область более высоких частот. Гамма-излучение обладает чрезвычайно малой длинной волны.

реферат , добавлен 07.11.2003

Характеристика корпускулярного, фотонного, протонного, рентгеновского видов излучения. Особенности взаимодействия альфа-, бета-, гамма-частиц с ионизирующим веществом. Сущность комптоновского рассеивания и эффекта образования электронно-позитронной пары.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей