Разница отрицательных чисел. Сложение отрицательных чисел: правило, примеры


В этой статье мы поговорим про сложение отрицательных чисел . Сначала дадим правило сложения отрицательных чисел и докажем его. После этого разберем характерные примеры сложения отрицательных чисел.

Навигация по странице.

Правило сложения отрицательных чисел

Прежде чем дать формулировку правила сложения отрицательных чисел, обратимся к материалу статьи положительные и отрицательные числа . Там мы упоминали, что отрицательные числа можно воспринимать как долг, а в этом случае определяет величину этого долга. Следовательно, сложение двух отрицательных чисел – это есть сложение двух долгов.

Этот вывод позволяет осознать правило сложения отрицательных чисел . Чтобы сложить два отрицательных числа, нужно:

  • сложить их модули;
  • поставить перед полученной суммой знак минус.

Запишем правило сложения отрицательных чисел −a и −b в буквенном виде: (−a)+(−b)=−(a+b) .

Понятно, что озвученное правило сводит сложение отрицательных чисел к сложению положительных чисел (модуль отрицательного числа является числом положительным). Также понятно, что результатом сложения двух отрицательных чисел является отрицательное число, о чем свидетельствует знак минус, который ставится перед суммой модулей.

Правило сложения отрицательных чисел можно доказать, основываясь на свойствах действий с действительными числами (или таких же свойствах действий с рациональными или целыми числами). Для этого достаточно показать, что разность левой и правой частей равенства (−a)+(−b)=−(a+b) равна нулю.

Так как вычитание числа – это все равно, что прибавление противоположного числа (смотрите правило вычитания целых чисел), то (−a)+(−b)−(−(a+b))=(−a)+(−b)+(a+b) . В силу переместительного и сочетательного свойств сложения имеем (−a)+(−b)+(a+b)=(−a+a)+(−b+b) . Так как сумма противоположных чисел равна нулю, то (−a+a)+(−b+b)=0+0 , а 0+0=0 в силу свойства сложения числа с нулем. Этим доказано равенство (−a)+(−b)=−(a+b) , а значит, и правило сложения отрицательных чисел.

Осталось лишь научиться применять правило сложения отрицательных чисел на практике, что мы и сделаем в следующем пункте.

Примеры сложения отрицательных чисел

Разберем примеры сложения отрицательных чисел . Начнем с самого простого случая – сложения отрицательных целых чисел, сложение будем проводить по правилу, рассмотренному в предыдущем пункте.

Пример.

Выполните сложение отрицательных чисел −304 и −18 007 .

Решение.

Выполним все шаги правила сложения отрицательных чисел.

Сначала находим модули складываемых чисел: и . Теперь нужно сложить полученные числа, здесь удобно выполнить сложение столбиком :

Теперь ставим знак минус перед полученным числом, в результате имеем −18 311 .

Запишем все решение в краткой форме: (−304)+(−18 007)= −(304+18 007)=−18 311 .

Ответ:

−18 311 .

Сложение отрицательных рациональных чисел в зависимости от самих чисел можно свести либо к сложению натуральных чисел , либо к сложению обыкновенных дробей , либо к сложению десятичных дробей .

Пример.

Сложите отрицательное число и отрицательное число −4,(12) .

Решение.

По правилу сложения отрицательных чисел сначала нужно вычислить сумму модулей. Модули складываемых отрицательных чисел равны соответственно 2/5 и 4,(12) . Сложение полученных чисел можно свести к сложению обыкновенных дробей. Для этого переведем периодическую десятичную дробь в обыкновенную дробь : . Таким образом, 2/5+4,(12)=2/5+136/33 . Теперь выполним


В этой статье мы разберем, как выполняется вычитание отрицательных чисел из произвольных чисел. Здесь мы дадим правило вычитания отрицательных чисел, и рассмотрим примеры применения этого правила.

Навигация по странице.

Правило вычитания отрицательных чисел

Имеет место следующее правило вычитания отрицательных чисел : чтобы из числа a вычесть отрицательное число b , нужно к уменьшаемому a прибавить число −b , противоположное вычитаемому b .

В буквенном виде правило вычитания отрицательного числа b из произвольного числа a выглядит так: a−b=a+(−b) .

Докажем справедливость данного правила вычитания чисел.

Для начала напомним смысл вычитания чисел a и b . Найти разность чисел a и b - это значит найти такое число с , сумма которого с числом b равна a (смотрите связь вычитания со сложением). То есть, если найдено число с такое, что c+b=a , то разность a−b равна c .

Таким образом, чтобы доказать озвученное правило вычитания, достаточно показать, что прибавление к сумме a+(−b) числа b даст число a . Чтобы это показать, обратимся к свойствам действий с действительными числами . В силу сочетательного свойства сложения справедливо равенство (a+(−b))+b=a+((−b)+b) . Так как сумма противоположных чисел равна нулю, то a+((−b)+b)=a+0 , а сумма a+0 равна a , так как прибавление нуля не изменяет число. Таким образом, доказано равенство a−b=a+(−b) , а значит, доказана и справедливость приведенного правила вычитания отрицательных чисел.

Мы доказали данное правило для действительных чисел a и b . Однако, это правило справедливо и для любых рациональных чисел a и b , а также для любых целых чисел a и b , так как действия с рациональными и целыми числами тоже обладают свойствами, которые мы использовали при доказательстве. Отметим, что с помощью разобранного правила можно выполнять вычитание отрицательного числа как из положительного числа, так и из отрицательного числа, а также из нуля.

Осталось рассмотреть, как выполняется вычитание отрицательных чисел с помощью разобранного правила.

Примеры вычитания отрицательных чисел

Рассмотрим примеры вычитания отрицательных чисел . Начнем с решения простого примера, чтобы разобраться со всеми тонкостями процесса, не утруждаясь вычислениями.

Пример.

Отнимите от отрицательного числа −13 отрицательное число −7 .

Решение.

Числом, противоположным вычитаемому −7 , является число 7 . Тогда по правилу вычитания отрицательных чисел имеем (−13)−(−7)=(−13)+7 . Осталось выполнить сложение чисел с разными знаками , получаем (−13)+7=−(13−7)=−6 .

Вот все решение: (−13)−(−7)=(−13)+7=−(13−7)=−6 .

Ответ:

(−13)−(−7)=−6 .

Вычитание дробных отрицательных чисел можно выполнить, осуществив переход к соответствующим обыкновенным дробям , смешанным числам или десятичным дробям . Здесь стоит отталкиваться от того, с какими числами удобнее работать.

Пример.

Выполните вычитание из числа 3,4 отрицательного числа .

Решение.

Применив правило вычитания отрицательных чисел, имеем . Теперь заменим десятичную дробь 3,4 смешанным числом: (смотрите перевод десятичных дробей в обыкновенные дроби), получаем . Осталось выполнить сложение смешанных чисел : .

На этом вычитание отрицательного числа из числа 3,4 завершено. Приведем краткую запись решения: .

Ответ:

.

Пример.

Отнимите отрицательное число −0,(326) от нуля.

Решение.

По правилу вычитания отрицательных чисел имеем 0−(−0,(326))=0+0,(326)=0,(326) . Последний переход справедлив в силу свойства сложения числа с нулем.

В рамках этого материала мы затронем такую важную тему, как сложение отрицательных чисел. В первом параграфе мы расскажем основное правило для этого действия, а во втором – разберем конкретные примеры решения подобных задач.

Yandex.RTB R-A-339285-1

Основное правило сложения натуральных чисел

Перед тем, как вывести правило, вспомним, что мы вообще знаем о положительных и отрицательных числах. Ранее мы условились, что отрицательные числа нужно воспринимать как долг, убыток. Модуль отрицательного числа выражает точные размеры этого убытка. Тогда сложение отрицательных чисел можно представить как сложение двух убытков.

Воспользовавшись этим рассуждением, сформулируем основное правило сложения отрицательных чисел.

Определение 1

Для того чтобы выполнить сложение отрицательных чисел , нужно сложить значения их модулей и поставить минус перед полученным результатом. В буквенном виде формула выглядит как (− a) + (− b) = − (a + b) .

Исходя из этого правила, можно сделать вывод, что сложение отрицательных чисел аналогично сложению положительных, только в итоге у нас обязательно должно получиться отрицательное число, ведь перед суммой модулей надо ставить знак минус.

Какие можно привести доказательства этого правила? Для этого нам потребуется вспомнить основные свойства действий с действительными числами (или с целыми, или с рациональными –они одинаковы для всех этих типов чисел). Для доказательства нам нужно всего лишь продемонстрировать, что разность левой и правой части равенства (− a) + (− b) = − (a + b) будет равна 0 .

Вычесть одно число из другого – это то же самое, что и прибавить к нему такое же противоположное число. Следовательно, (− a) + (− b) − (− (a + b)) = (− a) + (− b) + (a + b) . Вспомним, что числовые выражения со сложением обладают двумя основными свойствами – сочетательным и переместительным. Тогда мы можем сделать вывод, что (− a) + (− b) + (a + b) = (− a + a) + (− b + b) . Поскольку, сложив противоположные числа, мы всегда получаем 0 , то (− a + a) + (− b + b) = 0 + 0 , а 0 + 0 = 0 .Наше равенство можно считать доказанным, значит, и правило сложения отрицательных чисел мы тоже доказали.

Во втором параграфе мы возьмем конкретные задачи, где нужно складывать отрицательные числа, и попробуем применить в них изученное правило.

Пример 1

Найдите сумму двух отрицательных чисел - 304 и - 18 007 .

Решение

Выполним действия пошагово. Сначала нам надо найти модули складываемых чисел: - 304 = 304 , - 180007 = 180007 . Далее нам нужно выполнить действие сложения, для чего мы используем метод подсчета столбиком:

Все, что нам осталось, – это поставить минус перед результатом и получить - 18 311 .

Ответ: - - 18 311 .

От того, какие у нас числа, зависит, к чему мы можем свести действие сложения: к нахождению суммы натуральных чисел, к сложению обыкновенных или десятичных дробей. Разберем задачу с такими числами.

Пример N

Найдите сумму двух отрицательных чисел - 2 5 и − 4 , (12) .

Решение

Находим модули искомых чисел и получаем 2 5 и 4 , (12) . У нас получились две разные дроби. Сведем задачу к сложению двух обыкновенных дробей, для чего представим периодическую дробь в виде обыкновенной:

4 , (12) = 4 + (0 , 12 + 0 , 0012 + . . .) = 4 + 0 , 12 1 - 0 , 01 = 4 + 0 , 12 0 , 99 = 4 + 12 99 = 4 + 4 33 = 136 33

В итоге мы получили дробь, которую будет легко сложить с первым исходным слагаемым (если вы забыли, как правильно складывать дроби с разными знаменателями, повторите соответствующий материал).

2 5 + 136 33 = 2 · 33 5 · 33 + 136 · 5 33 · 5 = 66 165 + 680 165 = 764 165 = 4 86 105

В итоге мы получили смешанное число, перед которым нам осталось только поставить минус. На этом расчеты завершены.

Ответ: - 4 86 105 .

Действительные отрицательные числа складываются аналогичным образом. Результат такого действия принято записывать числовым выражением. Его значение можно и не вычислять или ограничиться примерными расчетами. Так, к примеру, если нам надо найти сумму - 3 + (− 5) , то ответ мы записываем как - 3 − 5 . Сложению действительных чисел мы посвятили отдельный материал, в котором можно найти и другие примеры.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На действиях с положительными и отрицательными числами основан практически весь курс математики. Ведь как только мы приступаем к изучению координатной прямой, числа со знаками «плюс» и «минус» начинают встречаться нам повсеместно, в каждой новой теме. Нет ничего проще, чем сложить между собой обычные положительные числа, нетрудно и вычесть одно из другого. Даже арифметические действия с двумя отрицательными числами редко становятся проблемой.

Однако многие путаются в сложении и вычитании чисел с разными знаками. Напомним правила, по которым происходят эти действия.

Сложение чисел с разными знаками

Если для решения задачи нам требуется прибавить к некоторому числу «а» отрицательное число «-b», то действовать нужно следующим образом.

  • Возьмем модули обоих чисел - |a| и |b| - и сравним эти абсолютные значения между собой.
  • Отметим, какой из модулей больше, а какой меньше, и вычтем из большего значения меньшее.
  • Поставим перед получившимся числом знак того числа, модуль которого больше.

Это и будет ответом. Можно выразиться проще: если в выражении a + (-b) модуль числа «b» больше, чем модуль «а», то мы отнимаем «а» из «b» и ставим «минус» перед результатом. Если больше модуль «а», то «b» вычитается из «а» - а решение получается со знаком «плюс».

Бывает и так, что модули оказываются равны. Если так, то на этом месте можно остановиться - речь идет о противоположных числах, и их сумма всегда будет равна нулю.

Вычитание чисел с разными знаками

Со сложением мы разобрались, теперь рассмотрим правило для вычитания. Оно тоже довольно простое - и кроме того, полностью повторяет аналогичное правило для вычитания двух отрицательных чисел.

Для того, чтобы вычесть из некоего числа «а» - произвольного, то есть с любым знаком - отрицательное число «с», нужно прибавить к нашему произвольному числу «а» число, противоположное «с». Например:

  • Если «а» - положительное число, а «с» - отрицательное, и из «а» нужно вычесть «с», то записываем так: а – (-с) = а + с.
  • Если «а» - отрицательное число, а «с» - положительное, и из «а» нужно вычесть «с», то записываем следующим образом: (- а)– с = - а+ (-с).

Таким образом, при вычитании чисел с разными знаками в итоге мы возвращаемся к правилам сложения, а при сложении чисел с разными знаками - к правилам вычитания. Запоминание данных правил позволяет решать задачи быстро и без труда.

Сложение отрицательных чисел.

Сумма отрицательных чисел есть число отрицательное. Модуль суммы равен сумме модулей слагаемых .

Давайте разберемся, почему же сумма отрицательных чисел будет тоже отрицательным числом. Поможет нам в этом координатная прямая, на которой мы выполним сложение чисел -3 и -5. Отметим на координатной прямой точку, соответствующее числу -3.

К числу -3 нам нужно прибавить число -5. Куда мы пойдем от точки, соответствующей числу -3? Правильно, влево! На 5 единичных отрезков. Отмечаем точку и пишем число ей соответствующее. Это число -8.

Итак, при выполнении сложения отрицательных чисел с помощью координатной прямой мы все время находимся слева от начала отсчета, поэтому, понятно, что результат сложения отрицательных чисел есть число тоже отрицательное.

Примечание. Мы складывали числа -3 и -5, т.е. находили значение выражения -3+(-5). Обычно при сложении рациональных чисел просто записывают эти числа с их знаками, как бы перечисляют все числа, которые нужно сложить. Такую запись называют алгебраической суммой. Применяют (в нашем примере) запись: -3-5=-8.

Пример. Найти сумму отрицательных чисел: -23-42-54. (Согласитесь, что эта запись короче и удобнее вот такой: -23+(-42)+(-54))?

Решаем по правилу сложения отрицательных чисел: складываем модули слагаемых: 23+42+54=119. Результат будет со знаком «минус».

Записывают обычно так: -23-42-54=-119.

Сложение чисел с разными знаками.

Сумма двух чисел с разными знаками имеет знак слагаемого с большим модулем. Чтобы найти модуль суммы, нужно из большего модуля вычесть меньший .

Выполним сложение чисел с разными знаками с помощью координатной прямой.

1) -4+6. Требуется к числу -4 прибавить число 6. Отметим число -4 точкой на координатной прямой. Число 6 — положительное, значит от точки с координатой -4 нам нужно идти вправо на 6 единичных отрезков. Мы оказались справа от начала отсчета (от нуля) на 2 единичных отрезка.

Результат суммы чисел -4 и 6 — это положительное число 2:

— 4+6=2. Как можно было получить число 2? Из 6 вычесть 4, т.е. из большего модуля вычесть меньший. У результата тот же знак, что и у слагаемого с большим модулем.

2) Вычислим: -7+3 с помощью координатной прямой. Отмечаем точку, соответствующую числу -7. Идем вправо на 3 единичных отрезка и получаем точку с координатой -4. Мы были и остались слева от начала отсчета: ответ — отрицательное число.

— 7+3=-4. Этот результат мы могли получить так: из большего модуля вычли меньший, т.е. 7-3=4. В результате поставили знак слагаемого, имеющего больший модуль: |-7|>|3|.

Примеры. Вычислить: а) -4+5-9+2-6-3; б) -10-20+15-25.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей