Где начинается переваривание углеводов у человека. О процессе переваривания и всасывания пищи

Всасыванию в кишечнике подвергаются только моносахариды: глюкоза, галактоза, фруктоза. Поэтому олиго- и полисахариды, поступающие в организм с пищей, должны гидролизоваться ферментными системами с образованием моносахаридов. На рис. 5.11 схематично изображена локализация ферментативных систем, участвующих в переваривании углеводов, которое начинается в ротовой полости с действия ротовой -амилазы и далее продолжается в разных отделах кишечника с помощью панкреатической -амилазы, сахаразо-изомальтазного, гликоамилазного, -гликозидазного (лактазного), трегалазного комплексов.

Рис. 5.11. Схема локализации ферментных систем переваривания углеводов

5.2.1. Переваривание углеводов с помощью ротовой и панкреатической -амилаз (-1,4-гликозидаз). Поступившие с пищей полисахариды, а именно крахмал (состоит из линейного полисахарида амилозы, в которой глюкозильные остатки связаны -1,4-глико-зидными связями, и амилопектина, разветвленного полисахарида, где обнаруживаются также и -1,6-гликозидные связи), начинают гидролизоваться уже в ротовой полости после смачивания слюной, содержащей гидролитический фермент -амилазу (-1,4-гликози-дазу) (К.Ф. 3.2.1.1), расщепляющую в крахмале 1,4-гликозидные связи, но не действующую на 1,6-гликозидные связи.

Кроме того, время контакта фермента с крахмалом в ротовой полости мало, поэтому крахмал переваривается частично, образуя крупные фрагменты  декстрины и немного дисахарида мальтозы. Дисахариды не подвергаются гидролизу под действием амилазы слюны.

При попадании в желудок в кислой среде амилаза слюны ингибируется, процесс переваривания может происходить только внутри пищевого кома, где активность амилазы может сохраняться на некоторое время, пока рН во всем куске не станет кислым. В желудочном соке отсутствуют ферменты, расщепляющие углеводы, возможен лишь незначительный кислотный гидролиз гликозидных связей.

Основным местом гидролиза олиго- и полисахаридов является тонкий кишечник, в разных отделах которого секретируются определенные гликозидазы.

В двенадцатиперстной кишке содержимое желудка нейтрализуется секретом поджелудочной железы, содержащим бикарбонаты НСО 3  и имеющим рН 7,58,0. В секрете поджелудочной железы обнаруживается панкреатическая амилаза, которая гидролизует -1,4-гликозидные связи в крахмале и декстринах с образованием дисахаридов мальтозы (в этом углеводе два остатка глюкозы связаны -1,4-гликозидной связью) и изомальтозы (в этом углеводе два остатка глюкозы, находящихся в местах разветвления в молекуле крахмала и связанных -1,6-гликозидными связями). Образуются также олигосахариды с содержанием 810 остатков глюкозы, связанных как -1,4-гликозидными, так и -1,6-гликозидными связями.

Обе амилазы являются эндогликозидазами. Панкреатическая амилаза также не гидролизует -1,6-гликозидные связи в крахмале и -1,4-гликозидные связи, которыми остатки глюкозы соединены в молекуле целлюлозы.

Целлюлоза проходит через кишечник неизмененной и служит балластным веществом, придавая пище объем и способствуя процессу пищеварения. В толстом кишечнике под действием бактериальной микрофлоры целлюлоза может частично гидролизоваться с образованием спиртов, органических кислот и СО 2 , которые могут выступать в качестве стимуляторов перистальтики кишечника.

Образовавшиеся в верхних отделах кишечника мальтоза, изомальтоза и триозосахариды далее подвергаются гидролизу в тонком кишечнике под действием специфических гликозидаз. Дисахариды пищи, сахароза и лактоза, также гидролизуются специфическими дисахаридазами тонкого кишечника.

В просвете кишечника активность олиго- и дисахаридаз низкая, но большинство ферментов связано с поверхностью эпителиальных клеток, которые в кишечнике расположены на пальцеобразных выростах  ворсинках и сами, в свою очередь, покрыты микроворсинками, все эти клетки образуют щеточную каемку, увеличивающую поверхность контакта гидролитических ферментов с их субстратами.

Расщепляющие гликозидные связи в дисахаридах, ферменты (дисахаридазы) сгруппированы в ферментные комплексы, располагающиеся на наружней поверхности цитоплазматической мембраны энтероцитов: сахаразо-изомальтазный, гликоамилазный, -гликози- дазный.

5.2.2. Сахаразо-изомальтазный комплекс. Этот комплекс состоит из двух полипептидных цепей и прикрепляется к поверхности энтероцита с помощью трансмембранного гидрофобного домена, расположенного в N-концевой части полипептида. Сахаразо-изомальтазный комплекс (К.Ф. 3.2.1.48 и 3.2.1.10) расщепляет -1,2- и -1,6-гликозидные связи в сахарозе и изомальтозе.

Оба фермента комплекса способны гидролизовать также и -1,4-гликозидные связи в мальтозе и мальтотриозе (трисахарид, содержащий три остатка глюкозы и образующийся при гидролизе крахмала).

Хотя комплекс обладает довольно высокой мальтазной активностью, гидролизуя 80 % мальтозы, образующейся при переваривании олиго- и полисахаридов, основной его специфичностью является все же гидролиз сахарозы и изомальтозы, скорость гидролиза гликозидных связей в которых больше, чем скорость гидролиза связей в мальтозе и мальтотриозе. При этом сахаразная субъединица представляет собой единственный фермент кишечника, гидролизующий сахарозу. Комплекс локализован в основном в тощей кишке, в проксимальной и дистальной частях кишечника содержание сахаразо-изомальтазного комплекса незначительно.

5.2.3. Гликоамилазный комплекс. Этот комплекс (К.Ф. 3.2.1.3 и 3.2.1.20) гидролизует -1,4-гликозидные связи между остатками глюкозы в олигосахаридах. Аминокислотная последовательность гликоамилазного комплекса имеет 60 %-ю гомологию с последовательностью сахаразо-изомальтазного комплекса. Оба комплекса относятся к семейству 31 гликозилгидролаз. Являясь экзогликозидазой, фермент действует с восстанавливающего конца, может расщеплять также и мальтозу, выступая в этой реакции в качестве мальтазы (при этом гликоамилазный комплекс гидролизует оставшиеся 20 % образовавшейся при переваривании олиго- и полисахаридов мальтозы). В состав комплекса входят две каталитические субъединицы, имеющие небольшие отличия в субстратной специфичности. Наибольшую активность комплекс проявляет в нижних отделах тонкого кишечника.

5.2.4. -Гликозидазный комплекс (лактаза). Этот ферментный комплекс осуществляет гидролиз -1,4-гликозидных связей между галактозой и глюкозой в лактозе.

Гликопротеин связан с щеточной каемкой и неравномерно распределен по всему тонкому кишечнику. С возрастом активность лактазы падает: она максимальна у младенцев, у взрослых составляет менее 10 % от уровня активности фермента, выделенного у детей.

5.2.5. Трегалаза . Этот фермент (К.Ф. 3.2.1.28) представляет собой гликозидазный комплекс, гидролизующий связи между мономерами в трегалозе, дисахариде, обнаруженном в грибах и состоящем из двух глюкозильных остатков, связанных гликозидной связью между первыми аномерными атомами углерода.

Из углеводов пищи в результате действия гликозилгидролаз образуются моносахариды: в большом количестве глюкоза, фруктоза, галактоза, в меньшей степени  манноза, ксилоза, арабиноза, которые всасываются эпителиальными клетками тощей и подвздошной кишок и транспортируются через мембраны этих клеток с помощью специальных механизмов.

5.2.6. Транспорт моносахаридов через мембраны эпителиальных клеток кишечника. Перенос моносахаридов в клетки слизистой кишечника может осуществляться путем облегченной диффузии и активного транспорта. В случае активного транспорта глюкоза переносится через мембрану вместе с ионом Na + одним белком-переносчиком, причем эти вещества взаимодействуют с разными участками данного белка (рис. 5.12). Ион Na + поступает в клетку по градиенту концентрации, а глюкоза  против градиента концентрации (вторично-активный транспорт), поэтому чем больше градиент , тем больше перенесется в энтероциты глюкозы. При снижении концентрации Na + во внеклеточной жидкости уменьшается поступление глюкозы. Градиент концентраций Na + , лежащий в основе активного симпорта, обеспечивается действием Na + , К + -АТРазы, которая работает как насос, выкачивающий из клетки Na + в обмен на ион К + . Таким же образом по механизму вторично-активного транспорта в энтероциты поступает галактоза.

Рис. 5.12. Поступление моносахаридов в энтероциты. SGLT1  натрий-зависимый транспортер глюкозы/галактозы в мембране эпителиальных клеток; Na + , K + -АТРаза на базолатеральной мембране создает градиент концентраций ионов натрия и калия, необходимый для функционирования SGLT1. GLUT5 транспортирует через мембрану внутрь клетки преимущественно фруктозу. GLUT2 на базолатеральной мембране осуществляет транспорт глюкозы, галактозы и фруктозы из клетки (согласно )

Благодаря активному транспорту энтероциты могут поглощать глюкозу при ее низкой концентрации в просвете кишечника. При высокой концентрации глюкозы она поступает в клетки путем облегченной диффузии с помощью специальных белков-переносчиков (транспортеров). Таким же образом переносится внутрь эпителиальных клеток фруктоза.

В кровеносные сосуды моносахариды поступают из энтероцитов в основном с помощью облегченной диффузии. Половина глюкозы через капилляры ворсинок по воротной вене транспортируется в печень, половина доставляется кровью к клеткам других тканей.

5.2.7. Транспорт глюкозы из крови в клетки. Поступление глюкозы из крови в клетки осуществляется путем облегченной диффузии, т. е. скорость транспорта глюкозы определяется градиентом ее концентраций по обе стороны мембраны. В клетках мышц и жировой ткани облегченная диффузия регулируется гормоном поджелудочной железы  инсулином. В отсутствие инсулина мембрана клеток не содержит транспортеров глюкозы. Белок-переносчик (транспортер) глюкозы из эритроцитов (GLUT1), как видно из рис. 5.13, представляет собой трансмембранный белок, состоящий из 492 аминокислотных остатков и имеющий доменную структуру. Полярные аминокислотные остатки располагаются по обе стороны мембраны, гидрофобные локализованы в мембране, пересекая ее несколько раз. На внешней стороне мембраны есть участок связывания глюкозы. При связывании глюкозы изменяется конформация переносчика, и участок связывания моносахарида оказывается открытым внутрь клетки. Глюкоза переходит внутрь клетки, отделяясь от белка-переносчика.

5.2.7.1. Транспортеры глюкозы: ГЛЮТ 1, 2, 3, 4, 5. Во всех тканях обнаружены транспортеры глюкозы, которых существует несколько разновидностей, получивших нумерацию в порядке их обнаружения. Описано пять видов ГЛЮТ, имеющих сходную первичную структуру и доменную организацию.

ГЛЮТ 1, локализованный в мозге, плаценте, почках, толстом кишечнике, эритроцитах, осуществляет поступление глюкозы в мозг.

ГЛЮТ 2 переносит глюкозу из органов, выделяющих ее в кровь: энтероцитов, печени, транспортирует в -клетки островков Лангерханса поджелудочной железы.

ГЛЮТ 3 обнаружен во многих тканях, включая мозг, плаценту, почки, обеспечивает приток глюкозы к клеткам нервной ткани.

ГЛЮТ 4 переносит глюкозу в клетки мышц (скелетных и сердечных) и жировой ткани, является инсулинзависимым.

ГЛЮТ 5 обнаружен в клетках тонкого кишечника, возможно, переносит и фруктозу.

Все переносчики могут располагаться как в цитоплазматических

Рис. 5.13. Структура белка-переносчика (транспортера) глюкозы из эритроцитов (ГЛЮТ1) (согласно )

везикулах клеток, так и в плазматической мембране. В отсутствие инсулина ГЛЮТ 4 располагается только внутри клетки. Под влиянием инсулина везикулы переносятся к плазматической мембране, сливаются с ней и ГЛЮТ 4 встраивается в мембрану, после этого транспортер осуществляет облегченную диффузию глюкозы в клетку. После снижения концентрации инсулина в крови транспортеры снова возвращаются в цитоплазму и транспорт глюкозы в клетку прекращается.

В работе транспортеров глюкозы выявлены различные нарушения. При наследственном дефекте белков-переносчиков развивается инсулинонезависимый сахарный диабет. Кроме дефектов белка, встречаются и другие нарушения, обусловленные: 1) дефектом передачи сигнала инсулина о перемещении транспортера к мембране, 2) дефектом перемещения транспортера, 3) дефектом включения белка в мембрану, 4) нарушением отшнуровывания от мембраны.

5.2.8. Инсулин. Это соединение является гормоном, секретируемым -клетками островков Лангерханса поджелудочной железы. Инсулин представляет собой полипептид, состоящий из двух полипептидных цепей: одна содержит 21 аминокислотный остаток (цепь А), другая  30 аминокислотных остатков (цепь В). Цепи соединены между собой двумя дисульфидными связями: А7В7, А20В19. Внутри А-цепи есть внутримолекулярная дисульфидная связь между шестым и одиннадцатым остатками. Гормон может существовать в двух конформациях: Т и R (рис. 5.14).

Рис. 5.14. Пространственная структура мономерной формы инсулина: а  инсулин свиньи, Т-конформация, б  инсулин человека, R-конформа- ция (А-цепь изображена красным цветом, В-цепь  желтым ) (согласно )

Гормон может существовать в виде мономера, димера и гексамера. В гексамерной форме инсулин стабилизируется ионом цинка, образующего координационные связи с His10 В-цепи всех шести субъединиц (рис. 5.15).

Инсулины млекопитающих имеют большую гомологию по первичной структуре с инсулином человека: так, в инсулине свиньи только одна замена  вместо треонина на карбоксильном конце В-цепи стоит аланин, в инсулине быка три других аминокислотных остатка в сравнении с инсулином человека. Наиболее часто замены встречаются в положениях 8, 9 и 10 цепи А, но они не оказывают существенного влияния на биологическую активность гормона.

Замены аминокислотных остатков в положениях дисульфидных связей, гидрофобных остатков в С- и N-концевых участках А-цепи и в С-концевых участках В-цепи встречаются очень редко, что свидетельствует о значимости этих участков в проявлении биологической активности инсулина. В формировании активного центра гормона принимают участие остатки Phe24 и Phe25 В-цепи и С- и N-конце- вые остатки А-цепи.

Рис. 5.15. Пространственная структура гексамера инсулина (R 6) (согласно )

5.2.8.1. Биосинтез инсулина. Инсулин синтезируется в виде предшественника  препроинсулина, содержащего 110 аминокислотных остатков, на полирибосомах в шероховатом эндоплазматическом ретикулуме. Биосинтез начинается с образования сигнального пептида, который проникает в просвет эндоплазматического ретикулума и направляет движение растущего полипептида. В конце синтеза сигнальный пептид длиной в 24 аминокислотных остатка отщепляется от препроинсулина с образованием проинсулина, который содержит 86 аминокислотных остатков и переносится в аппарат Гольджи, где в цистернах происходит дальнейшее созревание инсулина. Пространственная структура проинсулина представлена на рис. 5.16.

В процессе длительного созревания под действием сериновых эндопептидаз РС2 и РС1/3 происходит расщепление сначала пептидной связи между Arg64 и Lys65, потом гидролиз пептидной связи, образованной Arg31 и Arg32, с отщеплением С-пептида, состоящего из 31 аминокислотного остатка. Превращение проинсулина в инсулин, содержащий 51 аминокислотный остаток, заканчивается гидролизом остатков аргинина на N-конце А-цепи и С-конце В-цепи под действием карбоксипептидазы Е, которая проявляет специфичность, аналогичную карбоксипептидазе В, т. е. гидролизует пептидные связи, иминогруппа которой принадлежит основной аминокислоте (рис. 5.17 и 5.18).

Рис. 5.16. Предположительная пространственная структура проинсулина в конформации, способствующей протеолизу. Красными шариками выделены аминокислотные остатки (Arg64 и Lys65; Arg31 и Arg32), пептидные связи между которыми подвергаются гидролизу в результате процессинга проинсулина (согласно )

Инсулин и С-пептид в эквимолярных количествах поступают в секреторные гранулы, где инсулин, взаимодействуя с ионом цинка, образует димеры и гексамеры. Секреторные гранулы, сливаясь с плазматической мембраной, секретируют инсулин и С-пептид во внеклеточную жидкость в результате экзоцитоза. Время полупревращения инсулина в плазме крови составляет 310 мин, С-пептида − около 30 мин. Инсулин подвергается распаду под действием фермента инсулиназы, этот процесс протекает в печени и почках.

5.2.8.2. Регуляция синтеза и секреции инсулина. Главным регулятором секреции инсулина является глюкоза, которая регулирует экспрессию гена инсулина и генов белков, участвующих в обмене основных энергоносителей. Глюкоза может непосредственно связываться с транскрипционными факторами − в этом проявляется прямое влияние на скорость экспрессии гена. Возможно вторичное влияние на секрецию инсулина и глюкагона, когда освобождение инсулина из секреторных гранул активирует транскрипцию мРНК инсулина. Но секреция инсулина зависит от концентрации ионов Са 2+ и уменьшается при их дефиците даже при высокой концентрации глюкозы, которая активирует синтез инсулина. Кроме того, она тормозится адреналином при его связывании с  2 -рецепторами. Стимуляторами секреции инсулина выступают гормоны роста, кортизол, эстрогены, гормоны желудочно-кишечного тракта (секретин, холецистокинин, желудочный ингибирующий пептид).

Рис. 5.17. Синтез и процессинг препроинсулина (согласно )

Секреция инсулина -клетками островков Лангерханса в ответ на повышение концентрации глюкозы в крови реализуется следующим образом:

Рис. 5.18. Процессинг проинсулина в инсулин путем гидролиза пептидной связи между Arg64 и Lys65, катализируемого сериновой эндопептидазой РС2, и расщепления пептидной связи между Arg31 и Arg32 под действием сериновой эндопептидазы РС1/3, превращение заканчивается отщеплением остатков аргинина на N-конце А-цепи и С-конце В-цепи под действием карбоксипептидазы Е (отщепляемые остатки аргинина изображены в кружочках). В результате процессинга, кроме инсулина, образуется С-пептид (согласно )

1) глюкоза транспортируется в -клетки белком-переносчиком ГЛЮТ 2;

2) в клетке глюкоза подвергается гликолизу и далее окисляется в дыхательном цикле с образованием АТР; интенсивность синтеза АТР зависит от уровня глюкозы в крови;

3) под действием АТР происходит закрытие ионных калиевых каналов и деполяризация мембраны;

4) деполяризация мембраны вызывает открытие потенциал-зависимых кальциевых каналов и вход кальция в клетку;

5) повышение уровня кальция в клетке активирует фосфолипазу C, расщепляющую один из мембранных фосфолипидов  фосфатидилинозитол-4,5-дифосфат  на инозитол-1,4,5-трифосфат и диацил- глицерол;

6) инозитолтрифосфат, связываясь с рецепторными белками эндоплазматического ретикулума, вызывает резкое повышение концентрации связанного внутриклеточного кальция, что приводит к высвобождению заранее синтезированного инсулина, хранящегося в секреторных гранулах.

5.2.8.3. Механизм действия инсулина. Основное действие инсулина на мышечные и жировые клетки заключается в усилении транспорта глюкозы через мембрану клетки. Стимуляция инсулином приводит к увеличению скорости поступления глюкозы внутрь клетки в 20−40 раз. При стимуляции инсулином наблюдается увеличение в 5−10 раз содержания транспортных белков глюкозы в плазматических мембранах при одновременном уменьшении на 50−60 % их содержания во внутриклеточном пуле. Требующееся при этом количество энергии в виде АТР необходимо в основном для активации инсулинового рецептора, а не для фосфорилирования белка-транспортера. Стимуляция транспорта глюкозы увеличивает потребление энергии в 20−30 раз, тогда как для перемещения транспортеров глюкозы требуется лишь незначительное ее количество. Транслокация транспортеров глюкозы к мембране клетки наблюдается уже через несколько минут после взаимодействия инсулина с рецептором, и для ускорения или поддержания процесса циклирования белков-транспортеров необходимо дальнейшее стимулирующее влияние инсулина.

Своё действие на клетки инсулин, как и другие гормоны, осуществляет через соответствующий белок-рецептор. Инсулиновый рецептор представляет собой сложный интегральный белок клеточной мембраны, состоящий из двух -субъединиц (130 kDа) и двух -субъединиц (95 кДа); первые расположены целиком вне клетки, на ее поверхности, вторые пронизывают плазматическую мембрану.

Рецептор к инсулину представляет собой тетрамер, состоящий из двух внеклеточных -субъединиц, взаимодействующих с гормоном и связанных друг с другом дисульфидными мостиками между цистеинами 524 и триплетом Cys682, Cys683, Cys685 обеих -субъединиц (см. рис. 5.19, а ), и двух трансмембранных -субъеди- ниц, проявляющих тирозинкиназную активность, связанных дисульфидным мостиком между Cys647 () и Cys872. Полипептидная цепь -субъединицы молекулярной массой 135 kDa содержит 719 амино-

Рис. 5.19. Структура димера инсулинового рецептора: а  модульная структура инсулинового рецептора. Вверху − -субъединицы, связанные дисульфидными мостиками Cys524, Cys683685 и состоящие из шести доменов: двух содержащих лейциновые повторы L1 и L2, цистеин-богатой области СR и трех фибронектиновых доменов типа III Fn o , Fn 1 , ID (домена внедрения). Внизу − -субъединицы, связанные с -субъединицей дисульфидным мостиком Cys647Cys872 и состоящие из семи доменов: трех фибронектиновых доменов ID, Fn 1 и Fn 2 , трансмембранного домена ТМ, примыкающего к мембране домена JM, тирозинкиназного домена ТК, С-концевого СТ; б  пространственное расположение рецептора, один димер изображен в цвете, другой  белый, А  активирующая петля, противоположная месту связывания гормона, Х (красный)  С-концевая часть -субъединицы, Х (черный)  N-концевая часть -субъединицы, желтые шарики 1,2,3  дисульфидные связи между остатками цистеина в положениях 524, 683685, 647872 (согласно )

кислотных остатков и состоит из шести доменов: двух содержащих лейциновые повторы доменов L1 и L2, цистеин-богатой области СR, где локализуется центр связывания инсулина, и трех фибронектиновых доменов типа III Fn o , Fn 1 , Ins (домена внедрения) (см. рис. 5.18). -Субъединица включает 620 аминокислотных остатков, имеет молекулярную массу 95 kDa и состоит из семи доменов: трех фибронектиновых доменов ID, Fn 1 и Fn 2 , трансмембранного домена ТМ, примыкающего к мембране домена JM, тирозинкиназного до- мена ТК, С-концевого СТ. На рецепторе обнаружено два места связывания инсулина: одно с высоким сродством, другое  с низким. Для проведения сигнала гормона в клетку необходимо связывание инсулина с центром высокого сродства. Этот центр формируется при связывании инсулина из L1, L2 и CR доменов одной -субъединицы и фибронектиновых доменов другой, при этом расположение -субъединиц противоположно относительно друг друга, как это показано на рис. 5.19, с.

В отсутствие взаимодействия инсулина с центром высокого сродства рецептора -субъединицы отодвинуты от -субъединиц выступом (cam), являющимся частью CR домена, что препятствует контакту активирующей петли (А-loop) тирозинкиназного домена одной -субъединицы с сайтами фосфорилирования на другой -субъ-единице (рис. 5.20, б ). При связывания инсулина с центром высокого сродства инсулинового рецептора изменяется конформация рецептора, выступ более не препятствует сближению - и -субъединиц, активирующие петли ТК доменов взаимодействуют с сайтами фосфорилирования тирозинов на противоположном ТК домене, происходит трансфосфорилирование -субъединиц по семи остаткам тирозина: Y1158, Y1162, Y1163 активирующей петли (это киназный регуляторный домен), Y1328, Y1334 СТ домена, Y965, Y972 JM домена (рис. 5.20, а ), что приводит к повышению тирозинкиназной активности рецептора. В позиции 1030 ТК находится остаток лизина, входящий в каталитический активный центр − АТР-связывающий центр. Замена этого лизина на многие другие аминокислоты путем сайтнаправленного мутагенеза уничтожает тирозинкиназную активность инсулинового рецептора, но не нарушает связывания инсулина. Однако присоединение инсулина к такому рецептору никакого действия на клеточный метаболизм и пролиферацию не оказывает. Фосфорилирование некоторых остатков серина-треонина, наоборот, снижает сродство к инсулину и уменьшает тирозинкиназную активность.

Известно несколько субстратов инсулинового рецептора: ИРС-1 (субстрат инсулинового рецептора), ИРС-2, белки семейства STAT (signal transducer and activator of transcription − переносчики сигнала и активаторы транскрипции подробно рассмотрены нами в Части 4 «Биохимические основы защитных реакций»).

ИРС-1 представляет собой цитоплазматический белок, связывающийся с фосфорилированными тирозинами ТК инсулинового рецептора своим SH2-доменом и фосфорилируемый тирозинкиназой рецептора немедленно после стимуляции инсулином. От степени фосфорилирования субстрата зависит увеличение или уменьшение клеточного ответа на инсулин, амплитуда изменений в клетках и чувствительность к гормону. Повреждения гена ИРС-1 могут быть причиной инсулинзависимого диабета. Пептидная цепь ИРС-1 содержит около 1200 аминокислотных остатков, 2022 потенциальных центров фосфорилирирования по тирозину и около 40 центров фосфорилирования по серину-треонину.

Рис. 5.20. Упрощенная схема структурных изменений при связывании инсулина с инсулиновым рецептором: а  изменение конформации рецептора в результате связывания гормона в центре высокого сродства приводит к смещению выступа, сближению субъединиц и трансфосфорилированию ТК доменов; б  в отсутствие взаимодействия инсулина с центром связывания высокого сродства на инсулиновом рецепторе выступ (саm) препятствует сближению - и -субъединиц и трансфосфорилированию ТК доменов. A-петля  активирующая петля ТК домена, цифры 1 и 2 в кружочке  дисульфидные связи между субъединицами, ТК  тирозинкиназный домен, С  каталитический центр ТК, set 1 и set 2  аминокислотные последовательности -субъединиц, формирующие место высокого сродства инсулина к рецептору (cогласно )

Фосфорилирование ИРС-1 по нескольким тирозиновым остаткам придает ему способность соединяться с белками, содержащими SH2-домены: тирозинфосфатазой syp, p85-субъединицей ФИ-3-киназы (фосфатидилинозитол-3-киназы), адапторным белком Grb2, протеинтирозинфосфатазой SH-PTP2, фосфолипазой С, GAP (активатором малых GTP-связывающих белков). В результате взаимодействия ИРС-1 с подобными белками генерируются множественные нисходящие сигналы.

Рис. 5.21. Транслокация белков-переносчиков глюкозы ГЛЮТ 4 в мышечных и жировых клетках из цитоплазмы в плазматическую мембрану под действием инсулина. Взаимодействие инсулина с рецептором приводит к фосфорилированию субстрата инсулинового рецептора (ИРС), связывающего ФИ-3-киназу (ФИ3К), катализирующую синтез фосфолипида фосфатидилинозитол-3,4,5-трифосфата (PtdIns(3,4,5)P 3). Последнее соединение, связывая плекстриновые домены (РН), мобилизует к клеточной мембране протеинкиназы PDK1, PDK2 и РКВ. PDK1 фосфорилирует РКВ по Thr308, активируя ее. Фосфорилированная РКВ ассоциирует с везикулами, содержащими ГЛЮТ 4, вызывая их транслокацию в плазматическую мембрану, приводящую к усилению транспорта глюкозы внутрь мышечных и жировых клеток (согласно )

Стимулируемая фосфорилированным ИРС-1 фосфолипаза С гидролизует фосфолипид клеточной мембраны фосфатидилинозитол-4,5-дифосфат с образованием двух вторичных мессенджеров: инозитол-3,4,5-трифосфата и диацилглицерина. Инозитол-3,4,5-трифос- фат, действуя на ионные каналы эндоплазматического ретикулума, высвобождает из него кальций. Диацилглицерин действует на кальмодулин и протеинкиназу С, которая фосфорилирует различные субстраты, приводя к изменению активности клеточных систем.

Фосфорилированный ИРС-1 активирует также ФИ-3-киназу, катализирующую фосфорилирование фосфатидилинозитола, фосфатидилинозитол-4-фосфата и фосфатидилинозитол-4,5-дифосфата по положению 3 с образованием соответственно фосфатидилинозитол-3-фосфата, фосфатидилинозитол-3,4-дифосфата и фосфатидилинозитол-3,4,5-трифосфата.

ФИ-3-киназа представляет собой гетеродимер, содержащий регуляторную (р85) и каталитическую (р110) субъединицы. В регуляторной субъединице есть два SH2-домена и SH3-домен, поэтому ФИ-3-киназа с высоким сродством присоединяется к ИРС-1. Образовавшиеся в мембране производные фосфатидилинозитола, фосфорилированные по положению 3, связывают белки, содержащие так называемый плекстриновый (РН) домен (домен проявляет высокое сродство к фосфатидилинозитол-3-фосфатам): протеинкиназу PDK1 (фосфатидилинозитид-зависимую киназу), протеинкиназу В (РКВ).

Протеинкиназа В (РКВ) состоит из трех доменов: N-концевого плекстринового, центрального каталитического и С-концевого регуляторного. Плекстриновый домен необходим для активации РКВ. Связавшись с помощью плекстринового домена вблизи клеточной мембраны, РКВ сближается с протеинкиназой PDK1, которая через

свой плекстриновый домен также локализуется вблизи клеточной мембраны. PDK1 фосфорилирует Thr308 киназного домена РКВ, что приводит к активации РКВ. Активированная РКВ фосфорилирует киназу 3 гликогенсинтазы (по положению Ser9), вызывая инактивацию фермента и тем самым процесс синтеза гликогена. Фосфорилированию подвергается также ФИ-3-фосфат-5-киназа, действующая на везикулы, в которых белки-переносчики ГЛЮТ 4 хранятся в цитоплазме адипоцитов, вызывая перемещение транспортеров глюкозы к клеточной мембране, встраивание в нее и трансмембранный перенос глюкозы в мышечные и жировые клетки (рис. 5.21).

Инсулин не только влияет на поступление глюкозы в клетку с помощью белков-переносчиков ГЛЮТ 4. Он участвует в регуляции метаболизма глюкозы, жиров, аминокислот, ионов, в синтезе белков, оказывает влияние на процессы репликации и транскрипции.

Влияние на метаболизм глюкозы в клетке осуществляется путем стимулирования процесса гликолиза с помощью повышения активности ферментов, участвующих в этом процессе: глюкокиназы, фосфофруктокиназы, пируваткиназы, гексокиназы. Инсулин посредством аденилатциклазного каскада активирует фосфатазу, дефосфорилирующую гликогенсинтазу, что приводит к активации синтеза гликогена (рис. 5.22) и ингибированию процесса его распада. Ингибируя фосфоенолпируваткарбоксикиназу, инсулин тормозит процесс глюконеогенеза.

Рис. 5.22. Схема синтеза гликогена

В печени и жировой ткани под действием инсулина стимулируется синтез жиров путем активации ферментов: ацетилСоА-карбоксилазы, липопротеинлипазы. При этом распад жиров тормозится, так как активируемая инсулином фосфатаза, дефосфорилируя гормончувствительную триацилглицеринлипазу, ингибирует этот фермент и концентрация циркулирующих в крови жирных кислот уменьшается.

В печени, жировой ткани, скелетных мышцах, сердце инсулин влияет на скорость транскрипци более сотни генов.

5.2.9. Глюкагон. В ответ на уменьшение концентрации глюкозы в крови -клетки островков Лангерханса поджелудочной железы вырабатывают «гормон голода»  глюкагон, который представляет собой полипептид молекулярной массы 3 485 Da, состоящий из 29 аминокислотных остатков.

Действие глюкагона противоположно эффектам инсулина. Инсулин способствует запасанию энергии, стимулируя гликогенез, липогенез и синтез белка, а глюкагон, стимулируя гликогенолиз и липолиз, вызывает быструю мобилизацию источников потенциальной энергии.

Рис. 5.23. Структура проглюкагона человека и тканеспецифический процессинг проглюкагона в пептиды-производные из проглюкагона: в поджелудочной железе из проглюкагона образуются глюкагон и MPGF (mayor proglucagon fragment); в нейроэндокринных клетках кишечника и некоторых отделах центральной нервной системы генерируются глицентин, оксинтомодулин, GLP-1 (пептид, получаемый из проглюкагона), GLP-2, два промежуточных пептида (intervening peptide  IP), GRPP  glicentin-related pancreatic polypeptide (полипептид из поджелудочной железы − производное глицентина) (cогласно )

Гормон синтезируется -клетками островков Лангерханса поджелудочной железы, а также в нейроэндокринных клетках кишечника и в центральной нервной системе в виде неактивного предшественника  проглюкагона (молекулярной массы 9 000 Da), содержащего 180 аминокислотных остатков и подвергающегося процессингу с помощью конвертазы 2 и образующего несколько пептидов разной длины, в их числе глюкагон и два глюкагон-подобных пептида (glucagon like peptide  GLP-1, GLP-2, глицентин) (рис. 5.23). 14 из 27 аминокислотных остатков глюкагона идентичны таковым в молекуле другого гормона желудочно-кишечного тракта  секретина.

Для связывания глюкагона с рецепторами реагирующих на него клеток необходима целостность его последовательности 127 с N-конца. Важную роль в проявлении эффектов гормона играет остаток гистидина, расположенный на N-конце, а в связывании с рецепторами  фрагмент 2027.

В плазме крови глюкагон не связывается с каким-либо транспортным белком, время полупревращения его равно 5 мин, в печени он разрушается протеиназами, при этом распад начинается с расщепления связи между Ser2 и Gln3 и удаления дипептида с N-конца.

Секреция глюкагона подавляется глюкозой, но стимулируется белковой пищей. GLP-1 ингибирует секрецию глюкагона и стимулирует секрецию инсулина.

Глюкагон оказывает действие только на гепатоциты и жировые клетки, имеющие в плазматической мембране рецепторы к нему. В гепатоцитах, связываясь с рецепторами на плазматической мембране, глюкагон посредством G-белка активирует аденилатциклазу, катализирующую образование сАМР, который, в свою очередь, приводит к активации фосфорилазы, ускоряющей распад гликогена, и ингибированию гликогенсинтазы и торможению образования гликогена. Глюкагон стимулирует глюконеогенез, индуцируя синтез ферментов, участвующих в этом процессе: глюкозо-6-фосфатазы, фосфоенолпируваткарбоксикиназы, фруктозо-1,6-дифосфатазы. Суммарный эффект глюкагона в печени сводится к повышенному образованию глюкозы.

В жировых клетках гормон также, используя аденилатциклазный каскад, активирует гормончувствительную триацилглицеринлипазу, стимулируя липолиз. Глюкагон повышает секрецию катехоламинов мозговым веществом надпочечников. Участвуя в реализации реакций типа «бей или беги», глюкагон повышает доступность энергетических субстратов (глюкозы, свободных жирных кислот) для скелетных мышц и усиливает кровоснабжение скелетных мышц за счёт усиления работы сердца.

Глюкагон не оказывает действия на гликоген скелетных мышц из-за практически полного отсутствия в них глюкагоновых рецепторов. Гормон вызывает увеличение секреции инсулина из β-клеток поджелудочной железы и торможение активности инсулиназы.

5.2.10. Регуляция метаболизма гликогена. Накопление глюкозы в организме в виде гликогена и его распад согласуются с потребностями организма в энергии. Направление процессов метаболизма гликогена регулируется механизмами, зависимыми от действия гормонов: в печени инсулина, глюкагона и адреналина, в мышцах инсулина и адреналина. Переключение процессов синтеза или распада гликогена происходит при переходе от абсорбтивного периода к постабсорбтивному или при смене состояния покоя на физическую работу.

5.2.10.1. Регуляция активности гликогенфосфорилазы и гликогенсинтазы. При изменении концентрации глюкозы в крови происходит синтез и секреция инсулина и глюкагона. Эти гормоны регулируют процессы синтеза и распада гликогена, воздействуя на активность ключевых ферментов этих процессов: гликогенсинтазу и гликогенфосфорилазу путем их фосфорилирования-дефосфорилиро- вания.

Рис. 5.24 Активация гликогенфосфорилазы фосфорилированием остатка Ser14 с помощью киназы гликогенфосфорилазы и инактивация с помощью фосфатазы, катализирующей дефосфорилирование остатка серина (согласно )

Оба фермента существуют в двух формах: фосфорилированной (активная гликогенфосфорилаза а и неактивная гликогенсинтаза) и дефосфорилированной (неактивная фосфорилаза b и активная гликогенсинтаза) (рис. 5.24 и 5.25). Фосфорилирование осуществляется киназой, катализирующей перенос фосфатного остатка от АТР на остаток серина, а дефосфорилирование катализирует фосфопротеинфосфатаза. Активности киназы и фосфатазы также регулируются путем фосфорилирования-дефосфорилирования (см. рис. 5.25).

Рис. 5.25. Регуляция активности гликогенсинтазы. Фермент активируется действием фосфопротеинфосфатазы (РР1), дефосфорилирующей три остатка фосфосерина вблизи С-конца в гликогенсинтазе. Киназа 3 гликогенсинтазы (GSK3), катализирующая фосфорилирование трех остатков серина в гликогенсинтазе, ингибирует синтез гликогена и активируется фосфорилированием с помощью казеинкиназы (СКII). Инсулин, глюкоза и глюкозо-6-фосфат активируют фосфопротеинфосфатазу, а глюкагон и адреналин (эпинефрин) ее ингибируют. Инсулин тормозит действие киназы 3 гликогенсинтазы (согласно )

сАМР-зависимая протеинкиназа А (РКА) фосфорилирует киназу фосфорилазы, переводя ее в активное состояние, которая в свою очередь фосфорилирует гликогенфосфорилазу. Синтез сАМР стимулируется адреналином и глюкагоном.

Инсулин посредством каскада с участием Ras-белка (сигнальный Ras-путь) активирует протеинкиназу рр90S6, фосфорилирующую и тем самым активирующую фосфопротеинфосфатазу. Активная фосфатаза дефосфорилирует и инактивирует киназу фосфорилазы и гликогенфосфорилазу.

Фосфорилирование с помощью РКА гликогенсинтазы приводит к ее инактивации, а дефосфорилирование с помощью фосфопротеинфосфатазы активирует фермент.

5.2.10.2. Регуляция метаболизма гликогена в печени. Изменение концентрации глюкозы в крови изменяет и относительные концентрации гормонов: инсулина и глюкагона. Отношение концентрации инсулина к концентрации глюкагона в крови называется «инсулин-глюкагоновым индексом». В постабсорбтивный период индекс снижается и на регуляцию концентрации глюкозы в крови оказывает влияние концентрация глюкагона.

Глюкагон, как приведено выше, активирует выделение в кровь глюкозы за счет распада гликогена (активации гликогенфосфорилазы и ингибирования гликогенсинтазы) или путем синтеза из других веществ  глюконеогенеза. Из гликогена образуется глюкозо-1-фосфат, изомеризующийся в глюкозо-6-фосфат, под действием глюкозо-6-фосфатазы гидролизуемый с образованием свободной глюкозы, способной выйти из клетки в кровь (рис. 5.26).

Действие адреналина на гепатоциты сходно с действием глюкагона в случае использования  2 -рецепторов и обусловлено фосфорилированием и активацией гликогенфосфорилазы. В случае взаимодействия адреналина с  1 -рецепторами плазматической мембраны трансмембранная передача гормонального сигнала осуществляется с использованием инозитолфосфатного механизма. В обоих случаях активируется процесс распада гликогена. Использование того или иного типа рецептора зависит от концентрации адреналина в крови.

Рис. 5.26. Схема фосфоролиза гликогена

В период пищеварения инсулин-глюкагоновый индекс повышается и преобладает влияние инсулина. Инсулин снижает концентрацию глюкозы в крови, активирует, фосфорилируя через Ras-путь, фосфодиэстеразу сАМР, гидролизующую этот вторичный посредник с образованием АМР. Инсулином активируется также через Ras-путь фосфопротеинфосфатаза гранул гликогена, дефосфорилирующая и активирующая гликогенсинтазу и инактивирующая киназу фофорилазы и саму гликогенфосфорилазу. Инсулин индуцирует синтез глюкокиназы для ускорения фосфорилирования глюкозы в клетке и включения ее в гликоген. Таким образом, инсулин активирует процесс синтеза гликогена и тормозит его распад.

5.2.10.3. Регуляция метаболизма гликогена в мышцах. В случае интенсивной работы мышц распад гликогена ускоряется адреналином, связывающимся с  2 -рецепторами и через аденилатциклазную систему приводящим к фосфорилированию и активации киназы фосфорилазы и гликогенфосфорилазы и ингибированию гликогенсинтазы (рис. 5.27 и 5.28). В результате дальнейшего превращения глюкозо-6-фосфата, образовавшегося из гликогена, синтезируется АТР, необходимый для осуществления интенсивной работы мышц.

Рис. 5.27. Регуляция активности гликогенфосфорилазы в мышцах (согласно )

В состоянии покоя гликогенфосфорилаза мышц неактивна, так как находится в дефосфорилированном состоянии, но распад гликогена происходит за счет аллостерической активации гликогенфосфорилазы b с помощью АМР и ортофосфата, образующихся при гидролизе АТР.

Рис. 5.28. Регуляция активности гликогенсинтазы в мышцах (соглас- но )

При умеренных мышечных сокращениях аллостерически (ионами Са 2+) может активироваться киназа фосфорилазы. Концентрация Са 2+ увеличивается при сокращении мышц в ответ на сигнал двигательного нерва. При затухании сигнала уменьшение концентрации Са 2+ одновременно «выключает» активность киназы, таким образом

ионы Са 2+ участвуют не только в мышечном сокращении, но и в обеспечении энергией этих сокращений.

Ионы Са 2+ связываются с белком кальмодулином, в данном случае выступающим одной из субъединиц киназы. Мышечная киназа фосфорилазы имеет строение  4  4  4  4 . Каталитическими свойствами обладает только -субъединица, - и -субъединицы, являясь регуляторными, фосфорилируются по остаткам серина с помощью РКА, -субъединица идентична белку кальмодулину (подробно рассмотрен в разд. 2.3.2 части 2 «Биохимия движения»), связывает четыре иона Са 2+ , что приводит к конформационным изменениям, активации каталитической -субъединицы, хотя киназа остается в дефосфорилированном состоянии.

В период пищеварения в состоянии покоя в мышцах также происходит синтез гликогена. Глюкоза поступает в мышечные клетки с помощью белков-переносчиков ГЛЮТ 4 (их мобилизация в клеточную мембрану под действием инсулина подробно рассмотрена в разд. 5.2.4.3 и на рис. 5.21). Влияние инсулина на синтез гликогена в мышцах осуществляется также посредством дефосфорилирования гликогенсинтазы и гликогенфосфорилазы.

5.2.11. Неферментативное гликозилирование белков. Одним из видов посттрансляционной модификации белков является гликозилирование остатков серина, треонина, аспарагина, гидроксилизина с помощью гликозилтрансфераз. Поскольку в крови в период пищеварения создается высокая концентрация углеводов (восстанавливающих сахаров), возможно неферментативное гликозилирование белков, липидов и нуклеиновых кислот, получившее название гликирование. Продукты, образующиеся в результате многоступенчатого взаимодействия сахаров с белками, называются продуктами конечного гликозилирования (AGEs  Advanced Glycation End-products) и обнаружены во многих белках человека. Период полураспада этих продуктов более длительный, чем белков (от нескольких месяцев до нескольких лет), и скорость их образования зависит от уровня и длительности экспозиции с редуцирующим сахаром. Предполагается, что именно с их образованием связаны многие осложнения, возникающие при диабете, при болезни Альцгеймера, при катаракте.

Процесс гликирования можно разделить на две фазы: раннюю и позднюю. На первой стадии гликирования происходит нуклеофильная атака карбонильной группы глюкозы -аминогруппой лизина или гуанидиниевой группы аргинина, в результате которой образуется лабильное основание Шиффа – N ‑гликозилимин (рис. 5.29).Образование основания Шиффа – процесс относительно быстрый и обратимый.

Далее происходит перегруппировка N ‑гликозилимина с образованием продукта Амадори – 1‑амино‑1‑дезоксифруктозы. Скорость этого процесса ниже, чем скорость образования гликозилимина, но существенно выше, чем скорость гидролиза основания Шиффа,

Рис. 5.29. Схема гликирования белка. Открытая форма углевода (глюкозы) реагирует с -аминогруппой лизина с образованием Шиффова основания, подвергающегося перегруппировке Амадори в кетоамин через промежуточное образование еноламина. Перегруппировка Амадори ускоряется, если вблизи остатка лизина располагаются остатки аспартата и аргинина. Кетоамин далее может давать разнообразные продукты (продукты конечного гликирования  AGE). На схеме приведена реакция со второй молекулой углевода с образованием дикетоамина (согласно )

поэтому белки, содержащие остатки 1‑амино‑1‑дезоксифруктозы, накапливаются в крови.Модификации остатков лизина в белках на ранней стадии гликирования, по-видимому, способствует наличие в непосредственной близости от реагирующей аминогруппы остатков гистидина, лизина или аргинина, которые осуществляют кислотно-основной катализ процесса, а также остатки аспартата, оттягивающего протон от второго атома углерода сахара. Кетоамин может связать еще один остаток углевода по иминогруппе с образованием дважды гликированного лизина, превращающегося в дикетоамин (см. рис. 5.29).

Поздняя стадия гликирования, включающая дальнейшие превращения N ‑гликозилимина и продукта Амадори, – более медленный процесс, приводящий к образованию стабильных продуктов конечного гликирования (AGEs). В последнее время появились данные о непосредственном участии в формировании AGEs α‑дикарбо-нильных соединений (глиоксаля, метилглиоксаля, 3‑дезоксиглю-козона), образующихся in vivo как при деградации глюкозы, так и в результате превращений основания Шиффа при модификации лизина в составе белков глюкозой (рис. 5.30). Специфические редуктазы и сульгидрильные соединения (липоевая кислота, глутатион) способны трансформировать реактивные дикарбонильные соединения в неактивные метаболиты, что отражается в уменьшении образования продуктов конечного гликирования.

Реакции α‑дикарбонильных соединений с ε‑аминогруппами остатков лизина или гуанидиниевыми группировками остатков аргинина в белках приводят к образованию белковых сшивок, которые ответственны за осложнения, вызванные гликированием белков, при диабете и других заболеваниях. Кроме того, в результате последовательной дегидратации продукта Амадори при С4 и С5 образуются 1‑амино‑4‑дезокси‑2,3‑дион и -ендион, которые также могут участвовать в образовании внутримолекулярных и межмолекулярных белковых сшивок.

Среди AGEs охарактеризованы N ε ‑карбоксиметиллизин (CML) и N ε ‑карбоксиэтиллизин (CEL), бис(лизил)имидазольные аддукты (GOLD  глиоксаль-лизил-лизил-димер, MOLD  метилглиоксаль-лизил-лизил-димер, DOLD  дезоксиглюкозон-лизил-лизил-димер), имидазолоны (G‑H, MG‑H и 3DG‑H), пирралин, аргпиримидин, пентозидин, кросслин и весперлизин.На рис. 5.31 приведены некоторые

Рис. 5.30. Схема гликирования белков в присутствии D‑глюкозы. В рамке показаны основные предшественники продуктов AGE, образующиеся в результате гликирования (согласно )

конечные продукты гликирования. Например, пентозидин и карбоксиметиллизин (СМL)  конечные продукты гликирования, образующиеся в условиях окисления, обнаружены в долгоживущих белках: коллагене кожи и кристаллине хрусталика. Карбоксиметиллизин привносит в белок отрицательно заряженную карбоксильную группу вместо положительно заряженной аминогруппы, что может привести к изменению заряда на поверхности белка, к изменению пространственной структуры белка. СМL является антигеном, узнаваемым антителами. Количество этого продукта увеличивается линейно с возрастом. Пентозидин представляет собой кросс-линк (продукт поперечной сшивки) между продуктом Амадори и остатком аргинина в любом положении белка, образуется из аскорбата, глюкозы, фруктозы, рибозы, обнаружен в тканях мозга пациентов с болезнью Альцгеймера, в коже и плазме крови больных диабетом.

Конечные продукты гликирования могут способствовать свободно-радикальному окислению, изменению заряда на поверхности белка, необратимой сшивке между различными участками белка, что

нарушает их пространственную структуру и функционирование, делает устойчивыми к ферментативному протеолизу. В свою очередь, свободно-радикальное окисление может вызывать неферментативный протеолиз или фрагментацию белков, перекисное окисление липидов.

Образование конечных продуктов гликирования на белках базальной мембраны (коллаген IV типа, ламинин, гепарансульфат протеогликан) приводит к ее утолщению, сужению просвета капилляров и нарушению их функции. Эти нарушения внеклеточного матрикса изменяют структуру и функцию сосудов (снижение эластичности сосудистой стенки, изменение ответа на сосудорасширяющее действие оксида азота), способствуют более ускоренному развитию атеросклеротического процесса.

Конечные продукты гликирования (КПГ) влияют также на экспрессию некоторых генов, связываясь со специфическими КПГ-рецепторами, локализованными на фибробластах, Т-лимфоцитах, в почках (мезангиальные клетки), в стенке сосудов (эндотелий и гладкомышечные клетки), в мозге, а также в печени и селезенке, где они выявляются в наибольшем количестве, т. е. в тканях, богатых макрофагами, которые опосредуют трансдукцию этого сигнала посредством увеличения образования свободных радикалов кислорода. Последние, в свою очередь, активируют транскрипцию ядерного NF-kB фактора  регулятора экспрессии многих генов, отвечающих на различные повреждения.

Одним из эффективных способов предупреждения нежелательных последствий неферментативного гликозилирования белков является снижение калорийности пищи, что отражается в снижении концентрации глюкозы в крови и уменьшении неферментативного присоединения глюкозы к долгоживущим белкам, например к гемоглобину. Снижение концентрации глюкозы приводит к снижению как гликозилирования белков, так и перекисного окисления липидов. Негативный эффект гликозилирования обусловлен как нарушением структуры и функций при присоединении глюкозы к долгоживущим белкам, так и происходящим вследствие этого окислительным повреждением белков, вызванным свободными радикалами, образующимися при окислении сахаров в присутствии ионов переходных металлов. Нуклеотиды и ДНК подвергаются также неферментативному гликозилированию, что приводит к мутациям из-за прямого повреждения ДНК и инактивации систем репарации, вызывает повышенную ломкость хромосом. В настоящее время изучаются подходы к предупреждению влияния гликирования на долгоживущие белки с помощью фармакологических и генетических воздействий.


Основные функции углеводов

Углеводы являются основной составной частью пищегого рациона человека, так как их потребляют примерно в 4 раза больше, чем жиров и белков. Они выполняют в организме многие разнообразные функции но главная из них – энергетическая (рис. 1). На протяжении жизни человек в среднем потребляет около 14 т углеводов, в том числе более 2,5 т моно- и дисахаридов. За счет углеводов обеспечивается около 60% суточной энергоценности, тогда как за счет белков и жиров вместе взятых – только 40%

Рис. 1. Основные функции углеводов в человеческом организме.

Средняя потребность в углеводах составляет 350-500 г/сутки. При увеличении физической нагрузки доля углеводов должна возрастать.

Углеводы необходимы для биосинтеза нуклеиновых кислот, заменимых аминокислот, как составная структурная часть клеток. Они входят в состав гормонов, ферментов и секретов слизистых желез.

Регуляторная функция углеводов разнообразна. Они противодействуют накоплению кетоновых тел при окислении жиров, регулируют обмен углеводов и деятельность центральной нервной системы. Важную роль играют углеводы, выполняя защитные функции. Так, глюкуроновая кислота, соединяясь с некоторыми токсическими веществами, образует растворимые в воде нетоксические сложные эфиры, легко удаляемые из организма.

По пищевой ценности углеводы делят на усвояемые инеусвояемые. Усвояемые углеводы перевариваются и метаболизируются в организме человека. К ним относятся глюкоза, фруктоза, сахароза, лактоза, мальтоза, α-глюкановые полисахариды – крахмал, декстрины и гликоген. Неусвояемые углеводы не расщепляются ферментами, секретируемыми в пищеварительном тракте человека. К неусвояемым углеводам относятся рафинозные олигосахариды и не-α-глюконовые полисахариды – целлюлоза, гемицеллюлоза, пектиновые вещества, лигнин, камеди и слизи.

Усвояемые углеводы

Известно более 200 различных природных моносахаридов, однако только некоторые из них используются в питании. Наибольшей пищевой ценностью обладают альдозы (глюкоза, галактоза, манноза, ксилоза), а также кетозы (фруктоза). Потребление глюкозы и фруктозы – двух наиболее распространенных в природе моносахаридов – достигает 20% общего потребления углеводов. Из кишечника углеводы всасываются в кровь только в виде глюкозы и фруктозы. Глюкозу в качестве питательного материала в организме человека используют в основном нервные клетки, мозговое вещество почек и эритроциты.

Депонируется глюкоза в виде гликогена печени (100 г) и мышц (250 г). В организме постоянный уровень концентрации глюкозы в крови поддерживается с помощью гормонов поджелудочной железы – инсулина и глюкагона.

Фруктоза менее распространена, чем глюкоза, и так же быстро окисляется. Фруктоза обладает наибольшей сладостью из всех известных сахаров. Поступая в организм, большая ее часть быстро усваивается тканями без инсулина, другая, меньшая, превращается в глюкозу. То, что фруктоза способна усваиваться без инсулина, делает ее незаменимой в питании больных диабетом. Основными пищевыми источниками глюкозы и фруктозы служат мед, сладкие овощи и фрукты. В семечковых преобладает фруктоза, а в косточковых (абрикосы, персики, сливы) – глюкоза. Количество фруктозы и глюкозы в ягодах приблизительно одинаково (табл. 1).

Табл. 1. Углеводы плодов

Пектиновые вещества

Клетчатка

Всего углеводов

Сахароза

Фруктоза

Виноград

Земляника

В современных условиях целесообразно удовлетворять потребность в углеводах, используя нерафинированные продукты, а также продукты, содержащие фруктозу (мед, некоторые плоды и овощи), поскольку фруктоза, как указывалось выше, медленнее усваивается, обмен ее практически не связан с инсулином и она не вызывает гипергликемии (увеличение содержания глюкозы в крови). Высокая сладость фруктозы позволяет использовать меньшие ее количества по сравнению с сахарозой и глюкозой для достижения сладости продуктов и напитков и снизить таким образом общее потребление сахаров.

Основные пищевые дисахариды в питании человека – сахароза и лактоза.

Сахар, основным компонентом которого является сахароза, выполняет в организме роль энергоносителя.

За последние 150 лет потребление сахара стремительно увеличилось – в гораздо большей степени, чем считает полезным медицина. В России и странах СНГ его реальное потребление достигло 70-100 г в сутки. В других странах еще выше: в Англии – 130 г, а среди подростков – 156 г в сутки.

За сахаром закрепилось название «белая смерть». В литературе по диетологии появилось понятие «сахаролик». Дело в том, что сахар представляет собой рафинированный продукт, что приводит к недополучению человеком сотен, а возможно, и тысяч разнообразных биологически-активных веществ, которые усваивали наши предки с пищей в течение миллионов лет. При попадании в кишечник сахароза быстро распадается на глюкозу и фруктозу и всасывается в кровь. В крови заметно повышается концентрация глюкозы. Это своеобразный удар по поджелудочной железе, от которой требуется поставлять организму достаточное количество гормона инсулина, чтобы отрегулировать содержание глюкозы в крови. Подобные резкие колебания уровня глюкозы в крови требуют от организма напряженной работы, и даже включения резервных регуляторных возможностей.

Наиболее частое и серьезное последствие избыточного потребления рафинированного сахара – нарушение обмена веществ, прежде всего обмена углеводов (рис. 2).

Неслучайно сахарный диабет пожилых людей называли «болезнью кондитеров». Задолго до появления диабета как заболевания у людей, потребляющих много сахара, понижается уровень сахара в крови (гипогликемия). Постоянное поступление сахара в организм вызывает повышенную активность ферментных систем, утилизирующих его. Для поддержания необходимого уровня глюкозы в крови сахара требуется все больше и больше. По мере истощения от чрезмерной нагрузки ферментных механизмов переработки сахара гипогликемия переходит в гипергликемию и диабет, которые нередко осложняются другими нарушениями обмена веществ, приводящих к ожирению, сердечно-сосудистым заболеваниям.

По данным ВОЗ, потребление сахара в странах с низкой смертностью от заболеваний органов кровообращения колеблется от 25 до 81 г в сутки, в странах с высокой смертностью – от 87 до 136 г.

Однако недопустимо сахар считать вредным продуктом, вредно лишь злоупотребление им. В суточном рационе питания доля сахара от общего количества углеводов должна составлять 15-20%. От такого количества сахара организм не будет испытывать излишних нагрузок.

Лактоза – наиболее важный углевод в период грудного вскармливания и при искусственном кормлении маленьких детей. Основным источником лактозы в пищевых продуктах являются молоко (4,8-5,2%), сливки (3,7%), сметана и кефир (3,1-3,6%).

При отсутствии или уменьшении фермента лактазы, расщепляющей лактозу до глюкозы и галактозы, наступает непереносимость молока.

Рис. 2 Основные опасности недостатка или избытка усвояемых углеводов

Большое значение для жизнедеятельности организма имеют олигосахариды, содержащие более двух моносахаридов. В силу более сложной химической структуры данная группа пищевых компонентов значительно медленнее подвергается действию пищеварительных ферментов. Вследствие этого большая их часть переходит в толстый кишечник, где активно используется в качестве питательного субстрата представителями естественной микрофлоры кишечника и в особенности бифидобактериями. В свою очередь это способствует восстановлению нормальных микробных соотношений и щелочно-кислотного баланса в кишечнике, а также обеспечивают организм целым рядом витаминов микробного происхождения. По этой причине данная группа соединений относится к группе бифидогенных факторов и отчасти компенсирует недостаток пищевых волокон.

Среди полисахаридов растительных продуктов наибольшее значение в питании человека имеет крахмал.

В организме человека крахмал сырых растений постепенно распадается в пищеварительном тракте, при этом распад начинается уже во рту. Ввиду того, что процесс гидролиза крахмала в кишечнике происходит постепенно, прием его с пищей не вызывает такого резкого подъема сахара в крови и черезмерного напряжения инсулярного аппарата поджелудочной железы, как глюкоза. Установлено, что крахмал снижает содержание холестерина в печени и в сыворотке крови, способствует синтезу рибофлавина кишечными бактериями, который, входя в ферменты способствует превращению холестерина в желчные кислоты и выведению его из организма, что имеет большое значение для предотвращения атеросклероза. Крахмал способствует интенсификации обмена жирных кислот.

Больше всего крахмала содержится в хлебопродуктах (40-73%), семенах бобовых растений (40-45%) и картофеле (15%).

В животных продуктах содержится относительно небольшое количество другого усвояемого полисахарида, близкого по химическому строению к крахмалу, – гликогена (в печени – 2-10%, в мышечной ткани – 0,3-1,0%).

При недостатке углеводов в организме появляются слабость, головокружение, головная боль, чувство голода, сонливость, потливость, дрожь в руках.



Одним из главных заданий бодибилдеров и просто физически активных людей является правильный подбор продуктов и спортивных добавок. Известно, что одни и те же спортивные добавки призваны выполнять разные функции для разных спортсменов. К примеру, культуристы рассматривает аминокислоты с разветвленной цепью с точки зрения улучшения роста мышц и устойчивого синтеза мышечного белка. Но немаловажным моментом в тренировках является период наступления усталости во время интенсивных тренировок. В таких ситуациях атлетам необходима выносливость, и одним из компонентов, который способен ее повысить является цитруллин малат. Поэтому много бодибилдеров включают его в своеи предтернировочные комплексы.
Цитруллин — это аминокислота, которая получающаяся в результате соединения аминокислоты орнитин и карбамоил фосфата. В организме это происходит во время мочевого цикла, таким образом, тело избавляется от азотистых отходов. Избыток цитруллина, получаемый из добавок, позволяет мочевой цикл удалять аммиак, производимый работающими на тренировке мышцами, прежде чем он окажет эффект усталости.
Цитруллин играет важную роль в метаболических процессах организма. Кроме того цитруллин это побочный продукт, получаемый при переработке организмом такой аминокислоты как аргинин в оксид азота. Как показывают исследования, избыток цитруллина увеличивает количество аргинина в крови, что приводит к увеличению выработки оксида азота. В свою очередь большое количество азота положительно влияет на приток крови к мышцам во время тренировки, что позволяет мышечной ткани дольше находиться под нагрузкой и лучше накачиваться кровью.
Малат или яблочная кислота — солевое соединение, которое часто используется в качестве пищевого консерванта, некоторые фрукты, такие как яблоки, из-за него обладают кисловатым привкусом. Еще одним положительным свойством малата является то, что он способствует рециркуляции молочной кислоты, это помогает в борьбе с усталостью. Вместе с цитруллином, малат позволяет организму дольше выдерживать разные нагрузки.

Цитруллин в спорте

В бодибилдинге и других видах спорта цитруллин применяется довольно часто, поскольку эта добавка увеличивает производительность тренировки. Ускоряя освобождение от аммиака, цитруллин из спортивного питания позволяет отсрочить момент снижения активности водорода в мышцах, происходящее во время интенсивной физической работы. При падении активности водорода, мышца закисляется, и настает усталость.
Так как из цитруллина синтезируется аргинин, он может выступать как донатор азота, он лучше усваивается и не разрушается в печени после абсорбции из пищеварительного тракта, но этот механизм действия не является основным. Также, цитруллин угнетает ферменты, которые разрушают оксид азота. Предполагается, что цитруллин может увеличивать продукцию гормона роста, секрецию инсулина и продукцию креатина, хотя эти эффекты не доказаны. К положительным эффектам можно также добавить то, что этот препарат помогает атлетам снизить боль в мышцах после тренировки.

Как принимать и в каких дозах

Рекомендуется принимать цитруллин на пустой желудок перед тренировками, за 05-1,5 часа. Также можно дополнительно его употреблять утром и перед сном. Поскольку многие эффекты цитруллина обусловлены подъемом уровня аргинина, специфика приема тоже одинакова.
Минимальной эффективной дозой цитруллина является 6 г в сутки. Но исследования показывают, что если принимать 18 грамм в сутки, то результаты будут значительно лучшими.

Сочетание цитруллина с другими добавками

Чтобы увеличить эффективность тренировок можно комбинировать с цитруллином различные добавки.
Наиболее предпочтительное спортивное питание для сочетания:
Карнозин — помогает увеличить анаэробный порог за счет буферизации молочной кислоты, а также защитить мышцы от окислительного стресса.
L-карнитин — увеличивает энергопродукцию, за счет включения в метаболизм жиров. Позволяет улучшить физические показатели, защитить сердечно-сосудистую систему.
Креатин — увеличивает силу и мышечный рост.
Аргинин — улучшает питание мышц за счет увеличения продукции оксида азота. Увеличивает продукцию гормона роста и инсулина. Целесообразность комбинирования недостаточно обоснована.
Витамины и минералы — элементы, которые участвуют практически во всех метаболических процессах. Особенно хорошо цитруллин сочетается с витаминами группы В и цинком.

Побочные эффекты цитруллина

Доныне, в ходе клинических испытаний не было выявлено ни одного побочного эффекта цитруллина. Также не было сообщений и от атлетов, употребляющих цитруллин.

Натуральные источники цитруллина

Арбуз. Особенно богата цитруллином кожура арбуза. Кроме цитруллина арбуз содержит и другие имунностимулирующие антиоксиданты, полезные для сердечно-сосудистой системы, в том числе ликопин. Цитруллин присутствует также и в арбузных семечках.
Арахис. Арахис является хорошим источником цитруллина при относительно высоком содержании мононенасыщенных жиров, полезных для сердца. Кроме того, в арахисе много антиоксидантов и волокна, важных составляющих здорового питания.
Соевые бобы. В отличие от многих других продуктов растительного происхождения, соевые бобы содержат весь спектр незаменимых аминокислот. Это делает их весьма привлекательной пищей для вегетарианцев. В соевых бобах присутствует цитруллин, железо, медь и омега-3 жирные кислоты. Железо необходимо для формирования красных кровяных клеток, медь – для обмена веществ, а жирные кислоты – для активной мозговой деятельности и бесперебойной работы сердца.
Цитруллин также содержится и в других продуктах питания, таких как рыба, молоко, яйца, мясо, а также в луке и чесноке.

Витамины — это высокоактивные биологические вещества, которые отвечают за определенные жизненные процессы. При попадании в наш организм они способствуют активизации разных процессов. Разные витамины способны помочь укрепить иммунную систему, снижают утомляемость, улучшают восстанавливаемость при физической нагрузке, улучшают общее функциональное состояние организм и нейтрализуют вредные факторы окружающей среды.
Витаминно-минеральный комплекс (мультивитамины) — это добавки, задание которых состоит в том, чтобы обеспечить организм витаминами, минералами, а также другими важными веществами. Мультивитамины можно встретить в различных формах, они бывают в форме таблеток, капсул, пастилы, порошка, жидкости и инъекционных растворов. В нынешнее время витаминно-минеральные комплексы производят, учитывая разные факторы, такие как возраст, пол и деятельность человека. К примеру, различают такие мультивитамины: для беременных, детей, пожилых людей, для атлетов, для мужчин и женщин. Мультивитамины не содержат гормональных и вредных веществ, они не опасны для здоровья, и помогают его укрепить, а также активировать метаболические процессы.

Качество витаминно-минеральных комплексов.

Не сегодняшний день рынок спортивного питания имеет различные виды витаминно-минеральных комплексов, которые отличаются своей ценой и качеством. Но состав всех мультивитаминов очень похож.
Все дело в том во взаимодействии отдельных компонентов комплекса. Дешевые витаминно-минеральные комплексы нередко отличаются от дорогих нарушением всасывания определенных витаминов и минералов, что само собой способствует ухудшению баланса микронутриентов, которые поступают в организм, тем самым снижается и эффективность принятия данного комплекса. В дорогих препаратах наоборот присутствуют элементы, которые способствуют усвоению тех или иных элементов, а также помогают добиться синергического эффекта, когда элементы повышают свойства друг друга. Естественно, такие компоненты приносят намного больше пользы для человеческого организма.

Витамины и минералы в бодибилдинге.

Практика показывает, что как в силовых видах спорта, таких как бодибилдинг, пауэрлифтинг, так и других видах, таких как фитнес, очень сложно добиться желаемых результатов без использования витаминно-минеральных комплексов. Даже если человек употребляет достаточное количество белков и углеводов, систематически занимается спортом, он может иметь проблемы с тренировочным плато. Причиной тому может быть недостаточное употребление витаминов и минералов.
Бодибилдерам необходимо употреблять большое количество высококалорийной пищи, которая содержит мало минералов и витаминов. Они не всегда могут добавить к своему меню достаточное количество фруктов и других источников витаминов, так как это приведет к расстройству органов пищеварения. Но с другой стороны у таких спортсменов потребности организма в минералах и витаминах намного выше, чем в обычных людей. Поэтому витаминно-минеральные комплексы для них просто незаменимы.
Узнав о такой проблеме, бодибилдеры-новички сталкиваются со следующей проблемой, какой же комплекс подобрать для себя? В магазинах можно приобрести множество мультивитаминов, которые по описанию производителя являются самыми лучшими, однако в действительности хороших комплексов не так много. Как отмечалось раньше, качество витаминно-минерального комплекса определяется его матрицами, которые позволяют высвобождать вещества с определенной скоростью и в определенных комбинациях, дающие наилучший эффект усвоения. Кроме того, при занятиях спортом, особенно бодибилдингом, потребности организма существенно изменяются: одних витаминов нужно на 30% больше, других еще больше. Именно поэтому, тяжелоатлетам рекомендуется приобретать специализированные витаминно-минеральные комплексы, которые разработаны с учетом специфических потребностей организма в условиях тренинга. К тому же спортивные витаминно-минеральные комплексы разделяются по половому назначению: на мужские и женские, и в них учитываются физиологические особенности обоих полов.
Отдельно нужно отметить, что витаминно-минеральные комплексы нужно принимать как при наборе мышечной массы и увеличении силовых показателей, так и при работе на рельеф, и при похудении.

Режим приема.

Необходимо соблюдать рекомендации производителей. Обычно мультивитамины принимают на протяжении 1-2 месяцев, после чего делается перерыв не менее одного месяца. Экспертами не рекомендуется вести постоянный прием, так как организм со временем теряет возможность усваивать труднодоступные минералы из пищи, а также внутри организма уменьшается синтез витаминов.

Переваривание это совокупность механических и биохимических процессов, благодаря которым поглощаемая человеком пища преобразуется в вещества, которые могут быть усвоены организмом.

После того, как пища пережевана и проглочена, она попадает в желудок, где подвергается различным видоизменениям, позволяющим дальнейшее всасывание.

Процесс пищеварения продолжается в тонком кишечнике под воздействием различных пищевых ферментов. Там происходит превращение углеводов в глюкозу, расщепление липидов на жирные кислоты и моноглицериды, а белков - на аминокислоты.
Эти вещества, всасываясь через стенки кишечника, попадают в кровь.
.
Между тем, несмотря на некоторые общепринятые взгляды, всасывание этих макронутриентов отнюдь не длится часами и не растягивается на все шесть с половиной метров тонкой кишки. Очень важно знать, что усвоение углеводов и липидов на 80%, а белков - на 50% - осуществляется на протяжении первых 70-ти сантиметров тонкого кишечника.

Некоторые полагают, что углеводы, жиры и белки всегда усваиваются полностью. Многие пациенты думают - и диетологи им в этом не препятствуют - что абсолютно все присутствующие на их тарелке (и, конечно, подсчитанные) калории поступят в кровь сразу после расщепления соответствующей пищи. На самом деле, все обстоит иначе.

Всасывание углеводов

Расщепление углеводов осуществляется под действием пищеварительных ферментов, в особенности амилаз слюнной и поджелудочной желез. А гидролиз углеводов, то есть превращение в усваиваемую организмом глюкозу, напрямую зависит от их гликемического индекса.

Гликемический индекс углевода определяет способность углевода повышать гликемию, то есть количество глюкозы в крови. Другими словами, ГИ выражает способность углевода к гидролизу, то есть расщеплению до глюкозы.

Итак, гликемический индекс (ГИ) измеряет долю глюкозы, которая будет получена из данного углевода в процессе его переработки организмом и, следовательно, попадет в кровь.

Если гликемический индекс (ГИ) глюкозы равен 100, это значит, что при попадании в тонкую кишку она всосется через стенки кишечника на 100 %.
Если ГИ белого хлеба равен 70, это означает, что содержащийся в нём углевод (крахмал) на 70% гидролизуется и пройдет через стенки кишечника в форме глюкозы.

По этому же принципу, если ГИ чечевицы равен 30, то можно полагать, что содержащийся в ней крахмал лишь на 30% будет усвоен организмом в виде глюкозы.
Таким образом, при равном калорийном показателе поглощаемых нами углеводов, количество полученной при их расщеплении и поступающей в кровь глюкозы может значительно варьироваться, в зависимости от ГИ углевода.
Другими словами, гликемический индекс содержащего углеводы продукта выражает его глюкозную биодоступность.

Для облегчения понимания этого феномена раскроем его, используя термин традиционной диетологии, то есть «калории».

Из этой таблицы видно, что после усвоения жареного картофеля в организме высвобождается в три раза больше калорий, чем после усвоения чечевицы, при равных порциях углеводов.
И наоборот, при равных порциях, чечевица после расщеплении высвобождает в три раза меньше «калорий», чем картофель.

Кроме того, опытным путем было выявлено, что употребление сахара (в разумных пределах) в конце приёма пищи если и влияет на гликемический результат приёма пищи, то очень незначительно. Всасывание сахара (ГИ 70) будет снижено в зависимости от того, насколько разнообразна была пища и какое количество пищевых волокон и протеинов она содержала. Совсем по-другому дело обстоит, если сахар поступает в организм натощак, например, в виде сладких газированных напитков (кока-кола). В этом случае углевод всасывается почти полностью.

Этот момент чрезвычайно важен!

Он является одним из основных принципов Метода Монтиньяка и позволяет понять, как можно снизить вес, не уменьшая при этом количества потребляемой пищи, а лишь научившись правильно выбирать продукты.

Этот пункт важен ещё и потому, что заставляет пересмотреть слепое и наивное убеждение традиционной диетологии в том, что все калории, поглощаемые нами, полностью усваиваются организмом.

Многие нутриционисты, пользующиеся понятием гликемического индекса, ошибаются, полагая, что ГИ выражает лишь величину пика гликемии. Так что вся польза продукта с низким ГИ сводится, в их понимании, к тому, что он помогает избежать резкого повышения уровня сахара в крови, замедляя всасывание глюкозы. Таким образом, принцип гликемического индекса углеводов ошибочно связывается с понятием о «медленных» и «быстрых сахарах», которое многие авторы, в частности, профессор Ж. Слама, считают неверным.

Согласно объяснению Дженкинса, приведенному более подробно в специальном разделе сайта, гликемический индекс углеводного продукта соответствует площади треугольника, который образует на графике кривая гипергликемии, возникшей в результате поступления сахара. Другими словами, ГИ углевода выражает количество глюкозы, вырабатывающейся при его расщеплении и поступающей в кровь через стенки кишечника. Чем ниже ГИ продукта, тем меньше глюкозы высвободится в кровь при его переваривании.

В заключение скажем, что гликемический индекс углеводного продукта, помимо гликемии, измеряет степень всасываемости углевода, то есть его биодоступность. Так что повышение уровня гликемии лишь свидетельствует о той доле углевода, которая поступила в кровь человека в виде глюкозы после переваривания продукта.

Всасывание липидов (жиров)

Тема липидов традиционно нелюбима диетологами. Отвращение к жирам вызвано тем, что они высококалорийны: 9 килокалорий на грамм.

Несмотря на укоренившиеся стереотипы, не все жиры, попадающие к нам в тарелку, полностью усваиваются в процессе пищеварения. Всасывание их зависит от нижеперечисленных параметров.

На усвоение жирных кислот влияет их происхождение и химический состав:

  • Насыщенные жирные кислоты (сливочное масло, говяжий жир, баранина, свинина, пальмовое масло…), а также транс-жиры (гидрогенезированный маргарин…) имеют тенденцию откладываться в жировые запасы, а не сразу сжигаться в процессе энергетического обмена.
  • Мононенасыщенные жирные кислоты (оливковое масло, жир утки или гуся) преимущественно используются непосредственно после всасывания. Кроме того, они способствуют снижению гликемии, что уменьшает выработку инсулина и тем самым ограничивает формирование жировых запасов.
  • Полиненасыщенные жирные кислоты , в особенности Омега-3 (рыбий жир, репсовое масло, льняное масло…), всегда расходуются непосредственно после всасывания, в частности, за счёт повышения пищевого термогенеза - энергозатрат организма на переваривание пищи.
    Кроме того, они стимулируют липолиз, (расщепление и сжигание жировых отложений), способствуя тем самым похудению.

Следовательно, при равном калорийном составе разные типы жирных кислот имеют разное, иногда даже противоположное, влияние на метаболизм.

Всасывание жиров зависит от расположения жирных кислот относительно молекулы глицерина:

95 - 98% поглощаемых с пищей жиров имеют структуру триглицеридов . Их ежедневная норма для человека в среднем составляет 100 - 150 гр.

С точки зрения химии, триглицериды представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Различают три возможных варианта расположения жирных кислот относительно молекулы глицерина.

Доля всасывания жирной кислоты зависит от того, какую позицию она занимает. Важно знать, что только те жирные кислоты, которые занимают позицию Р2, хорошо всасываются..
Это связано с тем, что пищевые ферменты, расщепляющие липиды (липазы), имеют разную степень воздействия на жирные кислоты в зависимости от расположения последних.

Это означает, что не все поступившие с пищей жирные кислоты полностью всасываются в организме, как ошибочно полагают многие диетологи. Они могут частично или полностью не усвоиться в тонком кишечнике и быть выведены из организма.

  • Например, в сливочном масле , 80% жирных кислот (насыщенных) находятся в позиции Р2, то есть они полностью всасываемы. Это же относится к жирам, входящим в состав молока и всех не проходящих процесс ферментации молочных продуктов.
  • С другой стороны, жирные кислоты присутствующие в зрелых сырах (особенно сырах длительной выдержки), хоть и являются насыщенными, находятся все же в позициях Р1 и Р3, что делает их менее абсорбируемыми.

Кроме того, в большинстве своём сыры богаты кальцием (особенно твердые сыры, например, швейцарский грюйер…). Кальций соединяется с жирными кислотами, образуя «мыла», которые не всасываются и выводятся из организма.

Из вышесказанного можно заключить, что степень усвоения организмом жирных кислот, входящих в состав молочных продуктов, обусловливается химическими факторами этих продуктов (ферментация, содержание кальция…). От этих факторов зависит не только количество высвобождающейся при переваривании энергии, но и степень риска для сердечно-сосудистой системы.

Такое наблюдение было подтверждено специализированными исследованиями, выявившими взаимосвязь между употреблением в пищу молочных продуктов, не проходящих ферментацию (молоко, сливочное масло, сливки…), и возникновением коронарных болезней.
Было также установлено, что при количественно равном употреблении в пищу молочных продуктов, прошедших ферментацию (сыров), риск развития сердечно-сосудистых заболеваний неодинаков от страны к стране.
Довольно интересно сравнение между жителями Финляндии и Швейцарии. Было отмечено, что смертность от сердечно-сосудистых недугов в Швейцарии в два раза ниже, чем в Финляндии, при примерно равном потреблении молочных продуктов на человека.
Одним из основных объяснений этого является то, что швейцарцы, в отличие от финнов, потребляют большую часть молочных продуктов в виде ферментированных сыров.
Ещё более поразительно сравнение между Финляндией и Францией.
При том, что французы едят в два раза больше молочных продуктов, уровень смертности от сердечно-сосудистых заболеваний во Франции в два с половиной раза ниже.
Этому есть несколько объяснений, одно из которых следующее: французы едят сыры, которые не просто ферментированы, а ещё и выдержаны.
Вызревание сыра способствует переходу входящих в него жирных кислот в положение P1 и P3, что свидетельствует о слабой их всасываемости.

На абсорбцию липидов также влияет количество пищевых волокон.

Присутствие в пище одновременно с жирами пищевых волокон, в частности, растворимых, влияет на усвоение жирных кислот. Например, употребление яблок, богатых пектином, и бобовых, источника камеди, может понизить гиперхолестеринемию, а также содействовать профилактике лишнего веса, уменьшая количество усваиваемых организмом калорий.

Всасывание протеинов

Различные параметры оказывают влияние на абсорбцию белков:

  • Происхождение белка
    Животные белки почти на 100% всасываются в кишечнике. Таким образом, они полностью высвобождаются для использования организмом.
    Процент же всасывания растительных белков, за исключением сои, намного ниже:

    Чечевица - 52%
    - турецкий горох (нут) - 70%
    - пшеница - 36%

  • Состав белка
    Известно, что протеины состоят из разных аминокислот. Недостаток одной или нескольких аминокислот может стать ограничивающим фактором, препятствующим правильному использованию остальных.
    Так что иногда поглощенные белки после всасывания оказываются либо неработоспособными, либо имеют слабую активность, не соответствующую их количеству.
  • Заключение: питательные вещества, поступающие с пищей, не обладают полной стопроцентной усвояемостью. Степень их всасывания может существенно меняться, в зависимости от физико-химического состава самого продукта и поглощаемых одновременно с ним других продуктов.
    Важно учитывать это, предпринимая меры по снижению веса или профилактике сердечно-сосудистых заболеваний.

В пищевом рационе человека встречаются только три основных источника углеводов: (1) сахароза, которая является дисахаридом и широко известна как тростниковый сахар; (2) лактоза, являющаяся дисахаридом молока; (3) крахмал - полисахарид, представленный практически во всей растительной пище, в особенности в картофеле и различных видах зерновых. Другими углеводами, усваиваемыми в небольшом количестве, являются амилоза, гликоген, алкоголь, молочная кислота, пиро-виноградная кислота, пектины, декстрины и в наименьшем количестве - производные углеводов в мясе.

Пища также содержит большое количество целлюлозы, которая является углеводом. Однако в пищеварительном тракте человека не существует фермента, способного расщепить целлюлозу, поэтому целлюлоза не рассматривается как пищевой продукт, пригодный для человека.

Переваривание углеводов в ротовой полости и желудке. Когда пища пережевывается, она смешивается со слюной, которая содержит пищеварительный фермент птиалин (амилазу), секретирующийся в основном околоушными железами. Этот фермент гидролизует крахмал на дисахарид мальтозу и другие небольшие глюкозные полимеры, содержащие от 3 до 9 молекул глюкозы. Однако в ротовой полости пища находится короткое время, и, вероятно, до акта глотания гидролизуется не более 5% крахмала.

Тем не менее, переваривание крахмала иногда продолжается в теле и дне желудка еще в течение 1 ч до тех пор, пока пища не начнет перемешиваться с желудочным секретом. Затем активность амилазы слюны блокируется соляной кислотой желудочного секрета, т.к. амилаза как фермент в принципе не активна при снижении рН среды ниже 4,0. Несмотря на это, в среднем до 30-40% крахмала гидролизуется в мальтозу прежде, чем пища и сопутствующая ей слюна полностью перемешаются с желудочными секретами.

Переваривание углеводов в тонком кишечнике . Переваривание панкреатической амилазой. Секрет поджелудочной железы, как и слюна, содержит большое количество амилазы, т.е. он почти полностью схож в своих функциях с ос-амилазой слюны, но в несколько раз эффективнее. Таким образом, не более чем через 15-30 мин после того, как химус из желудка попадет в двенадцатиперстную кишку и смешается с соком поджелудочной железы, фактически все углеводы оказываются переваренными.

В результате прежде чем углеводы выйдут за пределы двенадцатиперстной кишки или верхнего отдела тощей кишки, они почти полностью превращаются в мальтозу и/или в другие очень небольшие полимеры глюкозы.

Гидролиз дисахаридов и небольших полимеров глюкозы в моносахариды ферментами кишечного эпителия. Энтероциты, выстилающие ворсинки тонкого кишечника, содержат четыре фермента (лактазу, сахаразу, мальтазуи декстриназу), способных расщеплять дисахариды лактозу, сахарозу и мальтозу, а также другие небольшие глюкозные полимеры на их конечные моносахариды. Эти ферменты локализованы в микроворсинках щеточной каемки, покрывающей энтероциты, поэтому дисахариды перевариваются сразу, как только соприкасаются с этими энтероцитами.

Лактоза расщепляется на молекулу галактозы и молекулу глюкозы. Сахароза расщепляется на молекулу фруктозы и молекулу глюкозы. Мальтоза и другие небольшие глюкозные полимеры расщепляются на многочисленные молекулы глюкозы. Таким образом, конечными продуктами переваривания углеводов являются моносахариды. Все они растворяются в воде и мгновенно всасываются в портальный кровоток.

В обычной пище , в которой из всех углеводов больше всего крахмала, более 80% конечного продукта переваривания углеводов составляет глюкоза, а галактоза и фруктоза - редко более 10%.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей