Где в природе встречаются совершенные числа. Совершенные числа

Мы сталкиваемся с числами буквально каждое мгновение нашей земной жизни. Еще у древних греков существовала гематрия (нумерология). Для изображения чисел использовались буквы алфавита. Каждому имени или написанному слову соответствовало определенное число. На сегодня наука математика достигла очень высокой степени развития. Используемых в различных расчетах чисел так много, что они сведены в определенные группы. Особое место среди них занимают совершенные числа.

Истоки

В Древней Греции люди сравнивали свойства чисел в соответствии с их именами. Делителям чисел была отведена особая роль в нумерологии. В связи с этим, идеальными (совершенными) числами были те, что равнялись сумме своих делителей. Но, древние греки в состав делителей не включали само число. Чтобы лучше понять, что такое совершенные числа, покажем это на примерах.

Исходя из этого определения, самое меньшее идеальное число - это 6. После него будет 28. Затем 496.

Пифагор считал, что есть особенные числа. Такого же мнения придерживался и Эвклид. Для них эти числа были настолько необыкновенны и специфичны, что они ассоциировали их с мистическими. Таким числам свойственно быть совершенными. Вот, что такое совершенные числа для Пифагора и Эвклида. К ним относились 6 и 28.

Ключ

Математики всегда стремятся при решении задачи с несколькими вариантами решения найти общий ключ для нахождения ответа.

Так, они искали формулу, определяющую идеальное число. Но получалась лишь гипотеза, которую нужно было еще доказать. Представьте себе, уже определив, что такое совершенные числа, математики потратили больше тысячи лет, чтобы определить пятое из них! Спустя 1500 лет оно стало известно.

Очень весомый вклад в расчетах идеальных чисел внесли ученые Ферма и Мерсен (XVII ст.). Они предложили формулу для их вычисления. Благодаря французским математикам и трудам многих других ученых на начало 2018 года количество совершенных чисел достигло 50.

Прогресс

Безусловно, если на открытие совершенного числа, которое по счету было уже пятым, ушло полтора тысячелетия, то сегодня благодаря компьютерам они вычисляются намного быстрее. Например, открытие 39-го идеального числа пришлось на 2001 год. Оно имеет 4 миллиона знаков. В феврале 2008 года открыли 44-е совершенное число. В 2010 году - 47-е идеальное, и к 2018 году, как было сказано выше, открыто 50-е число со статусом совершенства.

Есть еще одна интересная особенность. Изучая, что такое совершенные числа, математики сделали открытие - они все четные.

Немного истории

Доподлинно неизвестно, когда впервые были замечены числа, соответствующие идеалу. Однако предполагают, что еще в древнем Египте и Вавилоне они изображались на пальцевом счете. И нетрудно догадаться, какое совершенное число они изображали. было 6. До самого пятого века нашей эры сохранялся счет с помощью пальцев. Для показа числа 6 на руке загибали безымянный палец и выпрямляли остальные.

В Древнем Египте мерой длины служил локоть. Это было равносильно длине двадцати восьми пальцев. А, например, в Древнем Риме был интересный обычай - отводить шестое место на пирах почетным и знатным гостям.

Последователи Пифагора

Последователи Пифагора тоже увлекались идеальными числами. Какое из чисел является совершенным после 28, очень интересовало Евклида (IV в. до н. э.). Он дал ключ к поиску всех идеальных четных чисел. Интерес представляет девятая книга Евклидовых «Начал». Среди его теорем есть та, которая объясняет, что совершенным называется число, обладающее замечательным свойством:

значение р будет равносильно выражению 1+2+4+…+2n, что можно записать как 2n+1-1. Это простое число. Но уже 2np будет совершенным.

Чтобы убедиться в справедливости этого утверждения, нужно рассмотреть все собственные делители числа 2np и подсчитать их сумму.

Это открытие предположительно принадлежит ученикам Пифагора.

Правило Евклида

Кроме того, Евклид доказал: вид четного совершенного числа представлен математически как 2n-1(2n-1). Если n - простое и 2n-1 будет простым.

Правилом Евклида пользовался Никомах из Герасы (I-II в.). Он нашел идеальные числа как 6, 28, 496, 8128. Никомах Геразский высказывался об идеальных числах как про очень красивые, но малочисленные математические понятия.

Полторы тысячи лет спустя немецкий ученый Региомонтан (Йоганн Мюллер) открыл пятое совершенное число в математике. Им оказалось 33 550 336.

Дальнейшие поиски математиков

Числа, которые считаются простыми и относятся к ряду 2n-1, носят название - числа Мерсенна. Это название им дано в честь французского математика, жившего в XVII веке. Именно он открыл восьмое совершенное число в 1644 году.

А вот в 1867 году математический мир потрясла новость от шестнадцатилетнего итальянца Никколо Паганини (тезка известного скрипача), который сообщил о дружественной паре чисел 1184 и 1210. Она ближайшая к 220 и 284. Удивительно, но пару проглядели все именитые математики, занимавшиеся изучением дружественных чисел.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Возникновение чисел в нашей жизни не случайность. Невозможно представить себе общение без использования чисел. История чисел увлекательна и загадочна. Человечеству удалось установить целый ряд законов и закономерностей мира чисел, разгадать кое-какие тайны и использовать свои открытия в повседневной жизни. Без замечательной науки о числах - математики - немыслимо сегодня ни прошлое, ни будущее. А сколько ещё неразгаданного.

Актуальность исследовательского проекта по выбранной теме: современная наука и техника раскрыли величие человеческого разума. Они изменили мир и представления о нем. Но до сих пор люди ищут и не могут пока найти ответы на многие вопросы. Совершенные числа не изучены в полной мере. Это одна из интересных и до конца не изученных страниц истории математики.

Идея (проблема). Данная тема мною была выбрана не случайно. Мне интересно узнавать что-новое, необычное. Я с большим удовольствием участвую в различных олимпиадах. Но когда, изучая энциклопедию по математике, увидел тему «наибольший общий делитель», мне показалось, что это очень неинтересно -считать все время по одному и тому же алгоритму. Своими сомнениями поделился с учителем. И она ответила, что делители - это одно из самых загадочных понятий в математике. Просто необходимо узнать по этой теме побольше. Я решил последовать ее совету и очень скоро убедился, что это действительно так. Как интересен мир совершенных чисел. Так родилась моя исследовательская работа.

Цели моего проекта заключается в следующем:

познакомиться с понятием совершенного числа;

исследовать свойства совершенных чисел;

привлечь внимание учащихся к данном теме.

Задачи проекта:

изучить и проанализировать литературу по теме исследования;

«открыть» свойства совершенных чисел и область их применения;

расширить свой умственный кругозор.

Гипотеза: выяснить роль совершенных чисел в математике.

Вид проекта: исследовательский, моно предметный, индивидуальный. Объект изучения: совершенные числа и их свойства.

Сроки проведения исследования: две недели.

Методика исследования:

сбор и изучение литературы и материалов;

опрос-обращение к определенной группе людей, путем письменного анкетирования и устного интервьюирования;

продукт исследования - мультимедийная презентация по теме.

Что такое совершенные числа

Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь.

Существует большое количество определений понятию "число". О числах первый начал рассуждать Пифагор. Пифагору принадлежит высказывание "Всё прекрасно благодаря числу". По его учению число 2 означало гармонию, 5 - цвет, 6 -холод, 7 - разум, здоровье, 8 -любовь и дружбу. А число 10 называли "священной четверицей", так как 10 = 1 + 2 + 3 + 4. Оно считалось священным числом и олицетворяла всю Вселенную.

Первое благодарнаучное определение лишь числа дал считалось Эвклид в своих "Началах": "Единица первое есть то, первое в соответствии, с чем технико каждая из существующих например вещей называется школьников одной. Число сбор есть множество, многим сложенное из единиц".

Античные техника математики считали первое очень важным становилось рассматривать вместе меня с каждым числом риложение все его класс делители, отличные считалось от самого этого интересом числа. Все список делители, на которые могли данное число вместе делится нацело встречается можно получить мириад из разложения числа делителей на простые множители. Такие мириад делители называют собственными. Числа, нельзя имеющие много прекрасным собственных делителей, необходимы назывались abundant (избыточными), людей а имеющие мало, - defizient (недостаточными). При простое этом в качестве книги меры использовалось века не количество, а сумма собственных делителей, которую сравнивали с самим числом. Так, например, для 10 сумма делителей

1 + 2 + 5 = 8 < 10,

так что делителей «недостаток». Для 12 же

1 + 2 + 3 + 4 + 6 = 16 > 12,

т.е. делителей «избыток». Поэтому 10 - «недостаточное», а 12 - «избыточное» число.

Встречается и «пограничный» случай, когда сумма собственных делителей равна самому числу. Например, для 6

То же для 28:

1 + 2 + 4 + 7 + 14 = 28.

Такие числа древние греки особенно ценили и назвали их совершенными. Точно неизвестно, когда и где впервые обратили внимание на совершенные числа. Предполагают, что они были известны уже в древнем Вавилоне и древнем Египте. Во всяком случае, вплоть до V века н.э. в Египте сохранялся счет на пальцах (приложение 1), при котором рука с загнутым безымянным пальцем и выпрямленными остальными изображала число 6 - первое совершенное число.

Поиск вайте совершенных чисел.

Я знали не знал, как необходимы искать совершенные четные числа, поэтому совершенных решил попробовать становилось найти их как которые искали в древности. Взял было числа от 1 до 30 и на калькуляторе среди стал проверять первое каждое такие число. Посмотрите, что мириады у меня получилось. (приложение 2). Среди вместе всех чисел очень мне удалось пьетро найти только школьников два числа 6 и 28. Очень трудоемкий технико поиск как приложение оказалось.

История открытия совершенных чисел.

4.1 Четные совершенные числа.

Никомах Герасский (I-II век н.э.), знаменитый греческий философ и математик (приложение 2), писал:

Совершенные числа красивы. Красивые вещи редки и немногочисленны, безобразные же встречаются в изобилии. Избыточными и недостаточными бывают все числа, в то время как совершенных чисел немного.

Сколько же их? Никомах четвертое этого не знал. Первым понятие прекрасным совершенным литературу числом, о котором делителей знали математики рождения Древней Греции, литературу было число 6. На выяснить шестом месте тоже на званом пиру риложение возлежал самый совершенные уважаемый, самый предлагаю знаменитый и самый интересных почетный гость. Особыми людей мистическими свойствами различных обладало число 6 в увлекательным учении пифагорейцев, могли к которым принадлежал школьников и Никомах. Много причем внимания уделяет могли этому числу хотелось великий Платон (V-IV литературу век до н.э.) в последнего своих «Диалогах» (приложение 3). Недаром непостижимость и в библейских преданиях числа утверждается, что различных мир создан этом был в шесть связь дней, ведь простые более совершенного платон числа среди идея совершенных чисел, мириады чем 6, нет, аббат поскольку оно например первое среди изучаются них.

Следующим совершенным числом, известным древним, было число 28. В Риме в 1917 году при подземных работах было открыто странное сооружение: вокруг большого центрального зала были расположены 28 келий. Это было здание неопифагорейской академии наук. В ней было двадцать восемь членов. До последнего времени столько же членов, часто просто по обычаю, причины которого давным-давно забыты, полагалось иметь во многих ученых обществах (приложение 5).

Древних математиков удивляло особое свойство этих двух чисел. Каждое из них, как уже было отмечено, равно сумме всех своих собственных делителей:

6 = 1 + 2 + 3 и 28 = 1 + 2 + 4 + 7 + 14.

До Евклида (приложение 3) были известны только эти два числа, и никто не знал, существуют ли еще совершенные числа и сколько их вообще может быть. Великий основатель геометрии много занимался изучением свойств чисел; конечно, его не могли не интересовать совершенные числа. Евклид доказал, что всякое число, которое может быть представлено в виде произведения множителей

2 p-1 и 2 p - 1,

где 2 p - 1 - простое число, является совершенным числом, -

эта теорема теперь носит его имя. Если в формулу Евклида

2 p-1 · (2 p - 1)

подставить p = 2, то получим

2 2-1 · (2 2 - 1) = 21 · (22 - 1) = 2 · 3 = 6

Первое совершенное число, а если p = 3, то

2 3-1 · (23 - 1) = 22 · (23 - 1) = 4 · 7 = 28

Благодаря своей формуле Евклид сумел найти еще два совершенных числа: третье при p = 5 и четвертое при p = 7. Вот эти числа:

2 5-1 · (25 - 1) = 24 · (25 - 1) = 16 · 31 = 496

2 7-1 · (27 - 1) = 26 · (27 - 1) = 64 · 127 = 8 128.

Почти носит полторы тысячи цели лет люди сбор знали только первое четыре совершенных могли числа, не зная, однако есть ли таковые следс еще и возможны библейскую ли совершенные числа, существуют не удовлетворяющие формуле нельзя Евклида. Неразрешимая алкуин загадка совершенных список чисел, бессилие появлением разума перед евклида их тайной, их непостижимость совершенные привели к признанию будет божественности этих греческий удивительных чисел.

Один из наиболее выдающихся ученых средневековья, друг и учитель Карла Великого, аббат Алкуин (ок.735-804), один из виднейших деятелей просвещения (приложение 2), организатор школ и автор учебников по арифметике, был твердо убежден, что человеческий род только потому несовершенен, и в нем только потому царит зло, горе и насилие, что он произошел от восьми людей, спасшихся в ноевом ковчеге, а 8 - число несовершенное. До потопа род людской был более совершенен - он происходил от одного Адама, а единица может быть причислена к совершенным числам: она равна самой себе, своему единственному делителю. Алкуин жил в VIII веке. Но даже в XII веке церковь учила, что для спасения души вполне достаточно изучать совершенные числа, и тому, кто найдет новое божественное совершенное число, уготовано вечное блаженство. Но и жажда этой награды не смогла помочь математикам средневековья.

Следующее, пятое совершенное число обнаружил немецкий математик Региомонтан (1436-1476) (приложение 4) лишь в XV веке. Оказалось, что и пятое совершенное число также подчиняется условию Евклида. Не удивительно, что его так долго не могли найти. Гораздо более поражает то, что в пятнадцатом веке вообще смогли его обнаружить. Пятое совершенное число равно

ему соответствует значение р = 13 в формуле Евклида.

Итальянец Пьетро Антонио Катальди (1548-1626), бывший профессором математики во Флоренции и Болонье (приложение 4), тоже для спасения своей души занимался поисками совершенных чисел. В его записках были указаны значения шестого и седьмого совершенных чисел:

8 589 869 056 - шестое число 137 438 691 328 - седьмое число.

Навсегда осталась совершенные в истории загадочная евклида тайна, как интерес он сумел найти литературу их. До сих числа пор предложено получится только одно земного объяснение этой людей загадке - оно награды было дано многим еще его класс современниками: помощь простое божественного провидения, первое подсказавшего своему поиском избраннику верные просто значения двух числа совершенных чисел.

В цели дальнейшем поиск риложение затормозился вплоть образуют до середины XX века, учении когда с появлением прекрасным компьютеров стали числа возможными вычисления, простых превосходившие человеческие поиском возможности.

На январь 2018 года однако известно 50 чётных античные совершенных чисел, удовольствием поиском новых средневековой чисел занимается первое проект распределённых изучения вычислений GIMPS.

4.2 Нечётные совершенные числа

Нечётных совершенных чисел до сих пор не обнаружено, однако не доказано и то, что их не существует. Неизвестно также, бесконечно ли множество всех совершенных чисел.

Доказано, что нечётное совершенное число, если оно существует, имеет не менее 9 различных простых делителей и не менее 75 простых делителей с учетом кратности. Поиском нечётных совершенных чисел занимается проект распределённых вычислений OddPerfect.org.Распределённые вычисления — способ решения трудоёмких вычислительных задач с использованием нескольких компьютеров, чаще всего объединённых в параллельную вычислительную систему.

Свойства совершенных чисел.

Все чётные совершенные числа, кроме6, являются суммой кубов последовательных нечётных натуральных чисел

1 3 + 3 3 + 5 3 + … {displaystyle 1^{3}+3^{3}+5^{3}+ldots } 28 = 1 3 + 3 3 ;

496 = 1 3 + 3 3 + 5 3 + 7 3 ;

8 128 = 1 3 + 3 3 + 5 3 + 7 3 + 9 3 + 11 3 + 13 3 + 15 3 .

Все свойства чётные совершенные сбор числа являются треугольными числами. Это могли значит, что, также взяв совершенное интересом число одинаковых простые монет, мы всегда следс сможем сложить основой из них равносторонний каждая треугольник (приложение 6).

Все четные совершенные числа являются шестиугольными числами (приложение 5) и, значит, могут быть представлены в виде n · (2n−1) для некоторого натурального числа n:

6 = 2 · 3, n = 2;

28 = 4 · 7, n = 4;

496 = 16 · 31, n = 16;

8 128 = 64 · 127, n = 64.

Все чётные совершенные числа, кроме 6 и 496, заканчиваются в десятичной записи на 16, 28, 36, 56 или 76.

Все чётные совершенные числа в двоичной записи содержат сначала единиц, за которыми следует p − 1 {displaystyle p-1} нулей, следствие из их общего представления.

Если сложить все цифры чётного совершенного числа, кроме 6, затем сложить все цифры полученного числа и так повторять, пока не получится однозначное число, то это число будет равно 1

2 + 8 = 10, 1 + 0 = 1

4 + 9 + 6 = 19, 1 + 9 = 10, 1+0=1

Эквивалентная формулировка: остаток от деления чётного совершенного числа, отличного от 6, на 9 равен 1.

Интересные факты о совершенных числах.

Чтобы понять, является ли число совершенным, необходимо проделывать определенные расчеты. Другого пути нет. И такие числа встречаются редко. Например, пифагореец Ямблих писал об идеальных числах как о явлении, встречающемся от мириады до мириады мириад, и затем от мириады мириад до мириад мириад мириад и т. д. Однако в XIX веке были проведены проверочные расчеты, которые показали, что совершенные числа нам встречаются еще реже. Так, от 1020 до 1036 нет никакого совершенного числа, а если следовать Ямблиху, то их должно быть четыре.

Скорее всего, были именно трудность множества нахождения таких чащиеся чисел послужила четвертое поводом к наделению выяснить их мистическими свойствами. Хотя, числа опираясь на библейскую четные историю, ее исследователи внимание сделали вывод, интересно что мир этой сотворен действительно данного прекрасным и совершенным, изучения ведь число непостижимость дней творения - это 6. А первое вот человек преданиях неидеален, так также как сотворен цели и живет в дне древнем седьмом. Однако совершенное его задача - это интересно стремиться к совершенству.

Давайте познакомимся с интересными фактами (приложение 7):

8 людей спаслось в Ноевом Ковчеге после всемирного потопа. Также в нем спаслись по семь пар чистых и нечистых животных. Если суммировать всех спасшихся в Ноевом Ковчеге, то выходит число 28, являющееся совершенным;

руки человека - это совершенное орудие. Они имеют 10 пальцев, которые наделены 28 фалангами;

луна совершает околоземные обороты каждые 28 дней;

при начертании квадрата можно провести в нем диагонали. Тогда несложно будет заметить, что его вершины соединены 6 отрезками. Если то же проделать с кубом, то получится 12 ребер и 16 диагоналей. В сумме получится 28. Восьмиугольник тоже имеет причастность к совершенному числу 28 (20 диагоналей плюс 8 сторон). А семигранная пирамида имеет 7 ребер и 7 сторон основания с 14 диагоналями. В сумме это число 28;

Лев Николаевич Толстой не раз шутливо "хвастался" тем, что дата его рождения 28 августа (по календарю того времени) является совершенным числом. Год рождения Л.Н. Толстого (1828) - тоже интересное число: последние две цифры 28 образуют совершенное число; если обменять местами первые цифры, то получится 8128 - четвертое совершенное число.

Анкетирование.

Прежде чем сделать окончательный вывод, я предлагаю ознакомиться с результатами опроса, цель которого - изучение мнения по данной теме.

Опрос проводился среди следующих категорий:

учащиеся 5 класса (25 человек);

учителя (8 человек);

родители школьников (17 человек).

Всего приняло участие 50 человек.

Опрос велся по следующим вопросам:

Знаете ли вы что такое совершенные числа?

Нужно ли изучать математику?

Результаты данного метода исследования показаны на диаграмме (приложение 7).

А еще я вместе со старшеклассниками провел небольшой блиц-опрос. Мы заходили в каждый класс и просили поднять руки кто любит математику. Ребята с интересом отнеслись к нашей просьбе. Меня порадовало, что большая часть школьников с любовью относиться к данному предмету. Всем было весело и интересно. Многие ребята спрашивали меня для чего нужна такая информация и я с удовольствием рассказал про свое исследование.

В современном мире многим занятия древних математиков кажутся ненужными забавами. Но нельзя забывать, что с этих забав началось серьёзное знакомство людей с числами. Числа стали не только применять, но и изучать.

Совершенные числа не имеют широкого применения, поэтому и не изучаются на уроках математики.

Умение вычислять, болонье логически мыслить, совершенные быть настойчивым шестом и упорным, аккуратным седьмое и внимательным - эти время качества необходимы появлением каждому человеку. И, занимают в то же время, они формуле являются основой потопа хорошего понимания алкуин математики. Математика - волшебная приложение наука, которая идея помогает развивать есть эти способности алкуин и умения. Изучение время математики можно различных сравнивать с нелёгким, технико но увлекательным путешествием подставить по удивительной стране.

Заключение.

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные числа, обладающие рядом очень интересных свойств.

Анализируя научно-популярную литературу о совершенных числах, можно убедиться, что формулы общего вида для нахождения всех совершенных чисел не существует. Вопрос о существовании бесконечности множества четных совершенных чисел, нечетного совершенного числа открыт до сих пор.

Причем нередко одно и тоже открытие происходило в разных точках земного шара, довольно часто повторялось несколько раз, совершенствовалось, а позже распространялось и становилось достоянием всех народов. Математика невольно связывает единой нитью народы мира. Она заставляет их сотрудничать и общаться между собой.

Мир полон тайн и загадок. Но разгадать их могут только пытливые.

Современная наука встречается с величинами такой сложной природы, что для их изучения приходится изобретать все новые виды чисел. И мне бы хотелось продолжить изучение чисел, узнать что-то новое, неизведанное.

Для раскрытия темы данного исследовательского проекта были использованы научно-методические источники, информационная база по математике, литературные произведения, информация из газет и журналов, печатные издания городской библиотеки, а также ресурсы сети интернет.

Список использованной литературы.

1. Берман Г.Н. Число и наука о нем. Общедоступные очерки по арифметике натуральных чисел. - М.: ГИТТЛ, 1954. - 164 с.

2. Википедия, информация по запросу «совершенные числа».

3. Гейзер Г.И., История математики в школе. Пособие для учителей. - М.: Просвещение, 1981.

4. Депман, И. Я Совершенные числа // Квант. - 1991. - № 5. - С. 13-17.

5. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. Пособие для учащихся 5-6 классов средней школы. — М.: Просвещение, 1989. — 287 с.

6. Карпеченко Е. Тайны чисел. Математика /Прил. К газете "Первое сентября" №13 2007.

7. Крылов А.Н., Числа и меры. Математика/ Прил. К газете "Первое сентября"№7 - 1994

8. В работе использованы картинки и фотографии по запросу "Поиск картинки" в Internet.

Приложение 1. Распространённый в средневековой Европе и на Ближнем Востоке пальцевый счёт.

Из книги «Сумма арифметики» итальянского математика Луки Пачоли.

Приложение 2. Таблица поиска совершенных чисел с помощью калькулятора.

Приложение 3. Великие математики

Никомах Герасский Платон

(I-II век н.э.) (V-IV век до н.э.)

Евклид аббат Алкуин

(365-300 до н. э.) (ок.735-804)

Приложение 4. Великие математики

Региомонтан Пьетро Антонио Катальди

(1436-1476) (1548-1626)

Приложение 5. Здание Академии наук

Фёдор Бронников. Гимн пифагорейцев солнцу

Приложение 6. Треугольник из 28 монет.

Приложение 7. Интересные факты о совершенных числах

Ноев ковчег

Руки человека

Луна совершает оборот вокруг Земли

Л. Н. Толстой

Приложение 8. Результаты исследования

§ 4. Совершенные числа

Нумерология (или гематрия, как ее иногда еще называют) была распространенным увлечением у древних греков. Естественным объяснением этому является то, что числа в Древней Греции изображались буквами греческого алфавита, и поэтому каждому написанному слову, каждому имени соответствовало некоторое число. Люди могли сравнивать свойства чисел, соответствующих их именам.

Делители или аликвотные части чисел играли важную роль в нумерологии. В этом смысле идеальными, или, как их называют, совершенными числами являлись такие числа, которые составлялись из своих аликвотиых частей, т. е. равнялись сумме своих делителей. Здесь следует отметить, что древние греки не включали само число в состав его делителей.

Наименьшим совершенным числом является 6:

За ним следует число 28:

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248.

Часто математик, увлеченный решением какой-либо проблемы и имеющий одно или несколько частных решений этой задачи, пытается найти закономерности, которые смогли бы дать ключ к нахождению общего решения. Указанные нами совершенные числа могут быть записаны в виде

6 = 2 3 = 2(2 2 - 1),

28 = 2 2 7 = 2 2 (2 3 - 1),

496 = 24 31 = 2 4 (2 5 - 1).

Это наталкивает нас на гипотезу:

Число является совершенным, если оно представляется в виде

Р = 2 p -1 (2 p - 1) = 2 р q , (3.4.1)

q = 2 p - 1

является простым числом Мерсенна.

Этот результат, известный еще грекам, несложно доказать. Делителями числа Р , включая само число Р , очевидно, являются следующие числа:

1, 2, 2 2 …, 2 р-1 ,

q , 2q , 2 2 q …, 2 р-1 q .

Запишем сумму этих делителей

1 + 2 +… + 2 р -1 + q (1 + 2 +… + 2 р -1),

которая равна

(1 + 2 +… + 2 р -1)(q + 1) = (1 + 2 +… + 2 р -1) 2 р

Если вы не помните формулы для суммы членов геометрической прогрессии,

S = 1 + 2 +… + 2 р -1 ,

то умножьте эту сумму на 2:

2S = 2 + 2 2 +… +2 р -1 + 2 р ,

а затем, вычтя S , получите

S = 2 p - 1 = q .

Таким образом, сумма всех делителей числа Р есть

2 p q = 2 2 p -1 q,

а сумма всех делителей, кроме самого числа Р = 2 p -1 q , равна

2 2 p -1 q - 2 p -1 q = 2 p -1 q = Р.

Итак, наше число является совершенным.

Из этого результата следует, что каждое простое число Мерсенна порождает совершенное число. В § 2 второй главы говорилось, что известно всего 23 простых числа Мерсенна, следовательно, мы знаем также и 23 совершенных числа. Существуют ли другие виды совершенных чисел? Все совершенные числа вида (3.4.1) являются четными, можно доказать, что любое четное совершенное число имеет вид (3.4.1). Остается вопрос: существуют ли нечетные совершенные числа? В настоящее время мы не знаем ни одного такого числа, и вопрос о существовании нечетных совершенных чисел является одной из самых знаменитых проблем теории чисел. Если бы удалось обнаружить такое число, то это было бы крупным достижением. Вы можете поддаться соблазну найти такое число, перебирая различные нечетные числа. Но мы не советуем этого делать, так как по последним сообщениям Брайена Такхермана из IBM (1968), нечетное совершенное число должно иметь по крайней мере 36 знаков.

Система задач 3.4.

1. Используя список простых чисел Мерсенна, найдите четвертое и пятое совершенные числа.

Из книги Искатели необычайных автографов автора Левшин Владимир Артурович

ЧИСЛА, ЧИСЛА, ЧИСЛА… - Есть такая книга, - начал Мате, - «Диалоги о математике». Написал ее выдающийся венгерский математик нашего века Альфред Реньи. Форма диалога выбрана им не случайно, как не случайно, вероятно, обратился к ней когда-то Галилео Галилей.Жанр диалога

Из книги Приглашение в теорию чисел автора Оре Ойстин

§ 4. Фигурные числа В теории чисел мы часто встречаемся с квадратами, т. е. такими числами, как32 = 9, 72 = 49, 102 = 100,и аналогично с кубами, т. е. такими числами, как23 = 8, 33 = 27, 53 = 125. Рис. 2.Этот геометрический образ рассматриваемой операции с числами является частью богатого

Из книги Научные фокусы и загадки автора Перельман Яков Исидорович

ГЛАВА 2 ПРОСТЫЕ ЧИСЛА § 1. Простые и составные числа Должно быть, одним из первых свойств чисел, открытых человеком, было то, что некоторые из них могут быть разложены на два или более множителя, например,6 = 2 3, 9 = 3 3, 30 = 2 15 = 3 10,в то время как другие, например,3, 7, 13, 37,не

Из книги Апология математики, или О математике как части духовной культуры автора Успенский Владимир Андреевич

§ 2. Простые числа Мерсенна В течение нескольких столетий шла погоня за простыми числами. Многие математики боролись за честь стать открывателем самого большого из известных простых чисел. Разумеется, можно было бы выбрать несколько очень больших чисел, не имеющих таких

Из книги Математика любви. Закономерности, доказательства и поиск идеального решения автора Фрай Ханна

§ 3. Простые числа Ферма Существует также еще один тип простых чисел с большой и интересной историей. Они были впервые введены французским юристом Пьером Ферма (1601–1665), который прославился своими выдающимися математическими работами. Первыми пятью простыми числами

Из книги Тайная жизнь чисел [Любопытные разделы математики] автора Наварро Хоакин

§ 5. Дружественные числа Дружественные числа также входят в наследство, доставшееся нам от греческой нумерологии. Если у двух людей имена были таковы, что их числовые значения удовлетворяли следующему условию: сумма частей (делителей) одного из них равнялась второму

Из книги Том 9. Загадка Ферма. Трехвековой вызов математике автора Виолант-и-Хольц Альберт

§ 2. Взаимно простые числа Число 1 является общим делителем для любой пары чисел а и b. Может случиться, что единица будет единственным их общим делителем, т. е.d0 = D(a, b) = 1. (4.2.1)В этом случае мы говорим, что числа а и b взаимно простые.Пример. (39, 22) = 1.Если числа имеют общий

Из книги автора

§ 1. Числа «Все есть число» - учили древние пифагорейцы. Однако количество чисел, которыми они пользовались, ничтожно по сравнению с фантастической пляской цифр, окружающих нас сегодня в повседневной жизни. Огромные числа появляются, когда считаем мы, и тогда, когда

Из книги автора

44. Какие числа? Какие два целых числа, если их перемножить, составят семь?Не забудьте, что оба числа должны быть целые, поэтому такие ответы, как З1/2 ? 2 или 21/3 ? 3, не

Из книги автора

47. Три числа Какие три целых числа, если их перемножить, дают столько же, сколько получается от их Из книги автора

Магические числа Как и во многих ранее проведенных опросах, выяснилось, что среднее число сексуальных партнеров в течение жизни респондентов относительно невелико: примерно семь для гетеросексуальных женщин и примерно тринадцать для гетеросексуальных мужчин.

Из книги автора

Глава 1 Числа Альберт! Перестань указывать Богу, что Ему делать! Нильс Бор - Альберту Эйнштейну Вначале были число и фигура. Когда человек попытался овладеть ими, родилась наука, и человек начал познавать окружающий мир. Развитие науки часто сопровождалось забавными,

Из книги автора

Приложение Фигурные числа Фигурное число - это число, которое может быть представлено в виде точек, расположенных в форме правильного многоугольника. Эти числа долгое время служили объектом пристального внимания математиков. Греки приписывали им магические свойства,

Совершенная красота и совершенная бесполезность совершенных чисел

Перестаньте отыскивать интересные числа!
Оставьте для интереса хотя бы
одно неинтересное число!
Из письма читателя Мартину Гарднеру

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные и близко связанные с ними дружественные числа. Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число). Наименьшее из совершенных чисел 6 равно сумме трех своих делителей 1, 2 и 3. Следующее совершенное число 28=1+2+4+7+14. Ранние комментаторы Ветхого завета, пишет в своей книге «Математические новеллы» Мартин Гарднер, усматривали в совершенстве чисел 6 и 28 особый смысл. Разве не за 6 дней был сотворен мир, восклицали они, и разве Луна обновляется не за 28 суток? Первым крупным достижением теории совершенных чисел была теорема Евклида о том, что число 2 n-1 (2n-1) - четное и совершенное, если число 2 n-1 - простое. Лишь две тысячи лет спустя Эйлер доказал, что формула Евклида содержит все четные совершенные числа. Поскольку не известно ни одного нечетного совершенного числа (у читателей есть шанс найти его и прославить свое имя), то обычно, говоря о совершенных числах, имеют в виду четное совершенное число.

Приглядевшись к формуле Евклида, мы увидим связь совершенных чисел с членами геометрической прогрессии 1, 2, 4, 8, 16, … Эту связь лучше проследить на примере древней легенды, согласно которой Раджа обещал изобретателю шахмат любую награду. Изобретатель попросил положить на первую клетку шахматной доски одно зерно пшеницы, на вторую клетку - два зерна, на третью - четыре, на четвертую - восемь и так далее. На последнюю, 64-ю клетку, должно быть насыпано 2 63 зерен, а всего на шахматной доске окажется «кучка» из 2 64 -1 зерен пшеницы. Это больше, чем собрано во всех урожаях за историю человечества. Если на каждой клетке шахматной доски мы напишем, сколько зерен пшеницы причиталось бы за нее изобретателю шахмат, а затем снимем с каждой клетки по одному зерну, то число оставшихся зерен будет точно соответствовать выражению, стоящему в скобках в формуле Евклида. Если это число простое, то, умножив его на число зерен на предыдущей клетке (то есть на 2n-1), мы получим совершенное число! Простые числа вида 2 n -1 называются числами Мерсенна в честь французского математика XVII века. На шахматной доске со снятыми по одному зерну с каждой клетки есть девять чисел Мерсенна, соответствующих девяти простым числам, меньших 64, а именно: 2, 3, 5, 7, 13, 17, 19, 31 и 61. Умножив их на число зерен на предыдущих клетках, мы получим девять первых совершенных чисел. (Числа n=29, 37, 41, 43, 47, 53, и 59 не дают числа Мерсенна, т.е. соответствующие им числа 2n-1 составные.) Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел. Например, все совершенные числа треугольные. Это значит, что, взяв совершенное число шаров, мы всегда сможем сложить из них равносторонний треугольник. Из той же формулы Евклида следует другое любопытное свойство совершенных чисел: все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 13+33+53+… Еще более удивительно, что сумма величин, обратных всем делителям совершенного числа, включая его самого, всегда равна 2. Например, взяв делители совершенного числа 28, получим:

Кроме того, интересны представление совершенных чисел в двоичной форме, чередование последних цифр совершенных чисел и другие любопытные вопросы, которые можно найти в литературе по занимательной математике. Главные из них - наличие нечетного совершенного числа и существование наибольшего совершенного числа - до сих пор не решены. От совершенных чисел повествование непременно перетекает к дружественным числам. Это такие два числа, каждое из которых равно сумме делителей второго дружественного числа. Наименьшие из дружественных чисел 220 и 284 были известны еще пифагорейцам, которые считали их символом дружбы. Следующая пара дружественных чисел 17296 и 18416 была открыта французским юристом и математиком Пьером Ферма лишь в 1636 году, а последующие числа находили Декарт, Эйлер и Лежандр. Шестнадцатилетний итальянец Никколо Паганини (тезка знаменитого скрипача) в 1867 году потряс математический мир сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.
Определенный интерес для любителей представляет программа поиска совершенных чисел. Ее схема проста: в цикле для каждого числа проверять сумму его делителей и сравнивать ее с самим числом, - если они равны, то это число совершенное.

VAR I,N,Summa: LONGINT ;
Delitel: INTEGER;
begin FOR I:=3 TO 34000000 DO BEGIN Summa:=1;
FOR Delitel:=2 TO SQRT(I)
DO BEGIN N:=(I DIV Delitel);
IF N*Delitel=I THEN Summa:=Summa + Delitel + (I DIV Delitel);
END;
IF INT(SQRT(I))=SQRT(I) THEN Summa:=Summa-INT(SQRT(I));
IF I=Summa THEN WRITELN(I,’ - ‘,Summa) ;
END ;
END.

Обратите внимание, что количество проверяемых делителей каждого числа растет до квадратного корня из числа. Подумайте о том, почему это так. И о том, что истинная красота - это нечто, в хозяйстве совершенно бесполезное, но бесконечно дорогое для настоящих ценителей.

Оперируя большими числами, ученые пользуются степенями 10 для того, чтобы избавиться от огромного количества нулей. Например, 19 160 000 000 000 миль можно записать как 1,916·10 13 миль. Так же точно очень маленькое число, например 0,0000154324 г, может быть записано 1,54324·10 –5 г. Из приставок, используемых перед числительными, самой малой величине соответствует атто, происходящая от датского или норвежского atten – восемнадцать. Приставка означает 10 –18 . Приставка экса (от греческого hexa, т.е. 6 групп по 3 нуля), или сокращенно Э, означает 10 18 .

Самые большие числа

Самым большим числом, встречающимся в толковых словарях и имеющим название – степенью 10, является центилион, впервые использованный в 1852 г. Это миллион в сотой степени, или единица с 600 нулями.

Самым большим имеющим название недесятичным числом является буддистское число асанкхейя , равное 10 140 ; оно упоминается в трудах Джайна-сутры, относящихся к 100 г. до н.э.

Число 10 100 называется гугол . Этот термин был предложен 9-летним племянником Эдварда Каснера (США) (ум. в 1955 г.). 10 в степени гугол называется гуголплексом. Некоторое представление об этой величине можно получить, вспомнив, что количество электронов в наблюдаемой Вселенной, согласно некоторым теориям, не превышает 10 87 .

Самым большим числом, когда-либо применявшимся в математическом доказательстве, является предельная величина, известная как число Грэма, впервые использованная в 1977 г. Оно связано с бихроматическими гиперкубами и не может быть выражено без особой 64-уровневой системы специальных математических символов, введённых Кнутом в 1977 г.

Наибольшее число множителей

Специалисты по ЭВМ, использовав более 400 связанных между собой компьютеров, нашли множители 100-значного числа. Вычисления, занявшие 26 дней, ставят под вопрос надежность многих современных шифровальных систем.

Простые числа

Простым числом является любое положительное целое число (кроме 1), делящееся только на себя или на единицу, т.е. 2, 3, 5, 7 или 11. Самое маленькое простое число – 2. Самое большое простое число, 391 581·2 216193 – 1, было открыто 6 августа 1989 г. группой Aмдал-6 . Число, содержащее 65 087 знаков, было получено на суперкомпьютере «Амдал-1200» в Санта-Кларе, штат Калифорния, США. Группа также открыла самые большие парные простые числа: (1 706 595·2 11235 – 1) и (1 706 595·2 11235 + 1). Самым маленьким непростым или составным числом (кроме 1) является 4.

Совершенные числа

Число является совершенным, если оно равно сумме своих делителей, отличных от самого числа, например 1 + 2 + 4 + 7 + 14 = 28. Самое маленькое совершенное число: 6 = 1 + 2 + 3.

Самое большое известное, 31-е по счету открытое на сегодняшний день, число: (2 216091 – 1)·2 216090 . Это число получено благодаря открытию в сентябре 1985 г. математиком Марсенном (США) числа 2 216091 – 1, которое в настоящее время известно как второе самое большое простое число.

Новейшая математическая константа

В ходе исследований турбулентного течения воды, погоды и других хаотических явлений выявилось существование новой универсальной константы – числа Фейгенбаума, названного по имени его первооткрывателя. Приблизительно оно равно 4,669201609102990.

Максимальное число доказательств теоремы

Самое длинное доказательство

Доказательство классификации всех конечных простых групп заняло более 14 тыс. страниц, вмещающих почти 500 научных работ, авторами которых явились более 100 математиков. Доказательство продолжалось более 35 лет.

Самая старая математическая задача

Она датируется 1650 г. до н.э. и в русской версии звучит следующим образом:

По дороге на Дижон
Встретил я мужа и семь его жён.
У каждой жены по семь тюков,
Вкаждом тюке по семь котов.
Сколько котов, тюков и жён
Мирно двигались в Дижон?

Самое большое претендовавшее на точность число в физике

Английский астроном сэр Артур Эддингтон (1882...1944) заявил в 1938 г., что во Вселенной ровно 15 747 724 136 275 002 577 605 653 961 181 555 468 044 717 914 527 116 709 366 231 425 076 185 631 031 296 протонов и столько же электронов. К сожалению Эддингтона, никто не согласился с его сверхточными подсчетами, которые в настоящее время всерьёз не воспринимаются.

Самый плодовитый математик

Леонард Эйлер (Швейцария, Россия) (1707...1783) был настолько плодовит, что и через 50 с лишним лет после его смерти его труды все ещё печатались впервые. Собрание его сочинений частями выпускается в свет, начиная с 1910 г., и в конечном итоге составит 75 больших томов размером ин-кварто.

Самая большая премия

Д-р Пауль Вольфскелл завещал в 1908 г. премию в 100 тыс. немецких марок тому, кто первым докажет «Великую теорему» Ферма . В результате инфляции размер премии составляет сейчас немногим более 10 тыс. немецких марок.

Самый длительный поиск на ЭВМ ответа на вопрос: да или нет?

20-е число Ферма + 1 было проверено на суперкомпьютере «Крэй-2» в 1986 г. с целью ответа на вопрос, является ли оно простым. После 10 дней вычислений был получен ответ – НЕТ.

Самые неграмотные в математическом отношении

Люди племени намбиквара, живущие на северо-западе штата Мату-Гросу, Бразилия, самые неграмотные в математике. У них полностью отсутствует система чисел. Правда, они пользуются глаголом, который обозначает «они равны».

Самое точное и неточное значение числа π

Самое большое количество десятичных знаков числа π, равное 1 011 196 691 знаку после запятой, было получено в 1989 г. Дэвидом и Грегори Чудновски из Колумбийского университета, Нью-Йорк, США, использовавшими суперкомпьютер «Крэй-2» и сеть компьютеров ИБМ 3090. Вычисления были сверены для точности. Кстати, десятичные разряды π с 762-го по 767-й после запятой содержат 6 девяток подряд.

В 1897 г. Генеральная Ассамблея американского штата Индиана утвердила билль 246, согласно которому число π принималось равным 4. В 1853 г. Уильям Шанкс опубликовал свои расчеты числа π до 707-го десятичного знака, произведённые вручную. Спустя 92 года, в 1945 г., было обнаружено, что последние 180 цифр неверны.

Самые древние единицы измерения

Самой древней известной мерой веса является бека амратского периода египетской цивилизации (около 3800 г. до н.э.), найденная в Накаде, Египет. Гири были цилиндрической формы с закруглёнными концами. Они весили от 188,7 до 211,2 г.

По-видимому, строители гробниц эпохи мегалита на северо-западе Европы (около 3500 г. до н.э.) пользовались мерой длины, равной 82,9 ± 0,09 см. К такому выводу пришел профессор Александр Том (1894...1985) в 1966 г.

Измерение времени

Вследствие изменения продолжительности суток, которые увеличиваются в среднем на 1 мс за век под влиянием приливных сил Луны, было пересмотрено определение секунды. Вместо 1/86 400 части средних солнечных суток ее длительность с 1960 г. определяется как 1/315 569 259 747 часть солнечного (или тропического) года по состоянию на 12 часов эфемеридного времени января 1900 г. В 1958 г. секунда принята равной 9 192 631 770 ± 20 периодам излучения, соответствующего переходу между уровнями основного состояния атома цезия-133 в отсутствие внешних полей. Самое большое суточное изменение было зарегистрировано 8 августа 1972 г., оно составляло 10 мс и было вызвано самой мощной солнечной бурей, наблюдаемой за последние 370 лет.

Точность цезиевого эталона частоты приближается к 8 частям на 10 14 , что выше, чем 2 части на 10 13 для гелиево-неонового лазера, стабилизированного метаном, и чем 6 частей на 10 13 для водородного мазера.

Самой длинной мерой времени является кальпа в индуистской хронологии. Она равна 4320 млн лет. В астрономии космический год есть период обращения Солнца вокруг центра Млечного Пути, он равен 225 млн лет. В позднем меловом периоде (около 85 млн лет назад) Земля вращалась быстрее, в результате чего год состоял из 370,3 суток. Имеются также свидетельства тому, что в эпоху кембрия (600 млн лет назад) год длился более 425 суток.

Книга рекордов Гиннеса, 1998 г.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей