Цифровое моделирование. Цифровое побеждает аналоговое

способ исследования реальных явлений, процессов, устройств, систем и др., основанный на изучении их математических моделей (См. Математическая модель) (математических описаний) с помощью ЦВМ. Программа, выполняемая ЦВМ, также является своеобразной Моделью исследуемого объекта. При Ц. м. используют специальные проблемно-ориентированные языки моделирования; одним из наиболее широко применяемых в моделировании языков является язык CSMP, разработанный в 60-х гг. в США. Ц. м. отличается наглядностью и характеризуется высокой степенью автоматизации процесса исследования реальных объектов.

  • - исследование к.-л. явлений, процессов или систем объектов путём построения и изучения их моделей. М. включает: предварит, анализ исследуемого объекта; построение модели и её изучение...

    Сельско-хозяйственный энциклопедический словарь

  • - исследование к.-л. реально существующих предметов и явлений и конструируемых объектов путём построения и изучения их моделей...

    Естествознание. Энциклопедический словарь

  • - исследование каких-либо существующих предметов и явлений путем построения и изучения их моделей. На моделях базируются и теоретический и экспериментальный методы познания...

    Начала современного Естествознания

  • - исследование каких-либо явлений, процессов или объектов путем построения и изучения их моделей. Одна из основных категорий теории познания. Моделирование реального мира - одна из задач литературы и искусства...

    Терминологический словарь-тезаурус по литературоведению

  • - Процесс распознавания последовательности идей и поведении, которая позволяет справиться с задачей. Основа ускоренного обучения. Процесс наблюдения и копирования успешных действий и поведения других людей...

    Словарь нейролингвистического программирования

  • - цифрово́е телеви́дение собирательный термин, подразумевающий использование цифровых методов обработки видеоинформации от момента образования видеосигнала на выходе передающего...

    Энциклопедия техники

  • - электромеханич...

    Большой энциклопедический политехнический словарь

  • - 1...

    Телекоммуникационный словарь

  • - кодирование, при котором используется код, состоящий из букв, цифр и других знаков алфавита.См. также: Кодирование  ...

    Финансовый словарь

  • - "...Цифровое картографирование: комплекс мероприятий, направленных на создание цифровой картографической продукции..." Источник: " ГОСТ 28441-99. Картография цифровая...

    Официальная терминология

  • - "...Цифровое картографическое моделирование: процесс создания и использования цифровых картографических моделей..." Источник: " ГОСТ 28441-99. Картография цифровая...

    Официальная терминология

  • - "... картографическое обеспечение: комплекс мероприятий, направленных на создание, хранение цифровой картографической продукции и выдачу ее потребителям..." Источник: " ГОСТ 28441-99. Картография цифровая...

    Официальная терминология

  • - ".....

    Официальная терминология

  • - устройство для регистрации на бумаге или её заменителе выдаваемой электронной вычислительной машиной информации в виде буквенно-цифрового текста, таблиц, графиков и т. п. Наиболее распространены...
  • - средство измерений, в котором значение измеряемой физической величины автоматически представляется в виде числа, индицируемого на цифровом отсчётном устройстве, или в виде совокупности дискретных сигналов...

    Большая Советская энциклопедия

  • - система телевидения, в которой передаваемый телевизионный сигнал представляет собой последовательность кодовых комбинаций электрических импульсов...

    Большой энциклопедический словарь

"Цифровое моделирование" в книгах

Цифровое побеждает аналоговое

автора Айзексон Уолтер

Цифровое побеждает аналоговое

Из книги Инноваторы. Как несколько гениев, хакеров и гиков совершили цифровую революцию автора Айзексон Уолтер

Цифровое побеждает аналоговое Машины, разработанные Холлеритом и Бэббиджем, были цифровыми, а значит, они были рассчитаны на использование цифр - различных дискретных целых чисел, таких как о, 1, 2, 3. В их машинах сложение и вычитание целых чисел происходило при помощи

Из книги Книга 2.0. Прошлое, настоящее и будущее электронных книг глазами создателя Kindle автора Меркоски Джейсон

Образование: печатное или цифровое?

Цифровое изображение

Из книги Мой первый видеофильм от А до Я автора Гамалей Владимир

Цифровое изображение Компьютер не может обрабатывать аналоговое видео, содержащее информацию о яркости, цветности, а также звук «в чистом виде». Для этого необходимо преобразовать их в цифровую форму. Существует множество электронных плат (они упоминаются в главе 10),

Цифровое спутниковое телевидение

Из книги 100 великих чудес техники автора Мусский Сергей Анатольевич

Цифровое спутниковое телевидение Передача информации на большие расстояния была и остается одним из самых важных с практической точки зрения применений искусственных спутников Земли. На первом специализированном связном американском спутнике в 1963 году был передатчик

Цифровое телевидение

Из книги Большая энциклопедия техники автора Коллектив авторов

Цифровое телевидение Цифровое телевидение – это модель передачи транслятором аудио– и видеосигналов телевизору. В цифровом телевидении применяются сжатие и цифровая модуляция для передачи данных. Основным стандартом современного цифрового телевидения является

Цифровое измерительное устройство

БСЭ

Цифровое моделирование

Из книги Большая Советская Энциклопедия (ЦИ) автора БСЭ

Урок 10 Цифровое моделирование

автора Хайнеманн Роберт

Урок 10 Цифровое моделирование Проработав материал этого урока, вы научитесь использовать программу PSPICE в качестве статистического логического анализатора. Все вопросы рассматриваются на практических примерах. Вам будет предложено определить наименьшее

10.1.1. Упражнение на цифровое моделирование схемы

Из книги Визуальное моделирование электронных схем в PSPICE автора Хайнеманн Роберт

10.1.1. Упражнение на цифровое моделирование схемы Протестируйте «интеллект» программы PSPICE, выбрав для схемы с недопустимым сопротивлением R=180 Ом такую комбинацию входных напряжений, которая создаст сигнал логической единицы на выходе элемента ИЛИ-НЕ и, следовательно,

10.2. Динамическое цифровое моделирование: временные диаграммы

Из книги Визуальное моделирование электронных схем в PSPICE автора Хайнеманн Роберт

10.2. Динамическое цифровое моделирование: временные диаграммы Когда требуется исследовать временную зависимость цифровых процессов, на помощь проектировщику приходит программа-осциллограф PROBE. Однако для успешной работы в PROBE необходимо умение ориентироваться в тех

19.5. Цифровое подписывание талонов

Из книги iOS. Приемы программирования автора Нахавандипур Вандад

19.5. Цифровое подписывание талонов Постановка задачи Вы подготовили каталог pass с файлом описания и файлом pass.json, а также все изображения. Теперь вы хотите снабдить цифровой подписью каталог с талоном и его содержимое. Это требуется для создания файла талона, готового к

Глава III Цифровое видео

Из книги Видео на вашем компьютере: ТВ тюнеры, захват кадра, видеомонтаж, DVD автора Буковецкая Оксана Александровна

Глава III Цифровое видео Принципы цифрового описания Цифровые видеоформаты Наконец о компьютерном видео Компьютерный видеомонтаж Цифровое видео – это не обязательно и далеко не всегда компьютер. Первый цифровой видеомагнитофон появился в 1986 г., когда до начала

Цифровое нашествие

Из книги Литературная Газета 6468 (№ 25 2014) автора Литературная Газета

Цифровое нашествие За законодательством сейчас вообще мало кто следит, а вот электромагнитные импульсы все каждый день старательно ловят не у телевизора, так у компьютера. Я тоже искренне привержен этому делу. Больше того, пристально слежу за развитием информационных

9. Цифровое видеонаблюдение

Из книги CCTV. Библия видеонаблюдения [Цифровые и сетевые технологии] автора Дамьяновски Владо

9. Цифровое видеонаблюдение До сих пор большинство обсуждаемых в этой книге вопросов относилось к аналоговым видеосигналам. Большинство современных систем видеонаблюдения по-прежнему используют аналоговые телекамеры, хотя все большее число производителей предлагают

Цифровое моделирование

способ исследования реальных явлений, процессов, устройств, систем и др., основанный на изучении их математических моделей (См. Математическая модель) (математических описаний) с помощью ЦВМ. Программа, выполняемая ЦВМ, также является своеобразной Модель ю исследуемого объекта. При Ц. м. используют специальные проблемно-ориентированные языки моделирования; одним из наиболее широко применяемых в моделировании языков является язык CSMP, разработанный в 60-х гг. в США. Ц. м. отличается наглядностью и характеризуется высокой степенью автоматизации процесса исследования реальных объектов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Цифровое моделирование" в других словарях:

    цифровое моделирование - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN digital simulation …

    цифровое моделирование - 3.8 цифровое моделирование: Способ использования различных математических методов на электронно вычислительных машинах для достижения акустической симуляции (см. 3.1). Источник: ГОСТ Р 53737 2009: Нефтяная и газовая промышленность. Поршневые… …

    цифровое моделирование - skaitmeninis modeliavimas statusas T sritis automatika atitikmenys: angl. digital simulation; numerical modelling vok. digitale Simulation, f; numerische Simulation, f rus. цифровое моделирование, n; численное моделирование, n pranc. simulation… … Automatikos terminų žodynas

    цифровое моделирование в реальном масштабе времени - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN real time digital simulationRTDS … Справочник технического переводчика

    Создание цифровой модели рельефа и ее использование. Примечания 1. Обработка цифровой модели рельефа служит для получения производных морфометрических показателей; расчета и построения линий тока; экстракции структурных линий и линий перегиба… … Справочник технического переводчика

    цифровое моделирование рельефа - 61 цифровое моделирование рельефа: Создание цифровой модели рельефа и ее использование. Примечания 1 Обработка цифровой модели рельефа служит для получения производных морфометрических показателей; расчета и построения линий тока; экстракции… … Словарь-справочник терминов нормативно-технической документации

    аналоговое [аналого-цифровое] моделирование - Моделирование процессов и объектов с помощью средств аналоговой [аналого цифровой] вычислительной техники. [ГОСТ 18421 93] Тематики аналоговая и аналого цифровая выч.техн … Справочник технического переводчика

    Analoginis skaitmeninis modeliavimas statusas T sritis automatika atitikmenys: angl. analog digital simulation vok. analog digitale Simulation, f rus. аналого цифровое моделирование, n pranc. simulation analogique numérique, f … Automatikos terminų žodynas

    аналого-цифровое моделирование - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва] Тематики электротехника, основные понятия EN analog digital simulation … Справочник технического переводчика

    Моделирование исследование объектов познания на их моделях; построение и изучение моделей реально существующих объектов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих… … Википедия

Книги

  • , Браверман Борис Аронович. Рассмотрены возможности использования элементов программирования на языке С# в среде Microsoft Visual Studio для решения разнообразных задач геоматики. Показана связь процессов кадастра и…
  • Программное обеспечение геодезии, фотограм, кадастра, инж. из. , Браверман Борис Аронович. Рассмотрены возможности использования элементов программирования на языке С в среде Microsoft Visual Studio для решения разнообразных задач геоматики. Показана связь процессов кадастра и…

Задача цифрового моделирования радиосигналов, радиопомех и случайных процессов формулируется как задача нахождения алгоритмов (по возможности наиболее простых), позволяющих получать на ЦВМ дискретные реализации (выборочные функции) моделируемых процессов. Это самостоятельная и довольно сложная задача синтеза дискретных случайных процессов, имитирующих непрерывные процессы с заданными статистическими характеристиками. Она решается путем отыскания удобных для.реализации на ЦВМ линейных и нелинейных (преобразований, с помощью которых можно превратить независимые равномерно или нормально распределенные случайные числа, вырабатываемые датчиком случайных чисел, в случайные последовательности с требуемыми статистическими свойствами.

Задача цифрового моделирования радиосистем формулируется как задача разработки алгоритмов, которые по заданным характеристикам систем, например передаточным функциям и характеристикам нелинейности отдельных звеньев, позволяют точно или с допустимой погрешностью преобразовывать на ЦВМ дискретные реализации входных воздействий в дискретные реализации соответствующих выходных эффектов моделируемых систем. Эти алгоритмы называются цифровыми моделями систем.

Следует пояснить некоторые особенности цифрового моделирования радиосистем и принятого здесь подхода к моделированию.

Развитие теории моделирования вообще, а цифрового моделирования в частности, определяется степенью математического описания явлений и процессов, имеющих место в различных отраслях науки и техники. В отличие от некоторых других областей применения цифрового моделирования, например моделирования производственных процессов или же процессов в биологических системах, где математическое описание явлений часто представляет собой весьма сложную задачу, математическое описание процессов функционирования радиосистем достаточно хорошо развито.

Действительно, основным назначением радиосистем является передача, прием и переработка информации, заключенной в сигналах. С информационной точки зрения радиосистемы можно рассматривать как специализированные вычислительные машины (обычно аналогового типа с весьма высоким быстродействием), точно или приближенно реализующие заранее предписанные алгоритмы работы (см. по этому поводу ). Входящие в эти алгоритмы операции, такие, как модуляция, фильтрация, усиление, преобразование частоты, детектирование, ограничение, накопление, слежение и т. д., как правило, допускают сравнительно простую математическую формулировку.

Математическое описание сводится при этом к переводу известной программы работы радиосистемы, сформулированной на обычном радиотехническом языке, на язык математики, на котором, например, фильтрация, есть скользящее интегрирование, накопление - суммирование, амплитудное детектирование - выделение огибающей и т. д. В результате создается математическая модель радиосистемы. Цифровая модель системы получается на втором этапе, когда на основе математической модели разрабатывается дискретный алгоритм процесса функционирования объекта моделирования, предназначенный для реализации на ЦВМ.

Реализация цифровой модели радиосистемы на ЦВМ означает, по существу, замену специализированной вычислительной машины, которой является данная радиосистема, универсальной ЦВМ.

Подход к моделированию радиосистем как к замене одной вычислительной машины другой - это так называемый функциональный принцип моделирования, согласно которому модель считается эквивалентной оригиналу, если она с достаточной точностью воспроизводит лишь функцию оригинала, например алгоритм преобразования входных сигналов в выходные сигналы радиоприемного устройства. При этом модель и оригинал не подобны в целом, так как при моделировании опускаются несущественные с информационной точки зрения подробности, связанные, например, с конкретным материальным воплощением моделируемой системы. Такой подход к моделированию целесообразен в ряде задач, например при выборе принципов построения радиосистем на этапе проектирования, при оценке помехоустойчивости схем (алгоритмов) обработки сигналов, при оценке эффективности помех и при других исследованиях.

Конечно, существуют задачи, при решении которых методом моделирования функциональный принцип нецелесообразен, например, при исследовании влияния параметров реальных элементов (электровакуумных и полупроводниковых приборов, индуктивностей, емкостей, сопротивлений и т. д.), из которых состоит данное радиоустройство (блок), на его характеристики: передаточные функции, стабильность, линейность, динамический диапазон и т. д. В этих случаях нужно переходить на уровень более подробного моделирования. Такой подход к моделированию в зарубежной литературе называется применением ЦВМ для анализа и синтеза цепей . В данной монографии эти методы цифрового моделирования не рассматриваются.

В ней приводятся методы цифрового моделирования, основанные на знании более обобщенных характеристик систем, чем характеристики их простейших элементов. В качестве таких обобщенных характеристик используются алгоритмы работы систем, следующие из их функционального назначения, передаточные функции или импульсные переходные характеристики линейных динамических звеньев, характеристики нелинейности нелинейных блоков, образующих систему, т. е. моделирование осуществляется на уровне функциональных, а не принципиальных схем систем.

Обычно моделируемые радиосистемы можно представить как комбинацию лишь двух основных типов звеньев - линейных инерционных звеньев (усилители, фильтры, следящие системы и т. д.) и нелинейных безынерционных звеньев (ограничители, детекторы, логические блоки и т. д.). Из этих двух типов функциональных единиц путем наращивания блок-схемы и варьирования характеристик звеньев строятся радиосистемы любой сложности. Алгоритмы для моделирования таких функциональных систем нетрудно найти, зная алгоритмы для моделирования отдельных звеньев систем.

Задача математического описания функционирования звеньев радиосистем не имеет однозначного решения. Например, линейную фильтрацию можно описать как процесс изменения амплитуд и фаз гармоник входного воздействия (метод Фeрье) и как скользящее интегрирование входного процесса с некоторым весом (метод интеграла Дюамеля. В свою очередь, одной и той же математической модели могут соответствовать различные цифровые модели; например, процесс непрерывной фильтрации, заданный в виде интеграла Дюамеля, может быть представлен в дискретной форме как скользящее суммирование и как процесс вычисления в соответствии с рекуррентным разностным уравнением. В связи с этим основным направлением при разработке методов цифрового моделирования радиосистем является не столько математическое описание и создание их цифровых моделей вообще, сколько нахождение эквивалентных цифровых моделей и выбор среди них наиболее удобных для реализации на ЦВМ, т. е. наиболее эффективных с точки зрения выбранного критерия эффективности.

В качестве такого критерия используется в дальнейшем критерий минимума вычислительных затрат (минимального объема и времени вычислений) при заданной точности моделирования.

В книге изложены различные методы сокращения вычислительных затрат. Основными из них являются следующие.

1. Использование при моделировании сигналов, помех и процессов функционирования систем экономичных рекуррентных (марковских) алгоритмов, согласно которым очередное состояние объекта моделирования можно легко найти, зная одно или несколько его предыдущих состояний. (Этот метод имеет довольно большую область применения, так как многие процессы в радиосистемах являются либо строго, либо приближенно марковскими.)

2. Применение метода огибающих с целью исключения из рассмотрения высокочастотных составляющих несущей частоты.

3. Эквивалентные преобразования функциональных схем систем с целью получения более простых для моделирования функционально подобных систем.

4. Разномасштабное моделирование (использование малого шага дискретизации для быстроизменяющихся процессов и большого шага дискретизации для медленно изменяющихся процессов при моделировании систем, процессы в которых одновременно протекают в различных участках частотного диапазона) и моделирование с переменным масштабом (использование переменного шага дискретизации).

Применение указанных методов сближает по быстродействию цифровое и аналоговое моделирование. В других аспектах цифровое и аналоговое моделирования радиосистем могут иметь различную эффективность, определяемую достоинствами и недостатками цифровых и аналоговых вычислительных машин.

Однако там, где требуется иметь универсальный аппарат для моделирования разнообразных систем: дискретных автоматов, непрерывных и дискретных динамических систем (линейных и нелинейных с постоянными, переменными, сосредоточенными и распределенными параметрами), систем массового обслуживания и т. д., там, где требуется высокая точность, развитая логика, наличие эффективной системы памяти, большой динамический диапазон величин, цифровое моделирование имеет существенные преимущества перед аналоговым.

К недостаткам цифрового моделирования в настоящее время следует отнести: сравнительно невысокое быстродействие, несовершенную еще систему связи «человек - машина» (недостаточно наглядная регистрация результатов, трудности изменения параметров и структуры моделируемой системы в процессе решения задачи), высокую стоимость часа машинного времени. Однако есть основания считать, что в дальнейшем, по мере совершенствования электронной цифровой вычислительной техники и методов ее математического обеспечения, указанные недостатки будут устранены. Некоторые дополнительные преимущества и недостатки цифрового моделирования отмечены в ходе изложения материала.

Аналоговое моделирование осуществляется более просто, превосходит в ряде случаев цифровое моделирование по быстродействию, отличается большей наглядностью, экономически более выгодно, однако оно имеет невысокую точность, сравнительно небольшой динамический диапазон и не столь универсально. Этот вид моделирования наиболее эффективно применяется как известно , при исследовании непрерывных динамических систем, описываемых обыкновенными дифференциальными уравнениями.

Недостатки аналогового моделирования могут быть компенсированы в комбинированных аналого-цифровых моделях .

В данной книге речь будет идти лишь о цифровом моделировании, однако некоторые рассматриваемые в ней методы могут быть использованы и при аналоговом, а также при аналого-цифровом моделировании, например метод формирующего фильтра при моделировании случайных сигналов.

В дальнейшем вместо термина «цифровое моделирование», как правило, будет использоваться термин «моделирование».

Поскольку в книге рассматриваются методы математического моделирования, то в ней «много математики». Однако для понимания материала от читателя требуется не столько знаний математики в ее строгом классическом смысле, сколько знаний «радиоматематики», по терминологии С. М. Рытова , и «математики контуров», то. терминологии Вудворда , а также вопросов прикладной теории случайных процессов и статистической радиотехники в объеме соответствующих глав книг . Кроме этого от читателя требуется знать некоторые основы математического аппарата теории дискретных систем, в частности основные свойства -преобразования , возможности ЦВМ и принципы программирования .

В книге не приводятся блок-схемы возможных программ для реализации на ЦВМ моделирующих алгоритмов. Алгоритмы даны в формульном виде. Для пояснения формульных алгоритмов приводятся передаточные функции и структурные схемы дискретных фильтров, осуществляющих операции над входными числовыми последовательностями в точном соответствии с предлагаемыми алгоритмами.

систем дискретизации

и квантования сообщений

Омск 2010

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Омский государственный технический университет»

Цифровое моделирование систем дискретизации

и квантования сообщений

Методические указания к лабораторным

работам для дистанционной формы обучения

Учебно-лабораторный комплекс для цифрового моделирования системы квантования непрерывных сообщений по уровню …………………

    Общие положения……………………………………………………………..

    Описание пакета……………………………………………………………….

      Общие сведения…………………………………………………………….

      Функциональное назначение комплекса………………………………….

      Порядок установки в среде разработки NetBeans…….………………….

      Описание библиотеки классов…………………….………………………

      1. Описание интерфейсов……………………….………………………...

        Описание классов………………………….…………………………….

        Блок-схема подключения…………………………..…………………

    Цель лабораторной работы.…………………………………………………...

    Цель исследования……………………………………………………………..

    Порядок выполнения работы………….…………………………………….....

    Построение цифровой модели………………………………………………….

    Контрольные вопросы для отсчёта по лабораторной работе…………………

Учебно-лабораторный комплекс для цифрового моделирования системы квантования непрерывных сообщений по уровню

1. Общие положения

Моделирование - один из наиболее распространенных способов изучения различных процессов и явлений. Различают физическое и математическое моделирование. При физическом моделировании, модель воспроизводит изучаемый процесс с сохранением его физической природы. Преимущество физического моделирования перед натуральным экспериментом заключается в том, что условия реализации процесса-модели могут значительно отличаться от условий, свойственных процессу-оригиналу, и выбираются исходя из удобства и простоты исследования. Но физическое моделирование имеет ограниченную сферу применения. Заведомо более широкими возможностями обладает математическое моделирование.

Моделирование представляет собой процесс, состоящий из двух, в общем случае неоднократно повторяющихся, этапов:

    построение модели аналогичной труднодоступному, для непосредственного исследования, объекту-оригиналу;

    исследование (проектирование) объекта-оригинала с помощью построенной модели.

При изучении любого процесса методом математического моделирования необходимо в первую очередь построить его математическую модель. Математическая модель необходима для построения моделирующего алгоритма. Существуют несколько основных способов алгоритма использования математической модели:

    аналитическое исследование процессов;

    исследование процессов при помощи численных методов;

    аппаратурное моделирование (на аналоговых ВМ и специальных моделирующих установках);

    моделирование процессов на ЦВМ.

В настоящее время широкое распространение получил метод статистического моделирования, реализуемый на ЦВМ. Этот вид является составной частью математического моделирования.

Цифровое моделирование обладает рядом преимуществ перед другими методами исследования (универсальность, гибкость, экономичность) и позволяет разрешить одну из основных проблем современной науки - проблему сложности.

Учебно-лабораторные комплексы предназначены для изучения и исследования таких информационных систем, которые осуществляют формирование, дискретизацию (квантование), кодирование, передачу, хранение, декодирование и восстановление сообщения. Эти системы состоят из реальных блоков, выполняющих перечисленные преобразования. К ним относятся:

    источник (генератор, формирователь) сообщения;

    дискретизатор (квантователь, блок квантования);

    кодер (шифратор, блок кодирования);

    канал связи;

    блок памяти (линия задержки);

    декодер (дешифратор);

    приемник сообщения.

Цифровые модели, имитирующие работу этих блоков, представлены в учебно-лабораторных комплексах в виде отдельных объектных классов или могут быть сформированы из них. Эти комплексы объектных классов предназначены для следующих целей:

    для имитации эксперимента с целью получения данных для проектирования этих систем;

    для автоматизации расчета параметров, синтеза функций отдельных блоков и системы в целом;

    для моделирования, имитации и отображения работы:

    системы дискретизации непрерывных сообщений по времени;

    системы квантования сообщений по уровню;

    системы эффективного кодирования;

    системы помехоустойчивого кодирования;

    комбинации этих систем.

    для построения графиков.

Рассмотрим некоторые особенности исследования работы систем путём их цифрового моделирования. Обычно оно направлено на исследование эффективности функционирования систем. При этом моделируются взаимодействие данной системы с другой системой, называемой внешней средой. Эффективность работы любой системы определяется двумя группами факторов: свойствами и характеристиками внешней среды; функциями и параметрами моделируемой системы. Наиболее эффективна работа (поведение) системы в ситуации, когда свойства и характеристики внешней среды «согласованы» с функциями и параметрами системы. Показатели и критерии эффективности работы системы задаются (определяются) ее разработчиками, так как не могут быть установлены формальными методами.

Исследование эффективности работы в «нормальных условиях» реализуются путём организации наиболее вероятных обычных (штатных ситуаций), определяемых внешней средой, которые предположительно, известны разработчику или исследователю. При этом конкретные ситуации задаются наиболее типичных для внешней среды свойств и характеристик.

Кроме того, проводятся исследования поведения системы в экстремальных условиях и маловероятных ситуациях, которые определяются плохо предсказуемыми для исследователя наборами свойств и характеристик внешней среды (максимальными значениями ее характеристик, такими, например, как запредельное значение тока в электрической цепи, перегрузок, помех большой амплитуды и частоты, физическое разрушение системы или ее компонентов вследствие брака материалов и т.п.).

Ситуация задаваемая внешней средой (штатная или нештатная), моделируется путём фиксации некоторых ее свойств и характеристик. При этом эффективность работы систем исследуется путём вариации ее функций и параметров. Возможно также исследование системы в другом порядке, при котором фиксируются функции и параметры системы и варьируются свойства и параметры внешней среды. Предполагая, что свойства внешней среды и функции исследуемой системы, кроме прочего, представлены наборами измеряемых и управляемых (варьируемых) числовых характеристик и параметров.

На очередной итерации исследования поведения системы обычно всё множество характеристик среды и параметров системы фиксируется. При этом варьируется один из перечисленных компонентов в пределах «правдоподобного» допустимого диапазона. Определяются показатели эффективности работы системы для множества значений варьируемого параметра и заносятся в протокол исследования, обычно оформляемый в виде таблицы. На следующей итерации исследования варьируется другой параметр, а остальные зафиксированы.

Обычно полный перебор параметров и их значений (даже при компьютерном моделировании) не удаётся осуществить из-за временных ограничений. По этому зачастую разработчику или исследователю приходится осуществлять определённым образом упорядоченный и направленный перебор параметров и характеристик. В сочетании с возможностью компьютерного автоматического перебора параметров это позволяет сократить время исследования системы. Кроме того, следует использовать разработанные методы планирования экспериментов.

При цифровом моделировании системы квантования непрерывных сообщений по уровню на лабораторных занятиях свойства внешней среды представлены определенной формой передаваемого сигнала, которая в процессе исследования не изменяется, а также нормально-распределённой (гауссовой) случайной помехой, действующей в канале связи. Числовые характеристики помехи представлены математическим ожиданием и среднеквадратическим отклонением ее амплитуды.

Функцией системы в этой лабораторной работе является квантование непрерывных сообщений по уровню (амплитуде параметра). Параметры квантователя представлены диапазоном значений непрерывного сообщения и числом уровней квантования (или шагом квантования).

Понятие логического моделирования Под логическим моделированием понимают полное и точное программное воспроизведение поведения цифровой схемы по ее функциональному и/или структурному описанию и заданным наборам входных сигналов. При ручном проектировании модель представляется действующим макетом или опытным образцом (прототипом). При автоматизированном проектировании действующий макет заменяется имитационной (программной) моделью проекта, а натурные или физические эксперименты – модельными (машинными). В модель легко вносить любые изменения и таким образом улучшать проект до тех пор, пока он не достигнет требуемого качества.






Задачи, решаемые методом логического моделирования 1.Основная задача логического моделирования - проверить правильность функционирования цифровой схемы до её фактического (физического) воплощения 2.Исследование временных характеристик схемы - быстродействия, времени выполнения операций, максимальных частот счёта или сдвига. Обнаружение состязаний и рисков сбоя. Задержки. 3.Контроль временных соотношений - времени предустановки и времени удержания, минимальной длительности сигналов. 4.Разработка контролирующих и диагностических тестов. Моделирование неисправностей. 5.Сравнение альтернативных вариантов схемных решений и выбор наиболее подходящего. «Тирания альтернатив». До 70% времени работы над проектом тратится именно на его верификацию


Задачи, решаемые методом логического моделирования 6.Контроль выходов компонентов на допустимую нагрузку. 7.Контроль компонентов схемы на допустимую мощность рассеяния. 8.Выявление не устанавливаемых элементов по сигналам сброса или начальной инициализации. 9.Выполнение статистических оценок, например определение процента выхода годных схем, которые невозможно сделать на единичных опытных образцах. 10.Проведение климатических, чаще всего температурных испытаний.


Процесс логического моделирования Моделирование выполняется аналогично проверке схемы вручную. Экспериментируя с действующим макетом, инженер устанавливает уровни напряжений на входах схемы и наблюдает выходные сигналы на экране осциллографа. В случае логического моделирования он имитирует эти действия с помощью специальной программы, называемой моделятором (симулятором, имитатором). Разница в том, что реальные, физические сигналы заменяются программно генерируемыми и наблюдаются они не на осциллографе, а на экране монитора.


Процесс логического моделирования С точки зрения обработки данных моделирование сводится к трём основным процессам: Составление описания моделируемой схемы на некотором языке (ЯОО - язык описания объектов) и ввода его в ЭВМ. Описание можно задать в виде схемы, списком компонентов и связей (NetList), в форме табличного представления, в виде диаграммы состояний ЦА. Контроль описания (например, поиск плавающих входов, закороченных выходов, дублированных имён) и трансляция его в объектный код. Программа контроля ERC – Electrical Rules Check. Выполнение экспериментов с программной моделью, имитирующей работу схемы. Перед началом моделирования задаются наборы входных сигналов, исходное состояние схемы, контрольные точки для наблюдения, конечное время моделирования.


Графическое представление процесса логического моделирования Ввод описания схемы NetList Библиотеки графических описаний компонентов Автоматическая генерация модели схемы Библиотеки математических моделей компонентов ЯОО Проектировщик & Y=A and B; Модель схемыМоделятор proceduremain Инструментальные средства моделирования Диаграммы входных сигналов Исходное состояние схемы Управление выводом Специальные условия Метод моделирования Результаты моделирования Рабочая программа ЯОЗ M1 – принцип дельта T M2 – принцип дельта Z min typical max температура неисправности Компилирующее моделирование Компоновщик Линковщик


Модели цифровых сигналов Круг задач, решаемых методом логического моделирования, определяется в первую очередь числом различимых состояний, которые может принимать цифровой сигнал. Каждому состоянию сопоставляется свой индивидуальный символ, а их совокупность составляет алфавит моделирования. Простейший алфавит - двоичный, используемый в старых АСМ, содержал битовый набор {0, 1}. Так как в этом случае любой сигнал может принимать только два значения (0 и 1), то смену логического уровня вынужденно приходилось считать мгновенной. Реальный сигнал Порог Двоичная аппроксимация Событие – мгновенное переключение Достоинство – экономичность. Позволяет решать только одну главную задачу моделирования – проверить работу схемы


Модели цифровых сигналов При троичном моделировании {0, 1, Х} переключающийся сигнал можно изобразить более реалистично, например 0Х1 или 1Х0. Такая запись означает, что при смене состояния элемента его выходной сигнал в течение некоторого времени (пока формировался фронт или спад) имел неопределенное значение. 0 1 X Переключение 0X1 Переключение 1X0 0 1 X 0X1 Active-HDL 8.1 X – неизвестное значение Трёхзначный алфавит {0,1,X} используется в языке PML (САПР PCAD 4.5) X присваивается сигналу на выходе ЛЭ во время переходного процесса. X присваивается выходам триггера после подачи на его входы запрещённых комбинаций сигналов X присваивается выходам триггера в начале моделирования, когда его состояние неизвестно


Модели цифровых сигналов При моделировании компонентов с динамическими входами (триггеры, счётчики, регистры, память) очень удобно фиксировать моменты переключения сигналов в том или ином направлении. С этой целью в алфавит моделирования добавляются ещё два значения: или / или R (от слова Rise - фронт) - переключение сигнала вверх; или \ или F (от слова Fall - спад) - переключение сигнала вниз. В САПР OrCAD 9.1 (PSpice проекты) используется шестизначный алфавит {0,1,X,R,F,Z}


Модели цифровых сигналов Для моделирования шинных структур в алфавит допустимых значений сигналов вводится ещё одно Z-состояние, то есть состояние высокого импеданса на выходе, когда он фактически оторван от нагрузки: {0,1,X,R,F,Z}. Весьма распространён четырёхзначный алфавит {0,1,X,Z}. Он используется в таких языках описания аппаратуры как Verilog, ABEL, AHDL (Altera), DSL (DesignLab). Четырёхзначный алфавит часто называют алфавитом синтеза ПЛИС.


Модели цифровых сигналов Для более точного представления сигналов (более адекватного моделирования) можно использовать два основных приёма: Расширять алфавит моделирования (так мы уже действовали); Вводить понятие логической силы сигнала (strength level). В качестве примера рассмотрим расширенный алфавит моделирования языка VHDL type bit is (0,1); - базовый, встроенный тип сигнала. Алфавит {0,1} type std_ulogic is (U,X,0,1,Z,W,L,H,-); - расширенный тип сигнала. Алфавит {U,X,0,1,Z,W,L,H,-} Расширенный тип сигналов расположен в отдельном пакете std_logic_1164, находящимся в библиотеке ieee. Поэтому чтобы включить этот тип сигналов в модель, необходимо перед ней разместить строки:


Модели цифровых сигналов Язык VHDL Алфавит {U,X,0,1,Z,W,L,H,-} U – от слова Uninitialized – дословно «не инициализировано» Это означает, что сигналу в программе вообще не присваивались какие- либо значения; обеспечивает контроль корректности инициализации - – безразличное состояние (Dont Care) Это означает, что сигнал может принять любое из разрешённых значений, что не повлияет на работу схемы. В книгах и справочниках безразличное состояние часто обозначают символами «d» или «*». JK-триггер R C J K Q NQ Сброс 1 * * * 0 1 При синтезе ЦА в запрещённых состояниях вместо «*» вы можете поставить 0 или 1 и получите разные схемные решения. В САПР выбор конкретного значения отдаётся на откуп компилятору с целью оптимизации проектируемого устройства. Пример. Язык DSL в САПР DesignLab 8. В выражении Y =.X.; компилятор по умолчанию PLSyn поставит Y = 0;


Модели цифровых сигналов Active-HDL 8.1 Графическое представление значений цифрового сигнала. Понятия сильного (force) и слабого (weak) сигналов X – forcing unknown 0 – forcing zero 1 – forcing one W – weak unknown L - weak zero (слабый ноль) H - weak one (слабая единица) Слабый сигнал формируется от источников, называемых драйверами. Они имеют высокое выходное сопротивление по сравнению с источниками сильных сигналов. Например, схема с открытым коллектором или эмиттером.


Модели цифровых сигналов SDRZ 0S0D0R0Z0 1S1D1R1Z1 XSXDXRXZX Вернёмся к понятию логической силы сигнала (strength level). Мы уже знаем, что расширение возможностей моделирования, повышения его адекватности, может достигаться не только увеличением алфавита моделирования, но и введением понятия «уровня логической силы сигнала». Впервые эта идея была реализована в языке PML пакета PCAD 4.5. Пример: Язык Verilog имеет всего 4х-значный алфавит моделирования {0,1,X,Z}, но одновременно 8 значений логической силы. Логическая сила S > D > R > Z D > R > Z">


Модели логических элементов При построении моделей логических элементов могут учитываться следующие свойства: выполняемая функция; задержка распространения сигнала; нагрузочная способность; пороги срабатывания; длительность фронтов; случайный разброс задержек; температурные изменения параметров (например, временных задержек, уровней логического нуля и единицы и т.п.). Заметим, что чем выше значимость алфавита моделирования и чем больше свойств учитывается в модели, тем больше ресурсов (процессорного времени и памяти) требуется для прогона модели. По этой причине в современных системах моделирования число разрешённых значений цифрового сигнала обычно не превышает 4..9, а из возможных свойств, как правило, моделируется только функция, временная задержка и нагрузочная способность.


Булевские модели Булевские модели логических элементов работают с двоичным алфавитом {0,1} и могут быть реализованы в виде: логического уравнения, таблицы истинности или блок-схемы алгоритма IN1 IN2 OUT1 & AND2 IN1 IN2 OUT1 & AND2 IN1 IN2 OUT1 & AND2 F1 F2 Y1 Потоковое описание схемы: Y1 = A & B; (PCAD 4.5, язык PML) Y1 = A * B; (DesignLab 8, язык DSL) Y1


PROCEDURE AND2 (INPUT IN1, IN2 ; OUTPUT OUT1); TRUTH_TABLE IN2, IN1:: OUT1; 1, 1:: 1; END TRUTH_TABLE; END AND2; Булевские модели IN1 IN2 OUT1 & AND2 IN1 IN2 OUT1 & AND2 IN1 IN2 OUT1 & AND2 F1 F2 Y1 IN1IN2OUT Алгоритмическое описание Табличное описание Язык DSL Начало Конец IN1=0 IN2=0 OUT1=0OUT1=1 Да Нет Да Нет


Булевские модели Обычно булевские модели применяются для синхронного потактового моделирования (принцип дельта Т) без учёта задержек. Это самое примитивное моделирование. Главное его достоинство – простота и экономичность. При булевском моделировании время разбивается на такты (принцип t). Длительность такта выбирается так, чтобы в пределах одного такта ни один сигнал не переключился более одного раза. Реальное переключение переносится на начало того такта, в пределах которого оно произошло. Переключение считается мгновенным. Задержка распространения сигнала от входа F1 (или F2) до выхода Y1 не моделируется, так как оба переключения переносятся на начало такта Т2 (или Т4) и становятся одновременными. Модельное время F1 F2 Y1 Такт Реальный сигнал Булевская модель T0T1 T2 T3T4T5T6 Риск сбоя Мгновенное событие «Иголка» Glitch


Булевские модели Обычно один такт соответствует одному набору входных сигналов и обрабатывается за один цикл работы моделятора. С каждым циклом в счётчик модельного времени добавляется единица, то есть модельное время продвигается по тактам в соответствии с выражением: Т:=Т+1. В реальной схеме из-за перекрытия фронтов сигналов F1 и F2 на выходе элемента 2И может появиться короткий импульс - риск сбоя (такт Т6). Булевские модели не в состоянии предсказать появление таких иголок, весьма опасных для работы цифровой аппаратуры. Булевское моделирование решает только одну главную задачу любого моделирования – проверку правильности функционирования цифровой аппаратуры


Троичные модели Троичные модели в отличие от булевских имитируют возникновение переходных процессов при смене уровней сигналов. При троичном моделировании такт разбивается на два полутакта. В течение первого полутакта переключающийся сигнал принимает значение Х (изменяется), а на втором полутакте достигает нового значения. В троичных моделях используется трёхзначный алфавит {0,1,X}


Троичные модели Модельное время F1 F2 Y1 Реальный сигнал Риск сбоя 0 1 X Модель риска сбоя Троичная модель 1 X X Такт T6 Полутакт неопределённости Полутакт определённости IN1 IN2 OUT1 & AND2 IN1 IN2 OUT1 & AND2 IN1 IN2 OUT1 & AND2 F1 F2 Y1 IN1IN2OUT IN1IN2OUT1 0X0 X00 1XX X1X XXX M2 M3 1X0 0X1 0X0 таблица истинности элемента 2И для трёхзначной логики


Троичные модели Признаком риска сбоя служат одинаковые значения сигнала на соседних тактах и значение Х на полутакте неопределенности между ними. 0011XX Риск сбоя Троичное моделирование отражает только сам факт переключения сигнала и не уточняет, сколько времени длилось переключение, и где именно в пределах такта оно происходило. Другими словами, длительность Х - состояния при троичном моделировании всегда равна полутакту и никак не связана с реальным временем переключения сигнала.


Многозначные модели Многозначные модели позволяют более точно описать поведение реальных элементов, однако по сравнению с троичными моделями ничего принципиально нового они не содержат. Для сравнения рассмотрим таблицы истинности элемента 2И при двоичном, троичном и пятизначном моделировании. OUT1 IN2 01X IN X X0XXXX 0 X X 0 XX IN1 IN2 OUT1 & AND2 IN1 IN2 OUT1 & AND2 IN1 IN2 OUT1 & AND2 F1 F2 Y1 X ? IN1 IN2 OUT1 & AND2 ? IN1 IN2 OUT1 & AND2 M2M3 M5


Модели логических элементов с учётом задержек Эти модели в отличие от троичных имитируют задержки в явном виде. Чтобы отобразить задержку, надо указать истинное положение переключающегося сигнала на временной оси. Моделирование задержек при потактовом способе продвижения модельного времени (принцип дельта T). Чтобы отразить задержку, надо повысить разрешающую способность по времени, то есть разделить такт на более мелкие единицы времени, называемые квантами (микротактами) или шагами. Например, в пакете PCAD такт называется CYCLE, а квант - STEP. 1 A Y A Y Квант Такт tз = 8 квантов Задержка представляется целым числом – числом квантов


Модели логических элементов с учётом задержек В моделях с учётом tз в явном виде такт нарезается на кванты. Причем величина кванта должна составлять малую часть задержки, например 1ns. Цикл работы моделирующей программы теперь привязывается не к такту, а к кванту. Поэтому, чтобы смоделировать работу схемы в течение одного такта, моделятору придётся выполнить гораздо больший объём работы, а именно столько циклов, сколько квантов помещается на длине такта. Теперь с точностью до кванта можно указать моменты истинных переключений на входах и выходах, а также вычислить целым числом квантов задержку распространения. Остается только смоделировать её. Классическая модель логического элемента с учётом задержки содержит два блока. Первый – реализует логику (функцию), второй – чистую задержку. φ tз = 0 B A C YсYс Y Логический блок Блок задержки Yс (от слова синхронный) мгновенно реагирует на изменения входных сигналов Динамическая модель в PSpice проектах


Модели логических элементов с учётом задержек AYсYс Логический блок LOGICEXP PINDLY Счётчик tз Контейнер Yс Контейнер Y Y NextCurrent Хранит будущее значение Хранит текущее значение Блок задержки Возможная реализация блока задержки для потактового моделирования Счётчик задержки работает на вычитание. При синхронном переключении выхода Yс новое значение записывается в контейнер будущих значений, а в счётчик tз заносится задержка, с которой новое значение Yс должно появиться на выходе Y.


Модели логических элементов с учётом задержек В процессе продвижения модельного времени (tкванта = tкванта + 1) задержка в счётчике tз уменьшается, по не «растает» до нуля. Будущее значение выхода становится текущим, а это означает, что содержимое левого контейнера надо переписать в правый. Моделирование задержек при событийном механизме продвижения модельного времени (принцип дельта Z). Мы рассмотрели вариант, когда задержка моделируется внутри каждого логического элемента. Такое решение приводит к значительным затратам ресурсов инструментальной ЭВМ. Другая возможность смоделировать реальную задержку заключается в том, чтобы спланировать новое событие на выходе и рассчитать момент его наступления t(Y) по простому правилу: t(Y) = t(Yс) + tз Но t(Yс) – это текущее модельное время t(текущее) Значит для любого события (переключения) можно спланировать время наступления будущего события как t(будущее) = t(текущее) + t(задержки)


Модели логических элементов с учётом задержек Вычисленное событие помещается моделятором в очередь будущих событий ОБС, которая отсортирована в хронологическом порядке. Как видно, вся работа по имитации задержек перекладывается на моделятор, которому требуется только указать величину задержки относительно текущего модельного времени. Заметим, что округлять ее до целого числа квантов теперь совсем не обязательно. На языке VHDL это делается весьма элегантно: Y

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей