Какая орбита электрона называется разрешенной. Атом водорода

Чтобы получить согласие с результатами наблюдений, Бор предположил, что электрон в атоме водорода движется только по тем круговым орбитам, для которых его момент импульса

где n - квантовые числа, т – масса электрона, - его скорость, r - радиус орбиты. (Рассуждения, которые привели Бора к этому предположению мы опустим.)

С помощью этого правила квантования можно найти радиусы круговых стационарных орбит водорода и водородоподобных систем: ионов атомов с одним оставшимся электроном (Н, Не + , Li + + , …) и соответствующие им энергии. Пусть заряд ядра водородоподобной системы равен e . Масса ядра значительно больше массы электрона, поэтому ядро при движении электрона можно считать неподвижным. Следуя Бору, будем предполагать, что электрон движется вокруг ядра по окружности радиуса r .

Согласно 2-му закону Ньютона

(3.12.9)

Решая совместно (3.12.8) и (3.12.9), можно найти радиусы электронных орбит и их скорости на этих орбитах:

. (3.12.10)

Таким образом, радиус первой (ближайшей к ядру) орбиты электрона в атоме водорода (его обозначают обычно и называют первым Боровским радиусом )

нм (3.12.11)

Внутренняя энергия атома складывается из кинетической энергии электрона (ядро полагают неподвижным) и потенциальной энергии взаимодействия электрона с ядром. С учетом (3.12.10) получим:

. (3.12.12)

При переходе атома водорода (Z =1) из состояния в состояние излучается фотон

. (3.12.13)

Тогда частота испущенного света равна

, (3.12.14)

Что соответствует обобщенной формуле Бальмера, если постоянная Ридберга определяется . (3.12.15)

Расчет по этой формуле хорошо согласуется с экспериментально определенным значением.

Схема энергетических уровней (разрешенных значений энергии) атома водорода приведена на рис.3.12.4. Там же показаны возможные переходы, сопровождающиеся излучением фотонов определенной частоты.



Лекция 3.13.

Волновые свойства частиц вещества.

Гипотеза де-Бройля. Волны де-Бройля.

Как было сказано ранее, свет (и вообще излучение) имеет двойственную природу: в одних явлениях (интерференция, дифракция и др.) свет проявляет себя как волны, в других явлениях с не меньшей убедительностью – как частицы. Это и побудило де-Бройля (в 1923 г.) высказать идею о том, что материальные частицы должны обладать и волновыми свойствами, т.е. распространить подобный корпускулярно-волновой дуализм на частицы с массой покоя, отличной от нуля.

Если с такой частицей связана какая-то волна, можно ожидать, что она распространяется в направлении скорости υ частицы. О природе этой волны ничего определенного де-Бройлем не было высказало. Не будем и мы пока выяснять их природу, хотя сразу же подчеркнем, что эти волны не электромагнитные. Они имеют, как мы увидим далее, специфическую природу, для которой нет аналога в классической физике.

Итак, де-Бройль высказал гипотезу, что соотношение для импульса p=ћω/c , относящееся к фотонам, имеет универсальный характер, т. е. частицам можно сопоставить волну, длина которой

Эта формула получила название формулы де-Бройля , а λ – дебройлевской длины волны частицы с импульсом р .

Де-Бройль также предположил, что пучок частиц, падающих на двойную щель, должен за ними интерферировать.

Вторым, независимым от формулы (3.13.1), соотношением является связь между энергией Е частицы и частотой ω дебройлевской волны:

В принципе энергия Е определена всегда с точностью до прибавления произвольной постоянной (в отличие от ΔЕ ), следовательно, частота ω является принципиально ненаблюдаемой величиной (в отличие от дебройлевской длины волны).

С частотой ω и волновым числом k связаны две скорости - фазовая υ ф и групповая u :

(3.13.3)

Умножив числитель и знаменатель обоих выражений на ћ с учетом (3.13.1) и (3.13.2), получим, ограничившись рассмотрением только нерелятивистского случая, т.е. полагая E = p 2 /2m (кинетическая энергия):

(3.13.4)

Отсюда видно, что групповая скорость равна скорости частицы, т. е. является принципиально наблюдаемой величиной, в отличие от υ ф ‑ из-за неоднозначности Е .

Из первой формулы (3.13.4) следует, что фазовая скорость дебройлевских волн

(3.13.5)

т. е. зависит от частоты ω, а значит дебройлевские волны обладают дисперсией даже в вакууме. Далее будет показано, что в соответствии с современной физической интерпретацией фазовая скорость дебройлевских волн имеет чисто символическое значение, поскольку эта интерпретация относит их к числу принципиально ненаблюдаемых величин. Впрочем, сказанное видно и сразу, так как Е в (3.13.5) определена, как уже говорилось, с точностью до прибавления произвольной постоянной.

Установление того факта, что согласно (3.13.4) групповая скорость дебройлевских волн равна скорости частицы, сыграло в свое время важную роль в развитии принципиальных основ квантовой физики, и в первую очередь в физической интерпретации дебройлевских волн. Сначала была сделана попытка рассматривать частицы как волновые пакеты весьма малой протяженности и таким образом решить парадокс двойственности свойств частиц. Однако подобная интерпретация оказалась ошибочной, так как все составляющие пакет гармонические волны распространяются с разными фазовыми скоростями. При наличии большой дисперсии, свойственной дебройлевским волнам даже в вакууме, волновой пакет «расплывается». Для частиц с массой порядка массы электрона пакет расплывается практически мгновенно, в то время как частица является стабильным образованием.

Таким образом, представление частицы в виде волнового пакета оказалось несостоятельным. Проблема двойственности свойств частиц требовала иного подхода к своему решению.

Вернемся к гипотезе де-Бройля. Выясним, в каких явлениях могут проявиться волновые свойства частиц, если они, эти свойства, действительно существуют. Мы знаем, что независимо от физической природы волн - это интерференция и дифракция. Непосредственно наблюдаемой величиной в них является длина волны. Во всех случаях дебройлевская длина волны определяется формулой (3.13.1). Проведем с помощью нее некоторые оценки.

Прежде всего, убедимся, что гипотеза де-Бройля не противоречит понятиям макроскопической физики. Возьмем в качестве макроскопического объекта, например, пылинку, считая, что ее масса m = 1мг и скорость V = 1 мкм/с. Соответствующая ей дебройлевская длина волны

(3.13.6)

Т. е. даже у такого небольшого макроскопического объекта как пылинка дебройлевская длина волны оказывается неизмеримо меньше размеров самого объекта. В таких условиях никакие волновые свойства, конечно, проявить себя не могут в условиях доступных измерению размеров.

Иначе обстоит дело, например, у электрона с кинетической энергией K и импульсом . Его дебройлевская длина волны

(3.13.7)

где K должно быть измерено в электрон-вольтах (эВ). При K = 150 эВ дебройлевская длина волны электрона равна согласно (3.13.7) λ = 0,1нм. Такой же порядок величины имеет постоянная кристаллической решетки. Поэтому, аналогично тому, как в случае рентгеновских лучей, кристаллическая структура может быть подходящей решеткой для получения дифракции дебройлевских волн электронов. Однако гипотеза де-Бройля представлялась настолько нереальной, что довольно долго не подвергалась экспериментальной проверке.

Экспериментально гипотеза де-Бройля была подтверждена в опытах Дэвиссона и Джермера (1927г.). Идея их опытов заключалась в следующем. Если пучок электронов обладает волновыми свойствами, то можно ожидать, даже не зная механизма отражения этих волн, что их отражение от кристалла будет иметь такой же интерференционный характер, как у рентгеновских лучей.

В одной серии опытов Дэвиссона и Джермера для обнаружения дифракционных максимумов (если таковые есть) измерялись ускоряющее напряжение электронов и одновременно положение детектора D (счетчика отраженных электронов). В опыте использовался монокристалл никеля (кубической системы), сошлифованный так, как показано на рис.3.13. Если его повернуть вокруг вертикальной оси в Рис.3.13.1

положение, соответствующее рисунку, то в этом положении

сошлифованная поверхность покрыта правильными рядами атомов, перпендикулярными к плоскости падения (плоскости рисунка), расстояние между которыми d = 0,215нм. Детектор перемещали в плоскости падения, меняя угол θ. При угле θ = 50 0 и ускоряющем напряжении V = 54B наблюдался особенно отчётливый максимум отраженных Рис.3.13.2.

электронов, полярная диаграмма которых показала на рис.3.13.2.Этот максимум можно истолковать как интерференционный максимум первого порядка от плоской дифракционной решетки с указанным выше периодом в соответствии с формулой

что видно из рис.3.13.3. На этом рисунке каждая жирная точка представляет собой проекцию цепочки атомов, расположенных на прямой, перпендикулярной плоскости рисунка. Период d может быть измерен независимо, например, по дифракции рентгеновских лучей. Рис.3.13.3.

Вычисленная по формуле (3.13.7) дебройлевская длина волны для V = 54B равна 0,167нм. Соответствующая же длина волны, найденная из формулы (3.13.8), равна 0,165нм. Совпадение настолько хорошее, что полученный результат следует признать убедительным подтверждением гипотезы де-Бройля.

Другими опытами, подтверждающим гипотезу де-Бройля, были опыты Томсона и Тартаковского. В этих опытах пучок электронов пропускался через поликристаллическую фольгу (по методу Дебая при изучении дифракции рентгеновского излучения). Как и в случае рентгеновского излучения, на фотопластинке, расположенной за фольгой, наблюдалась система дифракционных колец. Сходство обеих картин поразительно. Подозрение, что система этих колец порождается не электронами, а вторичным рентгеновским излучением, возникающим в результате падения электронов на фольгу, легко рассеивается, если на пути рассеянных электронов создать магнитное поле (поднести постоянный магнит). Оно не влияет на рентгеновское излучение. Такого рода проверка показала, что интерференционная картина сразу же искажалась. Это однозначно свидетельствует, что мы имеем дело именно с электронами.

Г. Томсон осуществил опыты с быстрыми электронами (десятки кэВ), П.С. Тарковский - со сравнительно медленными электронами (до 1,7 кэВ).

Для успешного наблюдения дифракции волн на кристаллах необходимо, чтобы длина волны этих волн была сравнима с расстояниями между узлами кристаллической решетки. Поэтому для наблюдения дифракции тяжелых частиц необходимо пользоваться частицами с достаточно малыми скоростями. Соответствующие опыты по дифракции нейтронов и молекул при отражении от кристаллов были проделаны и также полностью подтвердили гипотезу де-Бройля в применении и к тяжелым частицам.

Благодаря этому было экспериментально доказано, что волновые свойства являются универсальным свойством всех частиц. Они не обусловлены какими-то особенностями внутреннего строения той или иной частицы, а отражают их общий закон движения.

Описанные выше опыты выполнялись с использованием пучков частиц. Поэтому возникает естественный вопрос: наблюдаемые волновые свойства выражают свойства пучка частиц или отдельных частиц?

Чтобы ответить на этот вопрос, В. Фабрикант, Л. Биберман и Н. Сушкин осуществили в 1949 г. опыты, в которых применялись столь слабые пучки электронов, что каждый электрон проходил через кристалл заведомо поодиночке, и каждый рассеянный электрон регистрировался фотопластинкой. При этом оказалось, что отдельные электроны попадали в различные точки фотопластинки совершенно беспорядочным на первый взгляд образом (рис.3.13.4а ). Между тем при достаточно длительной экспозиции на фотопластинке возникала дифракционная картина (рис.3.13.4б ), абсолютно идентичная картине дифракции от обычного электронного пучка. Так было доказано, что волновыми свойствами обладают и отдельные частицы.

Таким образом, мы имеем дело с микрообъектами, которые обладают одновременно как корпускулярными, так и волно-

выми свойствами. Это позволяет нам в дальнейшем говорить

об электронах, но выводы, к которым мы придем, имеют Рис.3.13.4.

общий смысл и в равной степени применимы к любым частицам.

Парадоксальное поведение микрочастиц.

Рассмотренные в предыдущем параграфе эксперименты вынуждают констатировать, что перед нами один из загадочнейших парадоксов: что означает утверждение «электрон - это одновременно частица и волна »?

Попытаемся разобраться в этом вопросе с помощью мысленного эксперимента, аналогичного опыту Юнга по изучению интерференции света (фотонов) от двух щелей. После прохождения пучка электронов через две щели на экране образуется система максимумов и минимумов, положение которых можно рассчитать по формулам волновой оптики, если каждому электрону сопоставить дебройлевскую волну.

В явлении интерференции от двух щелей таятся сама суть квантовой теории, поэтому уделим этому вопросу особое внимание.

Если мы имеем дело с фотонами, то парадокс (частица - волна) можно устранить, предположив, что фотон в силу своей специфичности расщепляется на две части (на щелях), которые затем интерферируют.

А электроны? Они ведь никогда не расщепляются - это установлено совершенно достоверно. Электрон может пройти либо через щель 1, либо через щель 2 (рис.3.13.5). Следовательно, распределение их на экране Э должно быть суммой распределений 1 и 2 (рис.3.13.5а ) - оно показано пунктирной кривой. Рис.13.13.5.

Хотя логика в этих рассуждениях безупречна, такое распределение не осуществляется. Вместо этого мы наблюдаем совершенно иное распределение (рис.3.13.5б ).

Не есть ли это крушение чистой логики и здравого смысла? Ведь все выглядит так, как если бы 100 + 100 = 0 (в точке P). В самом деле, когда открыта или щель 1 или щель 2, то в точку P приходит, скажем, по 100 электронов в секунду, а если открыты обе щели, то ни одного!..

Более того, если сначала открыть щель 1, а потом постепенно открывать щель 2, увеличивая ее ширину, то по здравому смыслу число электронов, приходящих в точку P ежесекундно, должно расти от 100 до 200. В действительности же - от 100 до нуля.

Если подобную процедуру повторить, регистрируя частицы, например, в точке O (см. рис.3.13.5б ), то возникает не менее парадоксальный результат. По мере открывания щели 2 (при открытой щели 1) число частиц в точке O растет не до 200 в секунду, как следовало бы ожидать, а до 400!

Как открывание щели 2 может повлиять на электроны, которые, казалось бы, проходят через щель 1? Т. е. дело обстоит так, что каждый электрон, проходя через какую-то щель, «чувствует» и соседнюю щель, корректируя свое поведение. Или подобно волне проходит сразу через обе щели (!?). Ведь иначе интерференционная картина не может возникнуть. Попытка все же определить, через какую щель проходит тот или иной электрон, приводит к разрушению интерференционной картины, но это уже совсем другой вопрос.

Какой же вывод? Единственный способ «объяснения», этих парадоксальных результатов заключается в создании математического формализма, совместимого с полученными результатами и всегда правильно предсказывающего наблюдаемые явления. Причем, разумеется, этот формализм должен быть внутренне непротиворечивым.

И такой формализм был создан. Он ставит в соответствие каждой частице некоторую комплексную пси-функцию Ψ(r , t ). Формально она обладает свойствами классических волн, поэтому ее часто называют волновой функцией . Поведение свободной равномерно движущейся в определенном направлении частицы описывает плоская волна де-Бройля

Но более подробно об этой функции, ее физическом смысле и уравнении, которое управляет ее поведением в пространстве и времени, речь пойдет в следующей лекции.

Возвращаясь к поведению электронов при прохождении через две щели, мы должны признать: тот факт, что в принципе нельзя ответить на вопрос, через какую щель проходит электрон (не разрушая интерференционной картины), несовместим с представлением о траектории. Таким образом, электронам, вообще говоря, нельзя приписать траектории .

Однако при определенных условиях, а именно когда дебройлевская длина волны микрочастицы становится очень малой и может оказаться много меньше, например, расстояния между щелями или атомных размеров, понятие траектории снова приобретает смысл. Рассмотрим этот вопрос более подробно и сформулируем более корректно условия, при которых можно пользоваться классической теорией.

Принцип неопределенности

В классической физике исчерпывающее описание состояния частицы определяется динамическими параметрами, такими как координаты, импульс, момент импульса, энергия и др. Однако реальное поведение микрочастиц показывает, что существует принципиальный предел точности, с которой подобные переменные могут быть указаны и измерены.

Глубокий анализ причин существования этого предела, который называют принципом неопределенности , провел В. Гейзенберг (1927г.). Количественные соотношения, выражающие этот принцип в конкретных случаях, называют соотношениями неопределенностей .

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получаются при измерениях определенные значения. Существуют пары величин, которые не могут быть одновременно определены точно.

Наиболее важными являются два соотношения неопределенностей.

Первое из них ограничивает точности одновременного измерения координат и соответствующих проекций импульса частицы. Для проекции, например, на ось х оно выглядит так:

Второе соотношение устанавливает неопределенность измерения энергии, ΔE , за данный промежуток времени Δt :

Поясним смысл этих двух соотношений. Первое из них утверждает, что если положение частицы, например, по оси х известно с неопределенностью Δx , то в тот же момент проекцию импульса частицы на эту же ось можно измерить только с неопределенностью Δp= ћ x . Заметим, что эти ограничения не касаются одновременного измерения координаты частицы по одной оси и проекции импульса - по другой: величины x и p y , y и p x и т. д. могут иметь одновременно точные значения.

Согласно второму соотношению (3.13.11) для измерения энергии с погрешностью ΔЕ необходимо время, не меньшее, чем Δt =ћ E . Примером может служить «размытие» энергетических уровней водородоподобных систем (кроме основного состояния). Это связано с тем, что время жизни во всех возбужденных состояниях этих систем порядка 10 -8 с. Размытие же уровней приводит к уширению спектральных линий (естественное уширение), которое действительно наблюдается. Сказанное относится и к любой нестабильной системе. Если время жизни ее до распада порядка τ, то из-за конечности этого времени энергия системы имеет неустранимую неопределенность, не меньшую, чем ΔE≈ ћ /τ.

Укажем еще пары величин, которые не могут быть одновременно точно определены. Это любые две проекции момента импульса частицы. Поэтому не существует состояния, в котором бы все три и даже какие-либо две из трех проекций момента импульса имели определенные значения.

Обсудим более подробно смысл и возможности соотношения Δx ·Δp x ≥ћ . Прежде всего, обратим внимание на то, что оно определяет принципиальный предел неопределенностей Δx и Δp x , с которыми состояние частицы можно характеризовать классически, т.е. координатой x и проекцией импульса p x . Чем точнее x , тем с меньшей точностью, возможно установить p x , и наоборот.

Подчеркнем, что истинный смысл соотношения (3.13.10) отражает тот факт, что в природе объективно не существует состояний частицы с точно определенными значениями обеих переменных, x и p х. Вместе с тем мы вынуждены, поскольку измерения проводятся с помощью макроскопических приборов, приписывать частицам не свойственные им классические переменные. Издержки такого подхода и выражают соотношения неопределенностей.

После того, как выяснилась необходимость описывать поведение частиц волновыми функциями, соотношения неопределенностей возникают естественным образом - как математическое следствие теории.

Считая соотношение неопределенностей (3.13.10) универсальным, оценим, как бы оно сказалось на движении макроскопического тела. Возьмем очень маленький шарик массы m = 1мг. Определим, например, с помощью микроскопа его положение с погрешностью Δx≈ 10 -5 см (она обусловлена разрешающей способностью микроскопа). Тогда неопределенность скорости шарика Δυ = Δp /m≈ (ћ x )/m ~ 10 -19 см/с. Такая величина недоступна никакому измерению, а потому и отступление от классического описания совершенно несущественно. Другими словами, даже для такого маленького (но макроскопического) шарика понятие траектории применимо с высокой степенью точности.

Иначе ведет себя электрон в атоме. Грубая оценка показывает, что неопределенность скорости электрона, движущегося по боровской орбите атома водорода, сравнима с самой скоростью: Δυ ≈ υ. При таком положении представление о движении электрона по классической орбите теряет всякий смысл. И вообще, при движении микрочастиц в очень малых областях пространства понятие траектории оказывается несостоятельным .

Вместе с тем, при определенных условиях движение даже микрочастиц может рассматриваться классически, т. е. как движение по траектории. Так происходит, например, при движении заряженных частиц в электромагнитных полях (в электронно-лучевых трубках, ускорителях и др.). Эти движения можно рассматривать классически, поскольку для них ограничения, обусловленные соотношением неопределенностей, пренебрежимо малы по сравнению с самими величинами (координатами и импульсом).

Опыт со щелью . Соотношение неопределенностей (3.13.10) проявляет себя при любой попытке точного измерения положения или импульса микрочастицы. И каждый раз мы приходим к «неутешительному» результату: уточнение положения частицы приводит к увеличению неопределенности импульса, и наоборот. В качестве иллюстрации такой ситуации рассмотрим следующий пример.

Попытаемся определить координату x свободно движущейся с импульсом p частицы, поставив на ее пути перпендикулярно направлению движения экран со щелью шириной b (рис.3.13.6). До прохождения частицы через щель ее проекция импульса p х имеет точное значение: p x = 0. Это значит, что Δ p x = 0, но

координата x частицы является совершенно неопреде ленной согласно (3.13.10): мы не можем сказать, Рис.3.13.6.

пройдет ли данная частица через щель.

Если частица пройдет сквозь щель, то в плоскости щели координата x будет зарегистрирована с неопределенностью Δx ≈ b . При этом вследствие дифракции с наибольшей вероятностью частица будет двигаться в пределах угла 2θ, где θ - угол, соответствующий первому дифракционному минимуму. Он определяется условием, при котором разность хода волн от обоих краев щели будет равна λ (это доказывается в волновой оптике):

В результате дифракции возникает неопределенность значения p х - проекции импульса, разброс которого

Учитывая, что b ≈ Δх и p = 2πћ /λ., получим из двух предыдущих выражений:

что согласуется по порядку величины с (3.13.10).

Таким образом, попытка определить координату x частицы, действительно, привела к появлению неопределенности Δp в импульсе частицы.

Анализ многих ситуаций, связанных с измерениями, показывает, что измерения в квантовой области принципиально отличаются от классических измерений. В отличие от последних, в квантовой физике существует естественный предел точности измерений. Он в самой природе квантовых объектов и не может быть преодолен никаким совершенствованием приборов и методов измерений. Соотношение (3.13.10) и устанавливает один из таких пределов. Взаимодействие между микрочастицей и макроскопическим измерительным прибором нельзя сделать сколь угодно малым. Измерение, например координаты частицы, неизбежно приводит к принципиально неустранимому и неконтролируемому искажению состояния микрочастицы, а значит и к неопределенности в значении импульса.

Некоторые выводы .

Соотношение неопределенностей (3.13.10) является одним из фундаментальных положений квантовой теории. Одного этого соотношения достаточно, чтобы получить ряд важных результатов, в частности:

1. Невозможно состояние, в котором частица находилась бы в состоянии покоя.

2. При рассмотрении движения квантового объекта необходимо во многих случаях отказаться от самого понятия классической траектории.

3. Часто теряет смысл деление полной энергии E частицы (как квантового объекта) на потенциальную U и кинетическую K . В самом деле, первая, т. е. U , зависит от координат, а вторая - от импульса. Эти же динамические переменные не могут иметь одновременно определенного значения.

Лекция 3.14.

Уравнение Шрёдингера. Квантование энергии и момента импульса. Атом водорода.

Волновая функция. Уравнение Шрёдингера.

В развитие идеи де-Бройля о волновых свойствах вещества Э.Шрёдингер получил в 1926г. свое знаменитое уравнение. Он сопоставил движению микрочастицы комплексную функцию координат и времени, которую назвал волновой функцией и обозначил греческой буквой . Поэтому ее называют также пси-функцией. Она характеризует состояние микрочастицы. Физический смысл водновой функции состоит в следующем: квадрат ее модуля определяет вероятность нахождения частицы в промежутке между точками х и х+dх в момент времени t. Точнее величина является плотностью вероятности или плотностью распределения координат частицы.

Из такого определения следуют свойства волновой функции. Она должна быть однозначной, непрерывной, гладкой (производная не терпит разрыва), конечной. Кроме того, она должна подчиняться условию нормировки .

Основная задача физики микрочастиц (волновой или квантовой механики) как раз и состоит в нахождении волновых функций и связанных с ними физических следствий в самых разнообразных условиях. Для ее решения служит волновое уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики. (Заметим, что одним из решений этого уравнения в свободном пространстве должна быть плоская волна де-Бройля (3.13.9).)

Особое значение в квантовой механике имеют стационарные состояния. Это такие состояния, в которых все наблюдаемые физические параметры не меняются с течением времени. Оказывается, что в стационарных состояниях

, (3.14.1)

где частота постоянна, а функция не зависит от времени. Эта независящая от времени часть волновой функции может быть найдена из уравнения Шрёдингера для стационарных состояний

, (3.14.2)

где т - масса частицы, Е – ее энергия, - функция, которая в случае стационарных состояний имеет смысл потенциальной энергии частицы.

Энергия частицы Е входит в уравнение в качестве параметра. В теории дифференциальных уравнений доказывается, что уравнения вида (3.14.2) имеют решения, удовлетворяющие стандартным условиям, не при любых значениях параметра Е, а лишь при некоторых избранных значениях. Эти избранные значения называются собственными значениями энергии. Решения (значения волновой функции), соответствующие собственным значениям Е , называются собственными функциями. Совокупность собственных значений называется спектром величины (энергии). Если эта совокупность образует дискретную последовательность, спектр называется дискретным, если же – непрерывную последовательность, спектр непрерывный или сплошной.

Таким образом, из основных положений квантовой механики без каких-либо дополнительных предположений следует квантование (дискретность) энергии .

Частица в бесконечно глубокой потенциальной яме.

Рассмотрим квантование энергии на простейшем примере движения частицы, находящейся в бесконечно глубокой одномерной потенциальной яме. Пусть частица может двигаться только вдоль оси х, где движение ограничено непроницаемыми для частицы стенками: х = 0 и х = l. Потенциальная энергия рана нулю при 0≤ х ≤ l и обращается в бесконечность при х < 0 и x > l .

Поскольку волновая функция в этом случае будет зависеть только от х , уравнение Шрёдингера будет иметь вид

. (3.14.3)

За пределы потенциальной ямы частица попасть не может. Поэтому вероятность обнаружить там частицу, а, следовательно, и волновая функция в этих областях равна нулю. Из условия непрерывности следует, что и на границах ямы она равна нулю

. (3.14.4)

В области, где не равна тождественно нулю, уравнение (3.14.3) примет вид . (3.14.5)

Введя обозначение , (3.14.6)

получим уравнение , (3.14.7)

решение которого будет иметь вид

Из первой части условия (3.14.4) следует . Вторая часть этого условия

Будет выполнена лишь в случае, если

(n= 1,2,3,…), (3.14.9)

откуда, приняв во внимание (3.14.6), найдем собственные значения энергии частицы (п= 1,2,3,…). (3.14.10)

Спектр энергии оказался дискретным.

Оценим «расстояния» между соседними уровнями. Разность энергий между двумя соседними уровнями равна

Если оценить эту величину для молекулы газа в сосуде (т ~ 10 кг, l ~ 10cм), получим Дж эВ. Столь густо расположенные энергетические уровни будут практически восприниматься как сплошной спектр энергии, так что, хотя квантование энергии в принципе будет иметь место, на характере движения молекул это сказываться не будет. Аналогичный результат получим, если рассмотреть поведение свободных электронов в металле (те же размеры ямы, т ~ 10 кг, Дж эВ). Однако, совсем другой результат получится для электрона, если область, в пределах которой он может двигаться, будет порядка атомных размеров (~ 10 м). В этом случае

так что дискретность энергетических уровней будет весьма заметна.

Атом водорода.

Рассмотрим систему, называемую водородоподобным атомом, состоящую из неподвижного ядра с зарядом Ze и движущегося вокруг него электрона (при Z=1 – это атом водорода). Потенциальная энергия электрона представляет собой в этом случае сферически симметричную функцию

Такой случай не предусматривался теорией Бора. В ней движение электрона вокруг ядра происходило по плоским орбитам. Но в квантовой механике, в которой нет представления о движении электронов по орбитам, нет препятствий для реализации сферически симметричных состояний атома. Поэтому уравнение Шрёдингера целесообразно записать в сферической системе координат: r, . Решая это уравнение, получим, что собственные значения энергии могут принимать 1)любые положительные значения 2) дискретные отрицательные значения, равные (п= 1,2,3,…). (3.14.13)

Случай Е > 0 соответствует электрону, пролетающему вблизи ядра и удаляющемуся на бесконечность. Случай Е < 0 - электрону, связанному с ядром. Заметим, что полученное выражение (3.14.13) совпадает с соответствующей формулой теории Бора (3.12.12). Однако в квантовой механике эти значения получаются из решения основного уравнения без введения каких-либо дополнительных предположений.

Собственные функции уравнения Шрёдингера оказываются от трех целочисленных параметров, которые принято обозначать п, l, т , и распадаются на два множителя, один из которых зависит только от r , другой – от углов

Параметры п, т называются квантовыми числами. Параметр п называется главным квантовым числом и совпадает с номером уровня энергии в (3.14.13). Параметр l называется азимутальным (или орбитальным) квантовым числом и может при заданном п принимать значения

Существование дискретных энергетических уровней является фундаментальным свойством атомов (так же как и молекул, и атомных ядер).

Попробуем применить известные нам законы физики, чтобы представить себе устройство атома, объясняющее дискретность его энергетических уровней.

Рассмотрим простейший из атомов - атом водорода. Порядковый номер водорода в периодической системе элементов равен единице, следовательно, водородный атом состоит из положительного ядра, заряд которого равен , и одного электрона. Между ядром и электроном действует сила притяжения зарядов. Наличие этой силы обеспечивает радиальное (центростремительное) ускорение, благодаря чему легкий электрон вращается вокруг тяжелого ядра по круговой или эллиптической орбите точно так же, как планета вращается вокруг Солнца под влиянием силы тяготения. Различным возможным состояниям атома соответствует, таким образом, различие в размерах (и форме) орбиты электрона, вращающегося вокруг ядра.

Энергия электрона в атоме слагается из кинетической энергии движения по орбите и потенциальной энергии в электрическом поле ядра. Можно показать (см. в конце параграфа), что энергия электрона на круговой орбите, а следовательно, и энергия атома в целом зависят от радиуса орбиты: меньшему радиусу орбиты соответствует меньшая энергия атома. Но, как мы видели в § 204, энергия атома может принимать не любые, а только определенные избранные значения. Так как энергия определяется радиусом орбиты, то каждому энергетическому уровню атома отвечает орбита определенного избранного радиуса.

Картина возможных круговых орбит электрона в атоме водорода изображена на рис. 367. Основному энергетическому уровню атома соответствует орбита наименьшего радиуса.

Рис. 367. Возможные орбиты электрона в атоме водорода: радиус орбит возрастает пропорционально , т.е. в отношении и т.д.

Нормально электрон находится на этой орбите. При сообщении достаточно большой порции энергии электрон переходит на другой энергетический уровень, т. е. «перескакивает» на одну из внешних орбит. Как указывалось, в таком возбужденном состоянии атом неустойчив. Через некоторое время электрон переходит на более низкий уровень, т. е. «перескакивает» на орбиту меньшего радиуса. Переход электрона с дальней орбиты на ближнюю сопровождается испусканием светового кванта.

Итак, из ядерной модели атома и дискретности его энергетических уровней вытекает существование избранных, «разрешенных», орбит электрона в атоме. Встает вопрос, почему электрон не может вращаться вокруг ядра по орбите произвольного радиуса. В чем физическое различие дозволенных и недозволенных орбит?

Законы механики и электричества, знакомые нам из предыдущих разделов учебника (см. тома I, II), не дают на эти вопросы никакого ответа. С точки зрения этих законов все орбиты совершенно равноправны. Существование выделенных орбит противоречит этим законам.

Не менее разительным противоречием известным нам законам физики является устойчивость атома (в основном состоянии). Мы знаем, что всякий заряд, движущийся с ускорением, излучает электромагнитные волны. Электромагнитное излучение уносите собой энергию. В атоме электрон движется с большой скоростью по орбите малого радиуса и, следовательно, обладает огромным центростремительным ускорением. Согласно известным нам законам электрон должен терять энергию, излучая ее в виде электромагнитных волн. Но, как было указано выше, если электрон теряет энергию, радиус его орбиты уменьшается. Следовательно, электрон не может вращаться по орбите постоянного радиуса. Расчеты показывают, что в результате уменьшения радиуса орбиты из-за излучения электрон должен был бы упасть на ядро за стомиллионную долю секунды. Этот вывод резко противоречит нашему ежедневному опыту, который свидетельствует об устойчивости атомов.

Итак, существует противоречие между данными о строении атома, полученными из эксперимента, и между основными законами механики и электричества, также найденными на опыте.

Но не следует забывать, что упомянутые законы найдены и проверены в экспериментах с телами, содержащими очень большое количество электронов, большое количество атомов. Мы не имеем основания считать, что эти законы применимы к движению отдельного электрона в атоме. Более того, расхождение между поведением электрона в атоме и законами классической физики указывает на неприменимость этих законов к атомным явлениям (см. также § 210).

Выше мы изложили так называемую планетарную модель атома, т.е. представление об электронах, вращающихся по разрешенным орбитам вокруг атомного ядра. При обосновании планетарной модели мы пользовались законами классической физики. Но, как уже отмечалось и как мы увидим подробнее в § 210, движение электрона в атоме относится к области явлений, в которой классическая механика неприменима. Неудивительно поэтому, что более глубокое изучение «микромира» показало неполноту, грубую приближенность планетарной модели; действительная картина атома сложнее. Все же эта модель отражает правильно многие основные свойства атома, и поэтому, несмотря на приближенность, ею иногда пользуются.

Рассмотрим зависимость энергии атома водорода от радиуса электронной орбиты. Кинетическую энергию движения электрона по орбите радиуса мы определим из того условия, чту центростремительное ускорение обеспечивается силой кулонного притяжения зарядов (в системе СИ ). Приравнивая ускорение создаваемое этой силой, центростремительному ускорению , найдем, что кинетическая энергии электрона обратно пропорциональна радиусу орбиты, т.е. .

Выделим две орбиты радиуса и . Кинетическая энергия вращения электрона на второй орбите больше, чем на первой на величину .

Если орбиты недалеко отстоят одна от другой, то и . Поэтому в знаменателе можно пренебречь величиной , и разница кинетических энергий будет приближенно равна .

Потенциальная энергия электрона, напротив, больше на первой, далекой орбите, ибо для удаления электрона от ряда нужно совершить работу против сил электрического притяжения, действующих между электроном и ядром; эта работа идет на увеличение потенциальной энергии.

Пусть электрон переводится с ближней орбиты на дальнюю по радиальному пути. Длина пути равна . Электрическая сила вдоль этого пути непостоянна по модулю. Но так как орбиты близки одна к другой , можно для приближенного вычисления работы использовать значение силы на среднем расстоянии электрона от ядра, равном . По закону Кулона сила есть , а работа на пути , равная приросту потенциальной энергии, будет равна .

Таким образом, при переходе электрона с дальней орбиты на ближнюю уменьшение его потенциальной энергии равно удвоенному приросту кинетической энергии. Мы доказали эту теорему для близких орбит, расстояние между которыми удовлетворяет условию . Суммируя изменения энергии электрона при переходах между последовательными парами близких орбит, убеждаемся, что теорема справедлива и для сколь угодно удаленных орбит.

Рассмотрим теперь бесконечно далекую орбиту, т. е. . Потенциальную энергию электрона на ней примем за начало отсчета потенциальной энергии, т. е. положим . Кинетическая энергия обращается при в нуль; при переходе с орбиты на конечную орбиту радиуса она возрастет на величину . Потенциальная энергия уменьшится на вдвое большую величину , т. е.

.(206.1)

Полная энергия электрона равна, следовательно, ; она тем меньше (знак минус!), чем меньше радиус орбиты.

Вернемся в 1911 год. К этому времени дискретность микромира проявилась наиболее ярко в атомных спектрах. Оказалось, что атомы поглощают и испускают свет только определенной длины волны, причем спектральные линии группируются в так называемые серии (рис. 3.1).

Рис. 3.1. Длины волн, излучаемые атомом водорода: спектр состоит из серий (показаны три первые) -
последовательностей линий, сгущающихся к некоторому (своему для каждой серии) предельному минимальному
значению ; только четыре линии серии Бальмера лежат в видимом диапазоне


Рис. 3.2. (a) Линейчатые спектры излучения газообразных водорода, ртути и гелия: (b) спектр поглощения водорода

Рис. 3.3. Непрерывные спектры излучения дают нагретые твёрдые и жидкие вещества, сильно сжатые газы, высокотемпературная плазма

Для спектра водорода, простейшего из атомов, была установлена (не выведена, а угадана!) несложная формула

Здесь - длина волны излучения атома водорода, n и k > n - целые числа, R - так называемая постоянная Ридберга (, где - внесистемная единица энергии «Ридберг», равная половине атомной единице энергии). Оказалось, что серия Лаймана описывается этой формулой при значениях , серия Бальмера - при , серия Пашена - при и т. д. Предельные (минимальные) значения для длин волн получаются из (3.1) при :

Рис. 3.4. Йоханнес Роберт Ридберг (1854–1919)

Рис. 3.5. Теодор Лайман (1874–1954)


Рис. 3.6. Спектральная серия Лаймана

Рис. 3.7. Иоганн Якоб Бальмер (1825–1898)

Рис. 3.8. Видимые линии излучения водорода в серии Бальмера. Hα - красная линия справа, имеющая длину волны 656,3 нм. Самая левая линия - Hε, соответствует излучению уже в ультрафиолетовой области спектра на длине волны 397,0 нм

Рис. 3.9. Луис Карл Генрих Фридрих Пашен (1865–1947)

Рис. 3.10. Все линии серии Пашена расположены в инфракрасном диапазоне

Кроме того, в результате изучения свойств газов к тому времени было известно, что размеры атомов приблизительно
равны . Поэтому теория, объясняющая спектр и размеры атомов, должна была включать в себя какой-то параметр, позволяющий построить величину с размерностью длины (постоянных e и m - заряда и массы электрона - для этого недостаточно). Такого параметра в классической теории не было. Им могла бы стать постоянная Ридберга, но ее происхождение было темно и загадочно.

В 1911 году Э. Резерфорд опубликовал теоретическую работу (Rutherford E., Philosophical Magazine, v. 21, p. 669–688 , 1911), в которой на базе анализа экспериментов, выполненных в 1908–1909 годах его учениками - стажером Гансом Гейгером и аспирантом Эрнстом Марсденом - (Geiger H., Marsden T., Proceedings of the Royal Society of London, Series A, v. 82, p. 495–499 , 1909) утверждал наличие внутри атома положительно заряженного ядра, в котором сосредоточена практически вся масса атома.

Рис. 3.11. Эрне́ст Ре́зерфорд (1871–1937)

Видео 3.2. Немного истории. Черная шляпа и модель рассеяния.

В последствии, в одной из своих лекций сам Э. Резерфорд вспоминал о тех временах следующим образом (цитируется по книге Дж. Тригг, Решающие эксперименты в современной физике, Москва, «МИР», 1974, стр. 77): «…Я помню… ко мне пришел очень взволнованный Гейгер и сказал: «Мы, кажется, получили несколько случаев рассеяния - частиц назад…». Это самое невероятное событие, которое было в моей жизни. Это почти также невероятно, как если бы вы выстрелили 15-дюймовым снарядом в папиросную бумагу и он, отразившись от неё, попал бы в вас. При анализе этого я понял, что такое рассеяние назад должно быть результатом однократного столкновения и, проведя расчеты, увидел, что это никоим образом невозможно, если не предположить, что подавляющая часть массы атома сконцентрирована в крошечном ядре. Именно тогда у меня и зародилась идея об атоме с крошечным массивным центром, в котором сосредоточен заряд». От себя добавим, что слова «рассеяние назад» фактически означали рассеяние на 150 градусов, рассеяние на большие углы не позволяла наблюдать конструкция использованной в тот момент установки.

Принципиальная схема опытов Резерфорда представлена на рис. 3.12. Схему реальной установки можно найти в цитированной выше книге Дж. Тригга.


Рис. 3.12. Схема опыта Резерфорда по рассеянию - частиц

Видео 3.3. Натурный опыт Резерфорда на лабораторной установке. Видео 3.4. Опыт Резерфорда «изнутри» (лабораторная установка). Видео 3.5. Компьютерная модель опыта Резерфорда.

От радиоактивного источника, заключенного в свинцовый контейнер, частицы направлялись на тонкую фольгу Ф из исследуемого металла. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа. Наблюдения рассеянных частиц в опыте Резерфорда можно было проводить под различными углами к первоначальному направлению пучка. Было обнаружено, что большинство частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30° . Очень редкие частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к . Очевидно, что частица может быть отброшена назад, только если положительный заряд атома и его масса сосредоточены в очень малом объеме внутри атома. Таким образом, было открыто атомное ядро - тело малых по сравнению с атомом размеров, в котором сосредоточен весь положительный заряд и практически вся его масса. Размеры ядра были оценены Э. Резерфордом в работе 1911 года, оценка дала меньше или порядка .

Видео 3.6. Прицельный параметр и форма траектории. Видео 3.7. Заряд рассеиваемой частицы и форма траектории. Видео 3.8. Энергия рассеиваемой частицы и форма траектории. Видео 3.9. Заряд ядра и форма траектории.

Рис. 3.13. Схема рассеяния альфа-частиц на ядре атома золота


Рис. 3.14. Схема рассеяния потока альфа-частиц в тонкой золотой фольге

Возникла планетарная модель атома водорода: протон с электроном на орбите. Физики любят единые модели, а здесь так красиво в малом повторялось большое, в атоме - Солнечная система.

Рис. 3.15. Схема ядерной (планетарной) модели атома Резерфорда

Проблема состояла в том, что электрон, совершающий финитное, а следовательно - ускоренное движение около ядра, должен упасть на ядро. Дело в том, что электрон заряжен и при ускоренном движении должен испускать электромагнитное излучение, то есть стационарное движение невозможно. Классическая электродинамика предсказывает, что, быстро потеряв свою энергию и момент импульса орбитального движения, электрон должен упасть на ядро примерно за . Свет за это время проходит около 1.5 см (получается, что мы видим лишь «мертвые» атомы, но это не так!). Резерфорд понимал проблему, но сознательно концентрировался на факте существования ядра, полагая, что вопрос об устойчивости атома будет решен при исследовании поведения атомных электронов. Это суждено было сделать в 1913 г. Н. Бору , предложившему новую теорию атома.

Рис. 3.16. Неустойчивость модели атома Резерфорда

Постулаты Бора

Первый постулат Бора

Здесь прослеживается «насильственное» введение дискретности (разрешены не все орбиты), а также типичное для физики «заметание проблемы под ковер»: если чему-то не находится объяснений, принимают это как данность и изучают следствия в надежде, что когда-нибудь поймут и причину.

Рис. 3.17. Иллюстрация первому постулату Бора

Второй постулат Бора

Этот постулат отражает сохранение энергии и соотношение Планка – Эйнштейна .

Рис. 3.18. Иллюстрация ко второму постулату Бора

Третий постулат Бора

Неизбежное следствие: так как остальные орбиты для электрона запрещены, переход осуществляется скачком; о пути и энергии электрона между орбитами говорить не имеет смысла: законы механики там не применимы.

Четвертый постулат Бора

Постоянная Планка ħ имеет размерность момента количества движения и вместе с зарядом электрона е и его массой m позволяет образовать параметр размерности длины. Это приводит к возможности вычислить размеры атома.

Рис. 3.19. Нильс Хе́нрик Дави́д Бор (1885–1962)

Применение постулатов Бора

Классическая механика для электрона, вращающегося по круговой орбите радиусом R со скоростью v вокруг ядра с зарядом Ze , дает уравнение движения

Поэтому энергия Е и момент импульса L электрона выражаются через радиус орбиты R :

Если к последнему выражению применение условие квантования Бора L=nħ (n=1, 2, 3, … ), то получатся следующие результаты.

Рис. 3.20. Модель атома Бора

Характеристики водородоподобного атома

Радиусы разрешенных орбит

Энергия электрона на стационарной орбите

Константа а В , имеющая размерность длины, называется радиусом Бора: . Смысл числа - номер разрешенной орбиты. Радиус Бора - радиус низшей орбиты в атоме водорода .

Формула (3.3) определяет дискретные значения энергии, которые может иметь электрон в атоме водорода, или, как говорят, энергетические уровни. Отрицательные значения соответствуют связанным состояниям электрона в атоме, то есть движениям в ограниченной области пространства (аналог в классической физике - движение планет по эллипсам в отличие от гиперболических и параболических траекторий, уходящих на бесконечность).

При решении задач о поведении электрона в атоме обычно возникают выражения, включающие квадрат электрического заряда электрона в комбинации с электрической постоянной . Весьма полезно ввести безразмерную комбинацию фундаментальных мировых постоянных - так называемую постоянную тонкой структуры :

которая, совместно с атомным номером и номером орбиты , определяет масштаб релятивистских эффектов в атоме. Для того, чтобы это было лучше видно, перепишем формулу (3.3) так, чтобы в её правую часть входила постоянная тонкой структуры:

Из-за множителя характерные для атома энергии оказываются на четыре порядка меньше энергии покоя электрона. Это проявление нерелятивизма достаточно легких атомных систем. Как видно из последнего выражения в приведенной выше формуле, релятивистские эффекты перестают быть малыми поправками для ближних к ядру электронов в тяжелых атомах.

Пример 1. Определим скорость электрона на n -й орбите атома Бора. Радиус n-й орбиты определяется формулой

где а В - радиус Бора. Скорость электрона v можно выразить через момент импульса L=nħ:

Выражение для радиуса Бора упростим, используя введенную постоянную тонкой структуры:

Подставляя это выражение в полученную выше формулу для скорости электрона, получаем для n орбиты

Рис. 3.21. Схема энергетических уровней и переходов в атоме водорода по теории Бора:
сплошные линии (переходы сверху вниз) - излучение, пунктирные линии (переходы снизу вверх) - поглощение.
Показаны границы (пределы) серий , которым соответствуют переходы с уровня с
- границы между континуумом и дискретным спектром

Экспериментальное подтверждение утверждение Бора о дискретности энергетического спектра атомов нашло в опытах Франка - Герца, которые заключались в бомбардировке паров ртути электронами в вакуумной трубке и измерении зависимости анодного тока от ускоряющей разности потенциалов. Схема опыта приведена на рис. 3.22.


Рис. 3.22. Схема опыта Франка - Герца

В трубке, заполненной парами ртути под небольшим давлением (около 1 мм. рт. ст.), имеются три электрода: анод, катод и сетка. Электроны, вылетающие с поверхности подогретого катода вследствие термоэлектронной эмиссии, ускоряются напряжением U , приложенным между катодом и сеткой. Это напряжение можно менять с помощью потенциометра П . Между анодом и сеткой приложено слабое обратное поле с разностью потенциалов порядка 0,5ВВ , тормозящее движение электронов к аноду. Определялась зависимость тока I в цепи анода от приложенного напряжения U . Полученные результаты приведены на рис. 3.23.


Рис. 3.23. Зависимость тока I в цепи анода от приложенного напряжения U в опыте Франка - Герца

Сила тока сначала монотонно возрастает, достигает максимума при напряжении 4,9 В , после чего с ростом U резко падает, достигает минимума и снова начинает расти. Максимумы силы тока повторяются при напряжениях 9,8 В , 14,7 В и т. д. Чередование максимумов на равном расстоянии друг от друга доказало дискретность изменения энергии атома.

Видео 3.10. Опыт Франка и Герца. Демонстрационная установка. Видео 3.11. Опыт Франка и Герца. Сравнение ВАХ для неона и гелия. Видео 3.12. Опыт Франка и Герца. Лабораторная установка 1. Видео 3.12. Опыт Франка и Герца. Лабораторная установка 2.

Атомный номер элемента - целое число, так что после округления получаем Z = 2 , что соответствует гелию.

Как отмечалось выше, еще до появления теории Бора был изучен спектр водородного атома и эмпирически установлена формула (3.1). Но при наблюдении спектра Солнца были замечены линии, казалось бы, нарушающие эту формулу, так как они соответствовали полуцелым значениям n и k . После появления теории Бора стало ясно, что квантовые числа n и k все-таки должны быть целыми, а кажущиеся полуцелые значения можно объяснить по-другому. Действительно, из формулы (3.6) для частот, испускаемых водородоподобным атомом,следует, что

то есть наблюдавшиеся линии принадлежат иону элемента с Z = 2 . Как известно, этот элемент носит «солнечное» имя - гелий.

Выход из тупика был найден датским ученым Нильсом Бором в 1913 году, получившим Нобелевскую премию в 1922 году.

Бор высказал предположения, которые были названы постулатами Бора .

· Первый постулат (постулат стационарных состояний ): электроны движутся только по определенным (стационарным ) орбитам. При этом , даже двигаясь с ускорением , они не излучают энергию.

· Второй постулат (правило частот ): излучение и поглощение энергии в виде кванта света (h n ) происходит лишь при переходе электрона из одного стационарного состояния в другое. Величина светового кванта равна разности энергий тех стационарных состояний , между которыми совершается скачок электрона: .

Отсюда следует, что изменение энергии атома, связанное с излучением при поглощении фотона, пропорционально частоте ν:

Правило квантования орбит : из всех орбит электрона возможны только те , для которых момент импульса равен целому кратному постоянной Планка:

, (6.3.2)

где n = 1, 2, 3,… – главное квантовое число.

Получим выражение для энергии электрона в атоме.

Рассмотрим электрон (рис. 6.6,а), движущийся со скоростью в поле атомного ядра с зарядом Ze (при Z = 1 – атом водорода).

а б

Уравнение движения электрона имеет вид:

. (6.3.3)

Из формулы (6.3.3) видно, что центробежная сила равна кулоновской силе, где .

Подставим значение υ из (6.3.2) в (6.3.3) и получим выражение для радиусов стационарных орбит (рис.6.6,б):

. (6.3.4)

Радиус первой орбиты водородного атома называют боровским радиусом . При n =1, Z = 1 для водорода имеем:

Å = 0,529·10 –10 м.

Внутренняя энергия атома слагается из кинетической энергии электрона (ядро неподвижно) и потенциальной энергией взаимодействия электрона с ядром:

.

Из уравнения движения электрона следует, что , т.е. кинетическая энергия равна потенциальной. Тогда можно записать:

.

Подставим сюда выражение для радиуса первой орбиты и получим:

. (6.3.5)

Здесь учтено, что постоянная Планка , т.е. .

Для атома водорода при Z = 1 имеем:

. (6.3.6)

Из формулы (6.3.6) видно, что принимает только дискретные значения энергии, т.к. n = 1, 2, 3….

Схема энергетических уровней, определяемых уравнением (6.3.6) показана на рис. 6.1 и 6.7.

При переходе электрона в атоме водорода из состояния n в состояние k излучается фотон с энергией:

.

Частота излучения:

.

Получена обобщенная формула Бальмера, которая хорошо согласуется с экспериментом. Выражение перед скобками, как уже было сказано, носит название постоянной Ридберга :

.

Серьезным успехом теории Бора явилось вычисление постоянной Ридберга для водородоподобных систем и объяснение структуры их линейчатых спектров. Бору удалось объяснить линии спектра ионизованного гелия. Он теоретически вычислил отношение массы протона к массе электрона , что находилось в соответствии с экспериментом, является важным подтверждением основных идей, содержащихся в его теории. Теория Бора сыграла огромную роль в создании атомной физики. В период ее развития (1913–1925) были сделаны важные открытия, навсегда вошедшие в сокровищницу мировой науки.

Однако, наряду с успехами, в теории Бора с самого начала обнаружились существенные недостатки. Главнейшим из них была внутренняя противоречивость теории: механическое соединение классической физики с квантовыми постулатами. Теория не могла объяснить вопрос об интенсивностях спектральных линий. Серьезной неудачей являлась абсолютная невозможность применить теорию для объяснения спектров атома гелия, содержащего два электрона на орбите и тем более для многоэлектронных атомов (рис. 6.8).

Стало ясно, что теория Бора является лишь переходным этапом на пути создания более общей и правильной теории. Такой теорией и явилась квантовая механика.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

Электрон в атоме водорода

Постулаты Бора

Постулаты Бора определили направление развития новой науки – квантовой физики атома. Но они не содержали рецепта определения параметров стационарных состояний (орбит) и соответствующих им значений энергии E n .

Правило квантования, приводящее к согласующимся с опытом значениям энергий стационарных состояний атома водорода, Бором было угадано. Он предположил, что момент импульса электрона, вращающегося вокруг ядра, может принимать только дискретные значения, кратные постоянной Планка. Для круговых орбит правило квантования Бора записывается в виде

Здесь m e – масса электрона, υ – его скорость, r n – радиус стационарной круговой орбиты. Правило квантования Бора позволяет вычислить радиусы стационарных орбит электрона в атоме водорода и определить значения энергий. Скорость электрона, вращающегося по круговой орбите некоторого радиуса r в кулоновском поле ядра, как следует из второго закона Ньютона, определяется соотношением

где e – элементарный заряд, ε 0 – электрическая постоянная. Скорость электрона υ и радиус стационарной орбиты r n связаны правилом квантования Бора. Отсюда следует, что радиусы стационарных круговых орбит определяются выражением

Самой близкой к ядру орбите соответствует значение n = 1. Радиус первой орбиты, который называется боровским радиусом, равен

Радиусы последующих орбит возрастают пропорционально n 2 .

Полная механическая энергия E системы из атомного ядра и электрона, обращающегося по стационарной круговой орбите радиусом r n , равна

Следует отметить, что E p < 0, так как между электроном и ядром действуют силы притяжения. Подставляя в эту формулу выражения для υ 2 и r n , получим:

Целое число n = 1, 2, 3, ... называется в квантовой физике атома главным квантовым числом.

Согласно второму постулату Бора, при переходе электрона с одной стационарной орбиты с энергией E n на другую стационарную орбиту с энергией E m < E n атом испускает квант света, частота ν nm которого равна ΔE nm / h:

Эта формула в точности совпадает с эмпирической формулой Ридберга для спектральных серий атома водорода, если положить постоянную R равной

Подстановка числовых значений m e , e, ε 0 и h в эту формулу дает результат

R = 3,29·10 15 Гц, который очень хорошо согласуется с эмпирическим значением R. Рис. 1 иллюстрирует образование спектральных серий в излучении атома водорода при переходе электрона с высоких стационарных орбит на более низкие.

Электрон в атоме водорода

Потенциальная энергия взаимодействия электрона с ядром в атоме водорода равна

Решение уравнения (1.15) проводят методом разделения переменных с учетом естественных требований, налагаемых на ψ -функцию: она должна быть однозначной, конечной, непрерывной и гладкой. В теории дифференциальных уравнений доказывается, что решения уравнения являются непрерывными, однозначными и конечными в следующих случаях:

1) при любых положительных непрерывных значениях энергии;

2) при дискретных отрицательных значениях энергии.

Первый случай соответствует свободному электрону (заштрихованная область на рис. 1.5 б ), второй - получаемым из уравнения Шрёдингера собственным значениям энергии

n = 1, 2, 3, … (1.16)

Случай (Е < 0) соответствует связанным состояниям электрона в атоме.

Решение уравнения Шрёдингера приводит в случае Е < 0 к формуле (1.16) для энергетических уровней без использования каких-либо дополнительных постулатов (в отличие от первоначальной теории Бора). Кроме того, совпадение с формулой Бора означает, что мы пришли к той же самой системе энергетических уровней, как в теории Бора. Это же относится и к частотам излучения при переходах между уровнями.

Таким образом, решение уравнения Шрёдингера приводит для атома водорода к появлению дискретных энергетических уровней Е 1 , Е 2 , ..., Е п, показанных на рис. 1.5 б в виде горизонтальных прямых.

а ) б )

Рис. 1.5 . а - потенциальная энергия U(r) и б - собственные значения энергии Е электрона в атоме водорода.

Самый нижний уровень Е 1 , отвечающий минимальной возможной энергии, - основной , все остальные (Е п > Е 1 , п = 2, 3, ...) - возбужденные . При Е < 0 движение электрона является связанным - он находится внутри гиперболической потенциальной ямы. Из рисунка следует, что по мере роста главного квантового числа п энергетические уровни располагаются теснее и при п → ∞ Е ∞ → 0.

При Е > 0 движение электрона является свободным ; область непрерывного спектра Е > 0 (заштрихована на рис. 1.5 б ) соответствует ионизированному атому.

Различие в интерпретации с теорией Бора относится только к состояниям электрона: в теории Бора это движение по стационарным орбитам, здесь же орбиты теряют физический смысл, их место занимают ψ -функции.

Диаграмма энергетических уровней (рис.1.5) позволяет дать несколько важных определений.

Энергия возбуждения Е воз – это энергия, которую необходимо сообщить электрону, чтобы он из основного состояния (n = 1) перешёл в возбужденное. Например, Е воз = 10,2 эВ – энергия, необходимая для перехода электрона в состояние, соответствующее n = 2 (первое возбужденное состояние).

Энергия ионизации Е ион – энергия, необходимая для отрыва электрона, находящегося в основном состоянии (n = 1), от ядра, т.е. для перевода электрона на уровень с n = . Для атома водорода энергия ионизации равна 13,6 эВ.

Из анализа следует три вывода.

· Э лектрон в атоме может иметь только дискретные значения энергии. В любом атоме энергии электронов дискретны.

· Существует состояние электрона с энергией, меньше которой электрон иметь не может. Это состояние называется основным. Все остальные состояния называют возбужденными. При этом, двигаясь с ускорением, любая заряженная частица излучает электромагнитные волны. На этом принципе устроены все антенны, любые источники электромагнитного излучения - радиоволн, видимого света, рентгеновских и гамма-лучей. А электрон в атоме, в каком бы состоянии он ни находился, не излучает, хотя движется с ускорением. Электрон в возбужденном состоянии может излучить электромагнитную энергию, перейдя в одно из состояний с меньшей энергией. Энергия излучается квантами, и в процессе излучения, как во всех процессах, происходящих в природе, выполняется закон сохранения энергии. Энергия излученного кванта в соответствии с законом сохранения энергии равна hn = = E n - E m , где n и m - целые числа и n > m . Сколько времени электрон проведет в возбужденном состоянии, зависит от целого ряда причин, исследованных квантовой механикой. Эти времена различны, но все они конечны.

· Как исключение, основное состояние электрона в атоме устойчиво, поскольку закон сохранения энергии запрещает электрону, находящемуся в основном состоянии, излучать электромагнитную энергию.

kinderglad.ru - Я мама. Учимся готовить. Уход за ребенком. Развитие детей